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Abstract

The spread of a contagious disease is often accompanied by a rise in awareness
of those in the social vicinity of infected individuals, and a subsequent change
in behaviour. Such reactions can manifest themselves in lower susceptibility
as people try to prevent themselves from catching the disease, but also in
lower infectivity because of self-imposed quarantine or better hygiene, shorter
durations of infectiousness or longer immunity. We here focus on the scenario
of an endemic disease of which members of the population can be either aware
or unaware, and consider a broad set of possible reactions. We quantify
the impact on the endemicity of a disease in a well-mixed population under
the variation of different disease parameters as a consequence of growing
awareness in the population. Applying a pair-closure scheme allows us to
analyse the effect of local correlations if aware individuals tend to occur near
infected cases, and to link this to the amount of overlap between the networks
underlying the spread of awareness and disease, respectively. Lastly, we study
the consequences on the dynamics when the pathogen and awareness spread
at different velocities.
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1. Introduction

The spread of a contagious disease can trigger behavioural responses of
people trying to minimise the effect of the disease onto themselves and their
peers, and to prevent themselves and others from contracting the disease in
the first place (Hays, 2006). Depending on the best behaviour associated
with a given disease, heightened levels of awareness give rise to the usage of
face masks (Lau et al., 2005; Kristiansen et al., 2007), practise of better hy-
giene (Jones and Salathé, 2009; Rubin et al., 2009), application of preventive
medicine (Laver et al., 2001), vaccination (Brewer et al., 2007), voluntary
quarantine (Tracy et al., 2009), avoidance of congregated places (Jones and
Salathé, 2009), practise of safe sex (Ahituv et al., 1996), etc. These actions
can change the transmission patterns of the disease in altering the rates of
transmission, as well as the durations of infectivity and immunity. The ex-
act impact they can have on the disease dynamics, however, is difficult to
quantify and often subject to speculation. Where conclusive observations
are missing, mathematical modelling is used to test hypotheses and to iden-
tify crucial parameters in the interaction between a spreading disease and an
associated behavioural response in the population (Ferguson, 2007).

The behavioural response to a disease carries elements of a contagious
process itself. For people to react in some way, they do not necessarily need
to have witnessed the disease first hand. Often, they have heard of it through
the media or health authorities. These, however, usually focus on high-profile
diseases and report broad statistics which often provide little information to
people trying to assess their individual costs and benefits of behavioural
changes. Instead, awareness of the local prevalence of a disease not covered
by media or local health authorities is more likely to be raised to by acts
of informal information spread (e.g., Tai and Sun, 2007), i.e. by hearing
about someone having fallen ill, notes on a nursery door or other forms of
local dissemination of awareness. As the information about the presence of
a disease spreads in the population, people adapt their behaviour as a result
of their awareness of the disease (e.g., Stoneburner and Low-Beer, 2004).

The spread of rumours or other tokens of information in a human pop-
ulation has previously been compared to the spread of a contagious disease
as an entity which is passed on from person to person (Goffman and Newill,
1964). Both in this context and in the context of spreading diseases, the
importance of social network structure has received growing attention in re-
cent years (Keeling and Eames, 2005). In our particular context, we are
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faced with two processes which spread over two, not necessarily overlapping
networks and interact through the behavioural response of people as they be-
come aware of the presence of a disease. This is not entirely dissimilar from
the interaction between two diseases which has been studied, for example,
by Vasco et al. (2007).

We recently presented a model for the spread of awareness in response
to an epidemic outbreak and analysed the effect this can have on the out-
break (Funk et al., 2009). Here, we expand on that idea to study a simplified
model of the interaction between local behavioural response and endemic dis-
ease. We map the model we introduced previously to a model which knows
just two states of awareness – aware and unaware. This allows us to ap-
ply a systematic treatment to distinguish between the impact of spreading
awareness on the initial phase of an outbreak of a contagious disease and
the long-term impacts on the establishment of the disease, and to ask what
happens under different types of behavioural change.

In the following, we introduce the model and study it in a well-mixed
population, before considering the impact of local correlations using a pair
approximation. All methods employed in this work are deterministic in na-
ture, which makes them a good approximation only if infection is abundant
enough to make stochastic extinction very unlikely. Therefore, we focus here
on endemic disease which, once established, is present in a substantial frac-
tion of the population. To assess the remaining effect of stochasticity, we
compare the results with an equivalent stochastic model on a network.

2. The model

We divide our model population into two compartments: aware (la-
belled +) and unaware (−). Awareness spreads within the population analo-
gously to an SIS (Susceptible-Infected-Susceptible) model, in that awareness
is spread from the aware to the unaware part of the population at rate α,
and lost again or forgotten with rate λ.

We overlay the model for the spread of awareness with a standard SIRS
(Susceptible-Infected-Recovered-Susceptible) model for endemic disease (see,
e.g., Anderson and May, 1991), with associated rates of infection β, recovery
γ and loss of immunity δ. In total, we therefore end up with 6 distinct
compartments:
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S
−

Susceptible unaware
I
−

Infected unaware
R
−

Recovered unaware
S+ Susceptible aware
I+ Infected aware
R+ Recovered aware

According to whether an individual is aware or unaware, we examine a vari-
ety of consequences on behaviour and, consequently, the disease progression
with respect to that individual. In addition to reduced susceptibility as a
consequence of protective behaviour adopted in a state of greater alert, we
study the impact of reduced infectiousness of infected individuals as they
become aware of carrying the disease and voluntarily reduce their number of
contacts or take medication which reduces their infectiveness. If we denote
the infection rate in an unaware population with β, the reduction in infec-
tivity by a factor 0 < σI < 1 and the reduction in susceptibility by a factor
0 < σS < 1, we end up with four different infection rates depending on the
awareness of the susceptible and infected individuals in contact:

β Infection rate from unaware infected to unaware susceptible
σSβ Infection rate from unaware infected to aware susceptible
σIβ Infection rate from aware infected to unaware susceptible

σSσIβ Infection rate from aware infected to aware susceptible

Generally, the combined effect of reduced susceptibility and infectiousness on
the infection rate from aware infected to aware susceptibles does not need
to be multiplicative, but could be a more general σSI . Here, however, for
the purpose of being later able to treat the two effects of reduced suscepti-
bility and reduced infectiousness separately, we decided to regard them as
independent effects on the infection rate, so that σSI = σSσI .

The model, in principle, also covers the scenario in which infectivity or
susceptibility is increased by awareness (i.e., σI > 1 or σS > 1). Although
we do not expect this to be a common scenario, and it is beyond the scope
of this paper, it is more than a theoretical possibility and could be encoun-
tered, for instance, in risk-seeking behaviour, such as deliberate contacts
between infected with uninfected individuals in communities where HIV is
highly prevalent (Berg, 2009), or in the increased movement of livestock in
anticipation of a ban on movement, in the presence of a zoonosis.
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In addition to modifying the infection rates, we study the case where
awareness changes the duration of infection as people take medication or
take other measures to recover more quickly. Denoting the reduction in the
duration of infection with ε−1 leads to the modified recovery rates:

γ Recovery rate of unaware infected
εγ Recovery rate of aware infected

We also allow the duration of immunity to be multiplied by a factor φ−1 for
people who are aware of the presence of the disease, caused, for example, by
continued medication or renewal of vaccination. The resulting modified rates
of loss of immunity are:

δ Rate immunity loss of unaware recovered
φδ Rate of immunity loss of aware recovered

This sums up the parameters of the modified SIRS model, and the way they
change according to whether someone is aware or not. As mentioned above,
awareness has its own dynamics governed by the following rates:

α Rate of awareness spread
λ Rate of awareness loss

Lastly, the presence of awareness is coupled to the presence of the disease
by a transition of rate ω at which those unaware and infected become aware
without contact to others. These are the sources of awareness.

ω Rate of infected becoming aware

All compartments and the transitions between them are summarised in Fig. 1.

3. Mean-field analysis

Under the assumption of a well-mixed population, interactions between
the different compartments happen completely at random, and rates of change
are therefore proportional to the total number of individuals in the differ-
ent compartments. Denoting with N+ = S+ + I+ + R+ the aware and with
N
−

= S
−

+ I
−

+ R
−

the unaware part of the population of constant size
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N = N+ + N
−
, the dynamics of the spread of awareness is described by the

following ordinary differential equation (ODE):

Ṅ+ = αN+

N
−

N
− λN+ + ωI

−
, (1)

with the equation for N
−

following trivially from N
−

+ N+ = N . In the
absence of infection (I

−
= 0), the system described by Eq. (1) has two equi-

libria:
N+,1 = 0 and N+,2 = (1− λ/α)N, (2)

representing situations in which awareness is absent from the population or
established in it, respectively. Analogously to the invasion threshold in epi-
demic models, the stability of the equilibria is determined by the value of the
ratio Ra

0 = α/λ. If Ra
0 < 1, the unaware equilibrium N+,1 is stable, whereas if

Ra
0 > 1 it becomes unstable, and the equilibrium N+,2 in which with a part of

the population is aware acquires stability. Ra
0 therefore acts as a basic repro-

ductive number of awareness, a familiar concept in epidemiology (Diekmann
and Heesterbeek, 2000).

Combining the model for the spread of awareness with the model for the
spread of the disease as given by the SIRS model we end up with a system
of 6 ODEs representing the dynamics of the full system:

dS
−

dt
= −(I

−
+ σII+)β

S
−

N
− α(S+ + I+ + R+)

S
−

N
+ λS+ + δR

−

dI
−

dt
= +(I

−
+ σII+)β

S
−

N
− α(S+ + I+ + R+)

I
−

N
+ λI+ − γI

−
− ωI

−

dR
−

dt
= −α(S+ + I+ + R+)

R
−

N
+ λR+ − δR

−
+ γI

−

dS+

dt
= −(I

−
+ σII+)σSβ

S+

N
+ α(S+ + I+ + R+)

S
−

N
− λS+ + φδR+

dI+

dt
= +(I

−
+ σII+)σSβ

S+

N
+ α(S+ + I+ + R+)

I
−

N
− λI+ − εγI+ + ωI

−

dR+

dt
= +α(S+ + I+ + R+)

R
−

N
− λR+ − φδR+ + εγI+

(3)

Summation over the disease states of the system to obtain Ṅ
−

= Ṡ
−
+ İ

−
+Ṙ

−

and Ṅ+ = Ṡ+ + İ+ + Ṙ+ recovers the dynamics of the spread of awareness
as prescribed by Eq. (1), and summing over the information states to obtain
Ṡ = Ṡ

−
+ Ṡ+, İ = İ

−
+ İ+ and Ṙ = Ṙ

−
+ Ṙ+ recovers the equations of the
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classical SIRS model if the disease rates are awareness-independent (σI =
σS = ε = φ = 1). The condition for disease invasion is then fulfilled when
the basic reproductive number Rd

0 = β/γ exceeds 1 (e.g., Diekmann and
Heesterbeek, 2000).

In the full system described by Eqs. (3), we identify four qualitatively
different types of mean-field equilibria in which either everyone is suscep-
tible and unaware, or any combination of disease and awareness are en-
demic (Fig. 2a). If awareness and disease spread completely independently,
with awareness-independent disease transition rates and ω = 0, the equilib-
rium structure is fully determined by the values of the threshold parameters
Rd

0 = β/γ and Ra
0 = α/γ which assume the role of the epidemic thresholds

for the two different processes.
When the interaction between the spreads comes into play, i.e. when

any of the disease-related parameters change with respect to the awareness
of a given susceptible-infected pair, the borders between these four regions
can change. The way such changes depend on the interplay between the
parameters will be discussed in the following.

A special role is assumed by the process of information generation, cou-
pled to the parameter ω. If ω > 0, there is no longer an equilibrium in which
the disease is endemic but awareness is not. Whenever there is any positive
fraction of infected in the population, it will also create some level of aware-
ness. To first order, the number of aware individuals thus generated is (see
appendix)

Nω
+
≈

ω

|α− λ|

I
−

N
(4)

which is a good approximation as long as

ω

α

I
−

N
�

1

4

(
1−

1

Ra
0

)2

. (5)

If Ra
0 ≈ 1, the contribution of sources of awareness to the aware population

is better approximated by

Nω
+
≈ N

√
ω

α

I
−

N
. (6)

In the following we study the equilibrium structure of the mean-field model
under different scenarios for the impact of awareness on the parameters of
the disease dynamics
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3.1. Equilibrium structure

The trivial equilibrium of our model is one which is free of disease and
awareness, at S

−
= N and S+ = I

−
= I+ = R

−
= R+ = 0. At that point, the

whole population is susceptible to the disease and unaware of it. On contact
with the infected part of the population, susceptibles are infected with a rate
potentially scaled with the parameters σS and σI , depending on whether the
susceptible and infected individuals in contact are aware of the disease or
not, and, once infected, recover at a rate scaled with ε if they are aware. If
ω = 0, the stability of the disease- and awareness-free equilibrium depends
only on β/γ and α/λ, just as in the decoupled case described above, and
independently of σS, σI and ε. In that case, the borders of the bottom region
in the left corner of the graph discussed above remain as before and they are
determined by

Rd
0 =

β

γ
and Ra

0 =
α

λ
(7)

If Rd
0 is smaller than 1 but the awareness threshold Ra

0 exceeds 1, the stable
equilibrium is one where awareness is endemic but the disease is not (S

−
=

N · λ/α, S+ = N − S
−
, I

−
= I+ = R+ = R

−
= 0). If both R0d and Ra

0 are
greater than 1, the dependence of the disease-related parameters comes into
play as it becomes harder for the disease to invade the population if there
is a sustained level of awareness. This is the case for several of the possible
effects of our model, i.e. if aware individuals recover from the infection more
quickly, but also if they spread the infection less, or if aware susceptibles are
less prone to catching the disease (Fig. 2b), as we will see in greater detail
in the following.

A complete analysis of the ODE system (3) is difficult and does not lead
to transparent results. Instead, we will cover some limiting cases to illustrate
the effect which different kinds of behavioural change as a result of awareness
can have. We here state the results of our analysis of the invasion conditions,
the derivations of which can be found in the appendix.

Reduced susceptibility

If susceptibles have their susceptibility reduced by a factor σS, while the
other rates remain unaffected by awareness, σI = ε = φ = 1, the epidemic
threshold remains at 1 for Ra

0 < 1, but if Ra
0 > 1 it increases to

Rd
0 > 1 +

(1− σS)(Ra
0 − 1)

1 + σS(Ra
0 − 1)

, (8)
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which depends only on Ra
0 and is independent of the relative speeds of the

two processes, and of the rate of information generation ω. If Ra
0 → ∞,

the threshold approaches 1/σS, as everyone in the population will be aware.
Eq. (8) is similar to the result obtained by Vasco et al. (2007) in the context
of the spread of two interacting diseases.

Reduced infectivity

If only infected individuals have their infectivity reduced by a factor σI ,
while the other rates remain unaffected by awareness, σS = ε = φ = 1, the
invasion threshold for the disease is changed even if Ra

0 < 1 because now
the appearance of awareness in infected individuals at rate ω changes the
disease dynamics even if awareness does not spread much. In that case, the
condition for disease invasion changes to

Rd
0 > 1 +

(1− σI)ω

λ + γ + σIω
. (9)

This explains why there is a gap between the epidemic threshold and 1 for
Ra

0 < 1 in Fig. 2b. If awareness can spread, such that Ra
0 > 1, the invasion

condition becomes

Rd
0 > 1 +

(1− σI)
[
Ra

0

(
1 + ω

α+γ

)
− 1

]
1 + σI

[
Ra

0

(
1 + ω

α+γ

)
− 1

] , (10)

which is similar to Eq. (8), but contains an additional term reflecting the
impact of the rate ω at which infected can become aware by themselves. If
ω = 0, Eq. (8) and (10) are the same with σS and σI interchanged.

Note that α, λ, β and γ cannot be eliminated concurrently from inequal-
ities (9) and (10) by expressing the them in terms of Rd

0 and Ra
0 only. The

impact of new awareness appearing in those infected is relative to how long
they stay infected (γ−1) and how fast it is spread (α).

Faster recovery

If only the recovery rate, or the duration of infection, depends on the
awareness of a given infectious individual, such that ε > 1, but all other
parameters are awareness-independent, the invasion condition changes what-
ever the value of Ra

0 because infected individuals can become aware at rate

9
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ω > 0 and have their period of infectivity shortened, even if awareness does
not spread far. If Ra

0 < 1, the condition for disease invasion becomes

Rd
0 > 1 +

(ε− 1)ω

λ + εγ + ω
, (11)

which, again, causes a gap between the epidemic threshold and 1 for Ra
0 < 1

in Fig. 2b. If Ra
0 > 1, the invasion condition is

Rd
0 > 1 +

Ra
0 − 1 + ω

α+γ+ω

Ra
0 + (ε−1)γ

α+γ+ω

(ε− 1). (12)

Again, the invasion conditions cannot be described by a simple relation be-
tween Rd

0 and Ra
0, but only by a more complex relation of all parameters.

Longer preservation of immunity

If the duration of immunity δ−1 depends on the awareness of individuals,
this changes the fraction of infected and recovered in the endemic state,
yet it does not affect the transitions between the equilibria. This is, to
some extent, an artefact of the deterministic formulation of the model. If
awareness is abundant, and it prolongs immunity by a large amount, the
number of infected can drop so low that the deterministic approximation
used here loses its value and stochastic extinction becomes likely enough to
be relevant. However, we will not discuss this further in this paper.

Endemic equilibria

While we did not find analytical expressions for the exact levels of the
endemic equilibria, they can be derived numerically, a few examples of which
are shown in Fig. 2c. Unlike with the invasion conditions shown in Fig. 2b,
which display a sharp threshold at Ra

0 = 1, there is a noticeable effect on the
endemic equilibrium for Ra

0 < 1 as Ra
0 approaches 1 because even if awareness

cannot spread independently, a sizable part of the population will become
aware, lowering the equilibrium density of infected individuals.

3.2. Pair approximation

While the mean-field approximation is useful in capturing general features
of the model system, it does not contain a notion of spatial structure in
the population as it assumes random mixing. As awareness spreads in the
population in the mean-field model, it does so only by affecting an increasing
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fraction of the population which the disease encounters. This is reflected by
the interaction terms which assume the form

İ = +β
1

N
(I
−

+ σII+)(S
−

+ σSS+)− . . . (13)

This form of interaction includes the assumption that the probability of any
one infected to encounter an aware/unaware susceptible is proportional to
the fraction of such individuals in the population.

If one wants to take into account effects of local interaction and the notion
that awareness can be different around disease cases from other parts of the
population, the system is is more accurately described at the level of pairs. If
we denote by [. . .]d the number of pairs of two members of the population in
given state with a potentially infectious contact, the interaction term becomes

İ = +β̂([S
−
I
−
]d + σI [S−I+]d + σS[S+I

−
]d + σsσI [S+I+]d)− . . . , (14)

where β̂ = β/kd is the per-contact default infection rate if kd is the number
of disease contacts each individual possesses in the population, assumed here
to be constant. Under the assumption of random mixing, i.e. if all contacts
occur completely at random, we recover the well-mixed case described by
the mean-field approximation, and [S±I±]d = kdS±I±/N . By describing the
system at the level of pairs, however, we can capture situations where [S±I±]d

is greater or smaller than in a completely random setting, including cases
where, for example, members of the population with a potentially infectious
contact in their neighbourhood have a higher awareness with respect to the
rest of the population.

The build-up of correlations between states has been shown to be relevant
to the description of spreading diseases in structured populations. In the
absence of awareness the basic reproductive number of the disease at the
level of pairs is given by

Rd
0 = Cd

S
−

I
−

β

γ
, (15)

where

Cd
S
−

I
−

=
N

kd

[S
−
I
−
]d

S
−
I
−

(16)

is the correlation between unaware susceptibles and unaware infected on
disease edges, i.e. their tendency of being neighbours on the network. This
correlation can be shown to reach a quasi-equilibrium very fast with respect
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to the disease dynamic, yielding the basic reproductive number as given by
the pair approximation (Keeling, 1999)

Rd
0 =

(
1−

2

kd

)
β

γ
. (17)

In addition to capturing state correlations, a description on the level of pairs
allows us to distinguish between the pathways underlying the spread of the
different processes. We thus denote pairs on the disease network of poten-
tially contagious contact with [. . .]d, and ones on the network of spreading
awareness with [. . .]a, so that the interaction terms for the spread of aware-
ness assume the form

Ṡ+ = . . . + α̂([S
−
S+]a + [S

−
I+]a + [S

−
R+]a) . . . , (18)

where α̂ = α/ka is the per-contact rate of awareness spread if ka is the
constant number of contacts each individual possesses on the network on
which awareness spreads. Analogously to Eq. (15), we can define a basic
reproductive number of awareness at pair level

Ra
0 = Ca

−+

α

λ
(19)

where

Ca
−+

=
N

ka

[N
−
N+]a

N
−
N+

(20)

is the correlation between aware and unaware individuals on the network
underlying the spread of awareness.

The 6 different states on 2 distinct edge types in our model leads to a
total number of 42 pair equations. Deriving them by hand is tedious to do
and prone to errors. Therefore, we implemented an automated procedure to
generate the equations from a given set of states, edge types and transitions.
The resulting system of equations can be found in its full form in the online
supporting material, while we elaborate on the exact way we treat the overlap
between the two networks in the appendix.

Analysing the system of equations produced from the pair approximation,
we find that correlations can indeed play an intricate role in the interaction
between spreading awareness and disease. The most pronounced difference
in the dynamics of the correlations occurs in the initial phase of growth of
a disease which breaks out in an almost completely susceptible population.
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Once the system comes close to equilibrium, the correlations converge to
approximately 1, and network effects cease to play a significant role.

We can introduce correlation measures for the local interaction between
disease and awareness. Concentrating, for example, on the effect of reduced
susceptibility, i.e. σS < 1 while all other rates are awareness-independent,
the local accumulation of awareness around infected cases is captured by the
correlation

Cd
S+I =

N

kd

[S+I
−
]d + [S+I+]d

S+(I
−

+ I+)
, (21)

which gives the tendency of aware susceptibles to be connected to infected
individuals on the disease network.

With a large degree of overlap between the two networks, the approach
to equilibrium can be different from the non-overlapping case. Generally,
if Rd

0 > 1 and one starts with a few infected individuals, the disease goes
through a phase of exponential increase before the equilibrium is approached.
With a large degree of overlap between the two networks, the initial cor-
relation between infected and aware individuals slows down the exponen-
tial increase, and the approach to equilibrium can be slower than what the
well-mixed view predicts, even when they converge to the same equilibrium
(Fig. 3).

To assess the impact of this initial mitigation of the growth of the dis-
ease, we tracked the number of individuals infected in a single outbreak as
predicted by the pair approximations, as well as by stochastic simulations.
The results reveal an effect not predictable by the mean-field approximation
but captured by the pair dynamics. If Ra

0 < 1, and the two networks do not
overlap, there is no noticeable effect of awareness on outbreak sizes, just as
in the mean-field approximation. If, however, the networks do overlap, the
pair approximation suggests that an increasing Rd

0 is necessary for an out-
break to grow to a given size, the strongest relative change occurring when
Ra

0 ≈ 1, i.e. when the spread of awareness is nearly critical (Fig. 4). In that
case, the equilibrium number of aware individuals is approximately 0, but
any awareness which appears in the population either establishes itself at a
small number (if Ra

0 � 1) or subsides only slowly (if Ra
0 � 1). Now, if the

networks overlap strongly, awareness appears in infected cases (at rate ω)
and spreads around these, so that [SI]d pairs tend to be of type [S+I+]d with
the corresponding reduction in transmission rate.

If Ra
0 < 1, the effect on the outbreak size on overlapping networks is

caused by minor outbreaks of awareness generated around infected cases,
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which themselves are sources of awareness. As these outbreaks are generally
of small size because Ra

0 < 1, different timescales between the two spreading
processes make no big difference. If, on the other hand, Ra

0 > 1, awareness
is able to spread and establish itself in the population even without being
refreshed by infected cases Now, for the same combination of Rd

0 and Ra
0, the

relative timescales between the two processes determine how quickly aware-
ness takes over large parts of the population, and consequently how early it
can have a strong influence on the disease outbreak. Keeping Ra

0 constant
but increasing α̂, we observe an increased effect on the quenching of the
epidemic (Fig. 4).

The results presented here apply to relatively unclustered networks. While
we did extended the methods devised by Keeling (1999) for pair approxima-
tions on clustered networks to our more complex system, these failed to gen-
erate convincing results or capture any of the effects we previously showed
to operate when disease and awareness interact on clustered networks (Funk
et al., 2009). In fact, we found that the sheer complexity of the system of
equations resulting from the pair approximation we derived made it difficult
to go beyond the simple observations presented here.

4. Discussion

We find the impact of spreading awareness on endemic disease to be
manifested in two different phenomena. On one hand, it changes the in-
vasion conditions between a disease-free and endemic equilibrium, and can
make it impossible for a disease to establish itself in the population. This
effect is well captured by the mean-field approximation, as the situation in
endemic equilibrium is usually close to well-mixed, and the disease is evenly
distributed in the whole population rather than local to a particular part of
it.

Reduced infectivity or shorter duration of infection of aware infected,
as well as reduced susceptibility of aware susceptibles, or a combination of
the three, all make it more difficult for the disease to establish itself in the
population. If infected individuals act as sources of awareness, reduced in-
fectivity, for example due to self-imposed quarantine or practise of better
hygiene can raise the threshold for disease invasion even if awareness does
not spread in the population. The same holds if those infected spread the
disease for shorter periods, for example because they take medication to re-
cover quicker. A longer duration of immunity of aware recovered individuals,
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on the other hand, lowers the disease prevalence in the endemic equilibrium,
however it does not change the invasion conditions. As we have shown previ-
ously, such effects on the invasion threshold can be observed in a well-mixed
population only if awareness does not deteriorate as it spreads through the
population (Funk et al., 2009).

A second effect is the deceleration of the spread of a disease as it ap-
proaches equilibrium. In the initial phase of the outbreak, local correlations
between disease and awareness can be important. If the networks overlap
more, the outbreak is slowed down more effectively, a phenomenon which
the mean-field approximation fails to capture, and which is particularly pro-
nounced if the spread of awareness is nearly critical. If awareness spreads
sufficiently to establish itself in the population on a larger scale, its initial
impact on an outbreak is largely determined by its relative speed with respect
to the spreading disease.

Part of the resulting structure of equilibria is similar to what has previ-
ously been found for the interaction between two pathogens, where one pro-
vides immune enhancement, i.e. improved immune response to the other (Vasco
et al., 2007). In addition, we have shown both the use and limitations of us-
ing pair approximation to describe the resulting interaction, especially as
potential difference in the contact structures underlying the spread of the
representative pathogen comes into play. While the pair approximation al-
lowed for the study of situations of varying network overlap, it necessitated an
automated procedure to generate the vast number of equations required. At
the same time, the system became so complex that it was almost completely
opaque to deeper analysis.

To conclude, we have investigated a simple model for the contempora-
neous spread of two processes, where spreading awareness can inhibit the
spread of a disease. A systematic investigation of the different possible con-
sequences for the spread of the pathogen yielded the impact on the course of
the disease when parts of the population change their behaviour as a result
of becoming aware to the presence of the disease. The methods developed
here, however, are by no means limited to this particular case, and should
provide a useful set of tools for any investigation of multiple and interacting
spreading processes, whether it be rumours, opinions, pathogens or multiple
strains of the same pathogen.
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Figure 1: Classes and transitions in the model. An arrow stands for “can turn into”, with
filled arrow caps indicating processes subject to contacts on the disease (solid lines) or
awareness (dashed lines) networks. Open arrow caps indicate processes that do are not
subject to contact.

Figure 2: Equilibrium structure if disease and awareness spread independently (a), the
effect of reduced susceptibility (dashed, σS = 0.5) and infectivity (solid, σI = 0.5), and
faster recovery (dotted, ε = 2) on the epidemic threshold (b) and endemic equilibria of the
total number of infected I = I

−
+ I+ at Rd

0
= 1.5 (c), all in terms of the basic reproductive

number of awareness, Ra
0
. The plots are generated by varying α for fixed λ = 1 and ω = 1.

Figure 3: Outbreak of disease and awareness on overlapping (dashed line) and non-
overlapping (solid line) networks in pair approximation. Thin lines indicate the correlation

Cd

S+I
, thick lines the number of infected. (σS = 0.1, σI = ε = φ = 1, β̂ = 0.3, α̂ = 0.1,

λ = γ = δ = 1, ω = 10)

Figure 4: Iso-line of 4% infected in an outbreak for overlapping (solid, open trian-
gles/circles) and non-overlapping (dashed, closed triangles/circles) networks as described
by the pair approximations (lines) and measured in stochastic simulations (points), for

awareness spreading slow (thin lines, circles, α̂ = β̂) or fast (thick lines, triangles, α̂ = 5β̂).
The shown values of Rd

0
and Ra

0
are the basic reproductive numbers of disease and aware-

ness, respectively, as given by the pair approximation. The value of 4% was chosen so the
lines converge to Rd

0
= 1 if Ra

0
= 0.

Appendix A. Level of awareness generated by sources

Including infecteds as sources of awareness, the equation determining the
awareness dynamics reads:

Ṅ+ = αN+

N
−

N
− λN+ + ωI

−
. (A.1)
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Substituting N
−

= N −N+ and solving for Ṅ+ = 0 yields the two equilibria

N+ = N

⎡
⎣1

2

(
1−

λ

α

)
±

√
1

4

(
1−

λ

α

)2

+
ω

α

I
−

N

⎤
⎦ , (A.2)

subject to the equilibrium value of I
−

which can be determined only from
the full system of ODEs (3). If the second summand under the square root
of Eq. (A.2) is smaller than the first, or

ω

α

I
−

N
�

1

4

(
1−

λ

α

)2

, (A.3)

Eq. (A.2) is well approximated by expanding around (ωI
−
)/(αN) ≈ 0, to

first order

N+ = N

[(
1

2
±

1

2

) (
1−

λ

α

)
+

ω

|α− λ|

I
−

N
+ o

(
ωI

−

αN

)2
]

, (A.4)

with the minus sign yielding a stable and positive equilibrium for Ra
0 < 1 and

the positive sign for Ra
0 > 1. Therefore, if Ra

0 is sufficiently different from 1,
the contribution of sources is awareness is approximately

Nω
+ ≈

ω

|α− λ|

I
−

N
. (A.5)

If, on the other hand, the first summand under the square root of Eq. (A.2)
is greater than the the first, or if Ra

0 ≈ 1, and

ω

α

I
−

N
�

1

4

(
1−

λ

α

)2

, (A.6)

a better approximation can be obtained by expanding around (1/2)(1−λ/α),
yielding

N+ = N

[
1

2

(
1−

λ

α

)
+

√
ω

α

I
−

N
+ o

(
1

2

∣∣∣∣1− λ

α

∣∣∣∣
)2

]
, (A.7)

such that the contribution of awareness is

Nω
+

= N

√
ω

α

I
−

N
(A.8)
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Appendix B. Mean-field equilibria

Setting the derivatives to zero in the system of equations (3), we find the
following equilibria:

All unaware and susceptible

S
−

= N S+ = I
−

= I+ = R
−

= R+ = 0. (B.1)

The corresponding eigenvalues are

ξ1 = 0

ξ2 = α− λ

ξ3 = −δ

ξ4 = −φδ − λ

ξ5 =
1

2

(
β − (ε + 1)γ − λ− ω −

√
(β + (ε− 1)γ + λ− ω)2 + 4σIβω

)

ξ6 =
1

2

(
β − (ε + 1)γ − λ− ω +

√
(β + (ε− 1)γ + λ− ω)2 + 4σIβω

)
(B.2)

Eigenvalues with positive real part, as associated with instability, can arise
if α > λ (eigenvalue ξ2), or if (eigenvalue ξ6)

0 < (β + (ε− 1)γ + λ− ω)2 + 4σIβω − (β − (ε + 1)γ − λ− ω)2

0 < (β − γ − ω) (εγ + λ) + σIβω

0 < β

(
1 + σI

ω

εγ + λ

)
− γ − ω,

(B.3)

which, with Rd
0 = β/γ yields Inequalities (9) and (11).

No infection, awareness endemic

S
−

=
λ

α
N S+ =

(
1−

λ

α

)
N I

−
= I+ = R

−
= R+ = 0. (B.4)
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The corresponding eigenvalues are

ϕ1 = 0

ϕ2 = λ− α

ϕ3 =
1

2

(
−α− (1 + φ)δ +

√
(α + (1− φ)δ)2 − 4(1− φ)δλ

)
ϕ4 =

1

2

(
−α− (1 + φ)δ −

√
(α + (1− φ)δ)2 − 4(1− φ)δλ

)
,

(B.5)

and another pair of eigenvalues which are too complex to offer straightforward
interpretation, for which reason we state them only under the scenarios used
in the main text. Besides these, the only eigenvalue which can have positive
real part is ϕ2, if λ > α. Since we assume awareness to prolong the duration
of immunity, φ < 1, and therefore ϕ3 < 0 and ϕ4 < 0.

• Reduced susceptibility

0 ≤ σS < 1, σI = ε = φ = 1 (B.6)

yields

ϕ5 = σSβ − γ + (1− σS)β
λ

α
ϕ6 = −α− γ − ω,

(B.7)

with instability following if Inequality (8) holds.

• Reduced infectivity

0 ≤ σI < 1, σS = ε = φ = 1 (B.8)

yields two more eigenvalues which are tedious to write down but from
which Inequality (10) follows.

• Shorter duration of infection

ε > 1, σS = σI = φ = 1 (B.9)

yields two more eigenvalues which again are tedious to write down but
from which Inequality (12) follows.
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• Longer duration of immunity

0 ≤ φ < 1, σS = σI = ε = 1 (B.10)

yields

ϕ5 = β − γ

ϕ6 = −α − γ − ω,
(B.11)

which do not change the invasion conditions from a model without
awareness.

All unaware, infection endemic

As discussed in the main text, in this equilibrium there is no awareness
at all only if ω = 0. In that case,

S
−

=
γ

β
N I

−
=

β − γ

β

δ

γ + δ
R
−

=
β − γ

β

γ

γ + δ
S+ = I+ = R+ = 0

(B.12)
and the eigenvalues are

η1 = 0

η2 = α− λ

η3 =
1

2

⎛
⎝−(β + δ)δ

γ + δ
−

√[
(β + δ)δ

γ + δ

]2

− 4(β − γ)δ

⎞
⎠

η4 =
1

2

⎛
⎝−(β + δ)δ

γ + δ
+

√[
(β + δ)δ

γ + δ

]2

− 4(β − γ)δ

⎞
⎠ ,

(B.13)

and two more eigenvalues which are too complicated to allow for simple
insights but can be shown to be greater than 0 only if γ > β, which also holds
for η4, while η3 is always less than 0. The other possibility for instability can
be found in η2, which becomes greater than 0 if λ > α.

Infection and awareness both endemic

While equilibria with both infection and awareness spreading can be ob-
served in numerical simulations, we did not find corresponding simple ana-
lytic expressions. However, as the invasion thresholds to the other areas in
the parameter space have been identified, little additional insight could be
expected here.
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Appendix C. Pair approximation

We here derive and state the equations obtained by closing the system
at the level of pairs. In principle, one needs to distinguish between three
different types of contacts for each pair of states: those describing contacts
which have a disease link only but cannot spread awareness, those that spread
awareness but cannot spread the disease, and lastly those that can spread
both. We here employ the simplified notations [. . .]d and [. . .]a to describe
all state pairs being able to spread disease and awareness, respectively, ir-
respective of whether they also spread the other (see Fig. C.5). We then
approximate the number of disease contacts of a given pair of states which
can also spread awareness by multiplication with

qa|d =

∣∣Ed ∩ Ea
∣∣

|Ed|
, (C.1)

where
∣∣Ed

∣∣ is the total number of edges on the disease network and
∣∣Ed ∩ Ea

∣∣
the number of edges pertaining to both networks. The fraction qa|d therefore
gives the probability of a randomly chosen pair of neighbours with a disease
edge between them to also be able to spread awareness. Analogously, we
define

qd|a =

∣∣Ed ∩ Ea
∣∣

|Ea|
, (C.2)

which we will use to approximate the number of awareness contacts of a given
pair of state which can also spread the disease. Thus, if disease and awareness
contacts are completely distinct and the two networks share no edges at all,
qa|d = qd|a = 0 because Ed ∩ Ea = ∅. Moreover, qa|d = 1 if Ea ⊆ Ed and
qd|a = 1 if Ed ⊆ Ea. If all contacts can spread both processes and the two
networks overlap completely, qa|d = 1 and qd|a = 1. Note, however, that this
measure is not symmetric and generally qa|d 	=d|a (Fig. C.6).

To close the system at the level of pairs, we approximate state triples
using a pair approximation framework (Levin and Durrett, 1996). We use
[ABC]xy to denote the number of triples in state A, B and C, where A and
B are connected by an edge of type x and B and C are connected by an
edge of type y, x and y standing for either d or a (see Fig. C.5). Following
Keeling (1999), the pair approximation then yields

[ABC]xy ≈
ky − qy|x

ky

[AB]x[BC]y

[B]
= ζxy [AB]x[BC]y

[B]
, (C.3)
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where kd = |Ed|
N

and ka = |Ea|
N

are the average number of connections of each
individual on the disease and awareness network, respectively, and

ζxy ≡
ky − qy|x

ky
(C.4)

is a correctional factor because A and C cannot be the same node. Note that
the consistency condition

[ABC]xy = [CBA]yx (C.5)

implies

qy|xk
x = qx|yk

y =

∣∣Ed ∩ Ea
∣∣

N
, (C.6)

which always holds according to Eq. C.2.

Figure C.5: Possible pairs and triples as contained in the quantities indicated in the column
headers. Solid lines indicate disease (d) edges and dashed lines awareness (a) edges. The
term [ABC]da denotes the number of connected triples (in states A, B and C), where
A and B are connected by at least a d-edge, and B and C are connected by at least an
a-edge. The figure shows all possible connected triples that are counted by this term, and
the same for other terms.

Figure C.6: Example of a small network with qd|a 	= qa|d. Solid lines indicate disease edges
and dashed lines awareness edges.
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