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Abstract 12 

I extend my previous work on life history optimization when body mass is divided 13 

into reserves and structure components. Two important innovations are: (1) effect of finite 14 

target size on optimal structural growth; (2) incorporating reproduction in the optimization 15 

objective. I derive optimal growth trajectories and life histories, given that the individual is 16 

subject to both starvation mortality and exogenous hazards (e.g., predation). Because of 17 

overhead costs in building structural mass, it is optimal to stop structural growth close to the 18 

target size, and to proceed only by accumulating reserves. Higher overhead costs cause 19 

earlier cessation of structural growth and smaller final structures. Semelparous reproduction 20 

also promotes early cessation of structural growth, compared to when only survival to target 21 

size is maximized. In contrast, iteroparous reproduction can prolong structural growth, 22 

resulting in larger final structures than in either the survival or the semelparous scenarios. 23 

Increasing the noise in individual growth lowers final structural mass at small target sizes, but 24 

the effect is reversed for large target sizes. My results provide predictions for comparative 25 

studies. I outline important consequences of my results to additional important evolutionary 26 

questions: evolution of sexual dimorphism, optimization of clutch size and evolution of 27 

progeny and adult sizes.  28 

 29 

Keywords: diffusion process; energy-predation tradeoff; hazard function; state-dependent life 30 

history; 31 

 32 

33 
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1. Introduction 33 

 Life history and developmental transitions often require the attainment of some target 34 

size. For example, “in a variety of animals and plant species adult size appears to be 35 

determined by a size threshold for maturation” (Roff, 2002, p. 201). Developmental 36 

transitions in insects and amphibians are dependent upon reaching some critical size (Day 37 

and Rowe, 2002; Nijhout, 2003; Mirth and Riddiford, 2007). More generally, such thresholds 38 

play a key role in recent approaches to developmental plasticity and phenotypic evolution 39 

(West-Eberhard, 2003). 40 

 Thus, target size is an important life history variable, and should affect optimal life 41 

history decisions during growth and development of an individual (e.g., Day and Rowe, 42 

2002). In this paper, I study the effect of a given finite target size on optimal life history, 43 

when individual growth is stochastic. I employ a dynamic optimization approach (e.g., Perrin 44 

and Sibly, 1993; Iwasa, 2000; Irie and Iwasa, 2005), and extend my previous work (Filin, 45 

2009), by considering not only survival, but also reproduction, as part of the optimization 46 

objective.  47 

Following much recent work on size-structured populations and individual growth 48 

(e.g., Persson et al., 1998; Kooijman, 2000; Gurney and Nisbet, 2004; Filin, 2009), I divide 49 

the total body mass of an individual into a reversibly growing component (hereafter, reserves) 50 

and an irreversible component (hereafter, structure). The mass of reserves varies 51 

stochastically in time, for example, because of fluctuations in consumption, assimilation and 52 

metabolic maintenance. I explore how costs of structural growth, noise level in reserves 53 

dynamics, and mode of reproduction (e.g., semelparous or iteroparous), all affect optimal 54 

investment in structure versus reserves, when the individual is subject to both starvation risk 55 

and exogenous mortality. Finally, I discuss how my model and results can be easily applied 56 
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to a wealth of additional evolutionary problems: evolution of sexual dimorphism, optimal 57 

clutch size, and optimal progeny and adult sizes. 58 

2. Effect of target size on life history optimization 59 

2.1 Basic formulations 60 

I denote structural mass by z(t) and reserves mass by y(t). Total body mass is then z(t) 61 

+ y(t). I define the time-varying maximum of total body mass 62 

(1)    [ ])()(max)(
0

ττθ
τ

zyt
tt

+=
≤≤

 63 

i.e., the maximal total mass reached up to time t. (Below, I interchangeably refer to θ as total 64 

body mass, total mass, or body mass.) Both θ(t) and z(t) grow irreversibly, i.e., can only 65 

increase through time, while y(t) is free to either increase or decrease. Because y represents 66 

reserves mass, when y(t) drops to a level a (the starvation boundary), the individual dies of 67 

starvation. Throughout the rest of this paper I set the starvation boundary to zero (i.e., a = 0), 68 

to avoid unnecessarily cumbersome notation, and because a nonzero starvation boundary 69 

results in only minor modifications (if any) to the expressions presented below (see Appendix 70 

B), and does not qualitatively change the general conclusions. Therefore, an individual dies 71 

of starvation only after exhausting all of its reserves (i.e., when y[t] hits zero).  72 

   Following  Filin (2009), structural growth occurs only each time a new body mass 73 

threshold is reached. In mathematical guise, the irreversibly growing structural mass z is a 74 

non-decreasing function of θ, i.e., z(t) = z[θ(t)]. Whenever the organism reaches a new 75 

maximum of total mass (i.e., a new, higher value of θ), there can be structural growth 76 

associated with this crossing of a new body mass threshold. In addition, structural growth 77 

always occurs on the expense of reserves y. A unit of structural mass is built by consuming 78 

1+α units of reserves mass. The dimensionless parameter α  represents overhead costs of 79 

building structural mass.  80 
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 In between events of structural growth (while θ[t] and thus z[t] remain unchanged), 81 

the dynamics of reserves y(t) is described by a diffusion process on the interval [0, θ - z]. This 82 

diffusion process is characterized by g(y, z) (the mean growth rate) and by σ 2(y, z) (the 83 

growth variance) representing, respectively, the mean balance of input (e.g., assimilation) 84 

and output (e.g., metabolic maintenance) fluxes of energy and mass, and the random 85 

fluctuations around this mean balance. In general, both mean growth rate g and growth 86 

variance σ 2 are dependent on both reserves mass y and structural mass z (but see following 87 

sections). (The units of g are that of [mass/time], while the units of σ 2 are that of 88 

[mass2/time].)  89 

  In addition to starvation mortality (if y[t] hits the starvation boundary), the individual 90 

is subject to various exogenous hazards (e.g., predation and disease). These are captured by 91 

the mortality or hazard rate μ(y, z). Survival probability from initial reserves mass y1 to final 92 

reserves mass y2 (≥ y1), while keeping z fixed, is given by 93 

(2)    ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫

2

1

,exp),( 21

y

y
y dyzyyyS η  94 

where η(y, z) is the hazard density, the hazard function for survivorship through transitions in 95 

the value of reserves mass (i.e., along the y-axis, from a lower value of reserves y1 to a higher 96 

value y2). The hazard density η describes mortality per unit of gain in mass (analogously, 97 

mortality rate μ, describes mortality per unit of time, i.e., along the time axis), and 98 

encapsulates within it both starvation mortality and exogenous mortality.  99 

In the following, initial body mass of an individual will be denoted by θ0 and target 100 

body mass by θ2 (θ1 will denote the size at which structural growth ceases; see below). 101 

Survival probability from initial total mass θ0 to final total mass θ2, when structural mass 102 

grows according to z = z(θ), is given by  103 
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(3)   ( )( ) ⎟
⎟
⎠
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⎜
⎜
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2

0

1,exp),( 20

θ

θ
θ θαθηθθ dzzzS  104 

(Filin, 2009), where ż stands for ∂z/∂θ (hereafter, the dot sign will always stand for derivative 105 

with respect to θ). Note that the hazard function for transitions in total mass (i.e., along the θ-106 

axis; the integrand in Eq.[3]) is inflated by a factor (1+αż), dependent on rate and overhead 107 

costs of structural growth. 108 

Finally, the optimization problem consists of finding the optimal form of the 109 

structural growth curve, z*(θ), that maximizes the following objective function 110 

(4)  ( )( ) ),(log1,),(log 2220

2

0

zRdzzzF θθαθηθθ
θ

θ

++−−= ∫  111 

i.e., fitness is given by F = Sθ R, namely, survival probability to target size multiplied by a 112 

terminal reward obtained at that size. The terminal reward R (e.g., Houston and McNamara, 113 

1999, ch. 3; also known as final function; Perrin and Sibly, 1993, appendix therein) depends 114 

on target size θ2 and on structural mass z2 obtained at this target size. 115 

 The state variable in this optimization problem is z, with which a costate variable is 116 

associated, denoted by λ. The value of the costate variable at each body mass θ between θ0 117 

and θ2 (i.e. λ[θ]), quantifies the benefit of investing in structural growth, compared to just 118 

accumulating reserves. For analyzing the effect of target size on the optimal structural growth 119 

curve, z*(θ), I require the boundary condition for the value of λ at the target size θ2 120 

(5)    
2

2
log)(

z
R

∂
∂=θλ  121 

 (Appendix A). 122 

 In the following sections I derive the optimal structural growth curve for several 123 

forms of the objective (fitness) function (Eq. [4]; more precisely, for several forms of the 124 

terminal reward R). First, I consider maximization of survival probability to target size (Eq. 125 
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[3]). This is also the optimization objective in Filin (2009). Later, I extend the analysis to 126 

consider objective functions that include reproduction.  127 

2.2 Maximizing survival probability to target size: optimal cessation of structural growth due 128 

to overhead costs 129 

When maximizing survival probability to final size the terminal reward function in 130 

Eq. (4) is R = 1. The boundary condition for λ (Eq. [5]) then becomes λ(θ2) = 0. I have 131 

previously studied optimal structural growth for this case (Filin, 2009; Eq. [12] therein). 132 

However, in that study I did not consider the possible effect of a finite target size on the 133 

optimal structural growth curve z*(θ) (in effect, θ2 is taken to be infinite in Filin, 2009).  134 

Filin,  (2009) showed that when nonzero structural growth occurs (i.e., ż* > 0), z*(θ) 135 

follows a singular arc (a term borrowed from dynamic optimization theory; e.g., Perrin and 136 

Sibly, 1993). Along singular arcs the costate variable λ and the structural mass z satisfy the 137 

condition λ(θ) = αη(θ - z, z) (Appendix A). However, because λ(θ2) = 0, this condition can 138 

never be satisfied at the target size, unless there are no overhead costs of building structural 139 

mass (i.e., if α = 0; η is always positive, unless growth is completely deterministic, i.e., σ 2 = 140 

0, and there are no exogenous hazards, i.e., μ = 0). Therefore, the pair (θ2, z2) (where z2 = 141 

z*[θ2]) never lies on a singular arc, unless α = 0. I conclude that, for finite target size θ2 and 142 

nonzero overhead costs of structural growth (α > 0), the optimal structural growth curve z*(θ) 143 

always ends with a plateau, along which structural mass remains constant (z*[θ] = z2), and 144 

only reserves grow. 145 

As we consider increasingly lower body masses below θ2, λ(θ) may gradually 146 

increase from its boundary value λ(θ2) = 0 until the condition λ(θ) = αη(θ - z, z) is finally 147 

satisfied at some body mass, denoted by θ1 (≤ θ2 ; the equality may hold only if α = 0). At 148 

that point, the optimal growth curve connects with a singular arc, and as we proceed 149 



Acc
ep

te
d m

an
usc

rip
t 

 

 

8

8

backwards toward even lower values of θ (i.e., θ < θ1), the optimal growth curve exhibits 150 

positive structural growth (ż* > 0). The overall pattern of optimal structural growth is to grow 151 

along the singular arc until θ1, and then proceed to the target size θ2, by switching to only 152 

accumulating reserves. Therefore, θ1 is termed switching size.  153 

The switching size, in turn, determines the optimal final structural mass achieved by 154 

the growing individual, because z2 = z*(θ2) = z*(θ1) (and the latter is determined by the 155 

singular arc). Both θ1 and z2 will change as target size θ2 varies. I can therefore obtain a 156 

switching curve z2(θ2) that determines the value of the optimal final structural mass as a 157 

function of target size. Figure 1a provides specific examples of such switching curves and 158 

optimal structural growth curves for different target sizes. It is important to note that, in 159 

general, the singular arc is also defined for values of θ above the switching size θ1 (diamonds 160 

in Fig.1a). However, given a finite target size, it is optimal to abandon the singular arc once 161 

structural mass has hit the switching curve (i.e., at the switching size).  162 

When reserves growth and exogenous mortality depend only on structural mass (i.e., 163 

g, σ 2 and μ are functions of z only), Filin,  (2009) provides the following expression for the 164 

hazard density  165 

(6)   ϕχχη −= )coth(),( yzy  166 

where 167 

 (7)   224

2

,2
σ

ϕ
σ

μ
σ

χ gg =+=  168 

are both functions of structural mass z (i.e., χ =χ[z] and ϕ =ϕ[z]). The quantity χ combines 169 

both starvation risk (decreasing with g and increasing with σ 2) and exogenous hazards 170 

(increasing with μ), to determine the range of values of reserves mass in which starvation is 171 

the predominant cause of mortality (as opposed to exogenous hazards). (This range can be 172 

described by the interval [0, χ -1].) The quantity ϕ measures how stochastic/deterministic the 173 
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reserves dynamics is: when ϕ → ±∞, the growth of reserves mass is practically deterministic, 174 

while when ϕ → 0 reserves dynamics behaves like Brownian motion. The units of ϕ, χ and 175 

η are that of [mass-1].   176 

 The approach to calculating the switching curve is to solve for the switching size and 177 

target size (θ1 andθ2, respectively), given a value of final structural mass z2. For that purpose, 178 

I define the following dimensionless variables  179 

 (8)  
χ
ϕ

χ
ϕ

χ
χχ =

′
′

=
′

== ΦBAyY ,,,
2

 180 

where ϕ‘ = dϕ/dz and χ‘ = dχ/dz (note the change in the definitions of Y and A, compared to 181 

Filin, 2009). I then derive (Appendix A) the following expression for the switching curve  182 

(9)  ( ) ( ) ( )ΦYABAYfBAYf tartar −−= 112 coth,,,, α  183 

where the function ftar is defined as ftar(Y2, A, B) = (Y - A)cothY - BY. In addition, Y2 = χ(θ2 - 184 

z2), Y1 = χ(θ1 - z2), and χ, A, B and Φ are all evaluated at structural mass z = z2. Because (θ1, 185 

z2) lies on the singular arc, Y1 obeys 186 

(10)   ABYfarc )1(2),( 1 α+=  187 

where farc(Y, B) = [2Y - sinh(2Y)] + B[coth(2Y)-1] (the singular arc equation; Eq. (14) in Filin, 188 

2009; using the revised definitions of Y and A in Eq. [8]). I used these expressions (Eqs. [9] 189 

and [10]) to calculate the switching curves and growth trajectories presented in Fig. 1a. 190 

2.3 Maximizing expected allocation to reproduction: semelparity and iteroparity  191 

 Both Filin (2009) and this study, up to this point, have only considered survival 192 

probability as the objective (fitness) function. Clearly, however, a full description and 193 

optimization of a lifecycle must include reproduction as well. The simplest (yet still realistic) 194 

form of introducing reproduction into the optimization objective is choosing the terminal 195 

reward function in Eq. [4] to be R = θ2 - z2, i.e., the mass of reserves accumulated at target 196 
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size, and available for production of progeny. Alternatively, R can describe yield, for 197 

example, in agricultural crops. The role of reserves is now dual, serving as both insurance 198 

against starvation during growth (in addition to providing raw material and fuel for structural 199 

growth), and as the terminal reward gained once target size is achieved. Therefore, in 200 

addition to the overhead costs of structural growth, discussed above, investment in structure 201 

entails an additional cost in term of reduced fecundity or yield. The boundary condition in 202 

Eq. (5) becomes λ(θ2) = -1/(θ2 - z2). 203 

 The expression for the terminal reward from the previous paragraph describes 204 

semelparous mode of reproduction. All reserves are utilized in a single burst of reproduction, 205 

causing the individual to die of starvation immediately after. However, if the individual 206 

retains some reserves after reproduction (denoted by y3) it may survive to reproduce 207 

additional times, i.e., iteroparous mode of reproduction. The individual sacrifices immediate 208 

reproduction (by not utilizing all of its reserves mass in a single reproduction event), for the 209 

sake of surviving to future reproduction events. Thus, the tradeoff between present and future 210 

reproduction (e.g., between fecundity and parental survival; Roff, 2002, pp. 126-150, pp. 211 

188-198) is generated mechanistically in this model, mediated by the value of y3 (i.e., the 212 

level of reserves retained after reproduction). 213 

I adopt here the concept of a reproduction buffer (Kooijman, 2000; p. 115), such that 214 

immediately after each reproduction event, reserves mass is y3 (reproduction buffer emptied), 215 

and subsequent reproduction events occur each time the individual regains reserves mass θ2 - 216 

z2 (reproduction buffer full). Survival between reproduction events is then given by s = 217 

Sy(y3,θ2 - z2) (recall that Sy  represents survival along reserves mass transitions, while holding 218 

structural mass fixed; Eq. [2]). The expected number of reproduction events is 1/(1-s), and 219 

the terminal reward is then R = (θ2 - z2 - y3)/(1-s). The boundary condition in Eq. (5) becomes 220 
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λ(θ2) = -1/(θ2 - z2 - y3) + (∂s/∂z2)/(1-s). Additional structural growth does not occur after the 221 

individual begins to reproduce (i.e., after reaching θ2 for the first time; determinate growth). 222 

 For semelparous reproduction, λ(θ2) is now negative (λ[θ2] = -1/[θ2 - z2]), compared 223 

with λ(θ2) = 0 when the objective function was survival probability to target size (previous 224 

section). Integrating backwards from target size θ2 towards lower body masses, λ(θ) would 225 

take longer to reach the singular arc λ(θ) = αη(θ - z, z) (the right-hand-side of this equation is 226 

nonnegative). Therefore, for a given target size, θ2, I expect earlier cessation of structural 227 

growth (smaller switching size, θ1) and smaller final structural mass (z2), when semelparous 228 

reproduction is taken into consideration in the objective function. The effect of iteroparous 229 

reproduction on the switching curve is less straightforward (see below).  230 

 The following analysis again concerns the case with reserves growth and exogenous 231 

mortality dependent only on structural mass (i.e., g, σ 2 and μ are functions only of z). For 232 

semelparous reproduction, the expression for the switching curve is  233 

(11)  ( ) ( ) ( )ΦYABAYf
Y
ABAYf tartar −−=+ 11
2

2 coth,,,, α  234 

where again Y1 obeys the singular arc equation (Eq. [10]). Figure 1b demonstrates that, 235 

indeed, structural growth ceases earlier for semelparous reproduction (dotted curves; 236 

compared with the case of maximizing only survival to target size; previous section; solid 237 

curves in Fig.1b).  238 

For iteroparous reproduction, Appendix A provides the expression for the switching 239 

curve. As Fig. 1b demonstrates the switching curve, in this case, has two branches: upper and 240 

lower. Only the upper branch is a solution of the switching curve equation (Appendix A). 241 

Thus, such a solution exists only if the value of the final structural mass z2 is high enough. 242 

The lower branch of the switching curve represents the additional constraint θ2 ≥ z2 + y3 that 243 

must be obeyed in the case of iteroparous reproduction (not surprisingly the lower branch 244 



Acc
ep

te
d m

an
usc

rip
t 

 

 

12

12

intersects the abscissa axis at θ - θ2 = -y3 = -4 in the case of Fig.1b). When the equality θ2 = z2 245 

+ y3 holds, we obtain the limit of continuous reproduction. The amount of reserves spent in 246 

each reproduction event goes to zero (θ2 - z2 - y3 = dy → 0), survival probability between 247 

reproduction events goes to one (s → [1- η(y3, z2)dy]; Eq. [2]), and the expected number of 248 

reproduction events becomes infinite (the terminal reward is nonetheless finite: R = [θ2 - z2 - 249 

y3]/[1-s] → 1/η[y3, z2]).  From a biological perspective, however, such continuous 250 

reproduction, which consists of an infinite number of infinitesimally small progeny, can only 251 

be regarded as an approximation, at best. I further consider this issue below in the discussion. 252 

3. Discussion 253 

In this study, I extended my previous work (Filin, 2009) and considered optimal 254 

stopping conditions for structural growth, when individuals must grow to some given finite 255 

target size, and when reproduction is included in the optimization objective. I found that even 256 

when the optimization objective is maximizing survival to target size (as in Filin, 2009; i.e., 257 

no reproduction) it is optimal to abandon structural growth altogether close to the target size, 258 

and to proceed only by accumulating reserves.  259 

Only when there are no overhead costs of building structural mass (α = 0), is it 260 

optimal to keep investing in structure all the way to the target size. The reason is that the 261 

individual pays for such overhead losses of reserves in increased mortality, due to the extra 262 

time required to regain those lost reserves. Close to the target size, it is optimal to avoid any 263 

such losses of reserves mass (and thus instantaneous total body mass z[t] + y[t]). In addition, 264 

Fig.1a demonstrates that the higher the overhead costs (i.e., higher α), the earlier structural 265 

growth ceases and the smaller final structural mass is (see also Figs 2 and 3 in the 266 

supplementary material). 267 
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 The effect of reducing the level of noise in the dynamics of reserves (i.e., reducing 268 

the growth variance σ 2) is less straightforward. At small target sizes, a lower noise level 269 

increases the final structural mass. However, the cessation of structural growth occurs earlier 270 

(i.e., at a smaller total body mass), because lower noise levels also promote faster structural 271 

growth. At large target sizes the effect is reversed, lower noise levels cause smaller final 272 

structural masses (Fig.1a; see also Figs 2 and 3 in the supplementary material).  273 

Filin (2009) also found that varying the growth variance may either increase or 274 

decrease final structural mass, depending on the function of the structural trait (e.g., foraging-275 

related or defensive). However, the effect of growth variance in this paper is fundamentally 276 

different from the one found by Filin (2009). Because target size is, in effect, infinite in Filin 277 

(2009), the results described in that work concern the effect of growth variance on the 278 

asymptotic structural mass (i.e., at very large total body masses: θ → ∞). Here, by contrast, I 279 

consider the effect of the growth variance on optimal cessation of structural growth due to a 280 

finite target size, and at final structural masses potentially far from the asymptotic value. As 281 

discussed above, the signs of these two different effects may in fact be opposite. 282 

When I incorporate reproduction into the optimization objective, the results vary 283 

depending on whether reproduction is semelparous or iteroparous (Fig. 1b). Semelparous 284 

reproduction always causes earlier cessation of structural growth and smaller final structural 285 

masses, compared to the case with no reproduction (when survival is the optimization 286 

objective). Iteroparous reproduction introduces a new parameter into the model, y3, the 287 

amount of reserves retained by the individual after a reproduction event. As Fig.1b 288 

demonstrates, at very small target sizes (but nonetheless larger than y3) the switching size is 289 

the initial size and there is no structural growth at all throughout the entire lifetime of the 290 

individual (the region right of the iteroparity switching curve in Fig.1b). At larger target 291 

sizes, cessation of structural growth is delayed, compared to either semelparous reproduction 292 
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or no reproduction, causing larger final structural mass for a given initial condition (see 293 

growth trajectory examples in Fig. 1b). Finally, at even larger target sizes the switching curve 294 

for iteroparous reproduction falls below that for no reproduction and asymptotically 295 

approaches that of semelparous reproduction. 296 

The above qualitative conclusions remain unchanged also when mortality is size-297 

dependent, decreasing with structural mass (see Figs 2b and 3b in the supplementary 298 

material). The effect of size-dependent mortality in this case is only quantitative, prolonging 299 

structural growth and thus resulting in larger final structural mass. The effects of increased 300 

overhead costs or reduced noise level remain qualitatively the same. 301 

The growth trajectory examples in Fig.1b demonstrate that, given identical initial 302 

conditions, target size and parameter values (including identical functional forms of g, σ 2 and 303 

μ), the reproduction mode (i.e., no reproduction, semelparity or iteroparity) does not affect 304 

the growth trajectory itself. The reproduction mode only affects the stopping condition, i.e., 305 

the body mass and structural mass at which structural growth ceases. (Mathematically, that is 306 

because the reproduction mode only affects the terminal reward function R in Eq. [4].). This 307 

provides an interesting prediction for comparative studies, where closely related species or 308 

populations, or even different individuals within the same population, may exhibit different 309 

growth patterns, depending on the reproduction mode they adopt (semelparous or 310 

iteroparous). 311 

A related question is that of sexual dimorphism (this issue was also briefly addressed 312 

in the context of deterministic dynamic optimization models in the discussion of  Kozlowski 313 

and Wiegert, 1987). Because the benefits and costs of body size and structures vary between 314 

males and females within a species, the terminal reward function should also depend on sex. 315 

As discussed in the previous paragraph, this would affect the stopping condition, i.e., males 316 

and females will cease structural growth at different body mass and attain different final sizes 317 
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of structures. However, early growth and development will be identical. This is a pattern of 318 

bimaturism, and in the context of heterochrony, may lead to males, for example, being 319 

hypermorphic compared to females (McNamara, 1995; i.e., sexual dimorphism due to 320 

differences in timing of developmental transitions between males and females). However, if 321 

there are additional sex-specific differences in consumption, assimilation, metabolism or 322 

mortality, the optimal growth trajectories of males and females may diverge earlier in life, 323 

and before final structural size is attained. When such differences are caused by differences in 324 

behavior between males and females (e.g., Rennie et al., 2008), the model may be extended 325 

to include reversible behavioral transitions (which can then be optimized separately for males 326 

and females), in addition to the irreversible structural growth, as presented and discussed in 327 

Filin (2009).  328 

As discussed in the previous section, when θ2 = z2 + y3, iteroparous reproduction 329 

becomes continuous, consisting of an infinite number of infinitesimally small progeny. There 330 

are at least two ways to remedy this biologically questionable result. First, one can define an 331 

upper bound smax < 1 for the survival probability between reproduction events (i.e., s). As a 332 

result, the expected number of reproduction events can never exceed 1/(1-smax) (which is 333 

finite because smax < 1). The parameter smax may embody mortality factors during the 334 

reproduction event itself, e.g., due to increased susceptibility to predation. (See also Fig. 3 in 335 

the supplementary material.)  336 

A second more mechanistic way to avoid continuous reproduction is to introduce a 337 

minimum nonzero amount of reserves that the individual must expend during each 338 

reproduction event. For example, this amount may represent the costs of producing a single 339 

egg. Denoting this amount by aegg, the constraint on target size becomes θ2 ≥ z2 + y3 + aegg. 340 

When the equality holds, the individual reproduces in single eggs, i.e., clutch size is one, 341 

rather than continuously as before (if aegg = 0). Figure 4 in the supplementary material further 342 
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explores these modifications. It is important to note that, although not explicitly formulated 343 

as part of the model, using this last modification, optimal clutch size arises as a byproduct of 344 

the life history optimization within this model. Thus, the theoretical framework presented in 345 

this study also addresses this important ecological and evolutionary problem.   346 

There exists an analogy between the model described in this paper and dynamic 347 

optimization models for optimal size at maturity when season length is finite (Cohen, 1971; 348 

Vincent and Pulliam, 1980; Kozlowski and Wiegert, 1986). A comparison with such models, 349 

demonstrates that body mass θ is analogous to the time-coordinate in those models. Target 350 

size is analogous to season length, and θ - θ2 of Fig.1 is analogous to the ‘time-to-go’ until 351 

season end, which determines the optimal switch between growth and reproduction in those 352 

models. However, growth in those models is deterministic. Therefore, exploring, for 353 

example, the effect of noise in growth is not within their scope. 354 

This study explored the optimal way to invest in structural growth, starting from some 355 

initial condition and finishing at a given final target size. Target size was taken to be a fixed 356 

parameter, and growth and life history were optimized under that constraint. Elsewhere I will 357 

additionally explore the simultaneous optimization of the endpoints, i.e., of initial and target 358 

sizes (e.g., representing optimal progeny and adult sizes, respectively). Kozlowski (1996) 359 

previously obtained such optimal initial and adult sizes for a deterministic life history model. 360 

The stochastic model in this work enables me to investigate additional questions, such as the 361 

effect of noise in the growth of individuals on optimal progeny and adults sizes.  362 

Concerning the above discussion of sexual dimorphism and optimal clutch size, optimizing 363 

target size itself will enable to explore sexual size dimorphism in the adult (total) body mass, 364 

in addition to sexual dimorphism in the allocation between structure and reserves. 365 

Optimization of initial and adult sizes will also result in simultaneous optimization of egg 366 

size and clutch size, as aegg will no longer be a fixed parameter but will depend on the initial 367 
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size, subject to optimization. Finally, I am also currently working on an extension of the 368 

model to indeterminate growers 369 

In conclusion, the theoretical framework, presented in this study, provides a powerful 370 

tool for addressing a wide variety of life-history and evolutionary questions, under 371 

biologically realistic conditions, including: subjection to both starvation mortality and 372 

exogenous hazards, noise in the dynamics of individual state, and distinction between 373 

reversible and irreversible components of individual size. These two last aspects of the 374 

growth and development of individuals have important implications to evolution of life 375 

history (as well as to population dynamics; Filin, 2009), that have not yet been fully explored 376 

and assessed.  377 
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Appendix A: Derivation of the optimal structural growth curve and the switching curve 381 

 Applying the Pontryagin maximum principle (Intriligator, 1971, pp. 344-348; Perrin 382 

and Sibly, 1993, appendix therein; Perrin et al., 1993), I obtain the Hamiltonian 383 

   ( )( ) uuzzH λαθη ++−−= 1,  384 

where z is the state variable, λ is the costate variable associated with z, and u is the control 385 

variable, defined as z = u (recall that the dot sign stands for derivative with respect to θ). The 386 

dynamics of the costate variable is given by 387 

(A.1)   ( )
)(*

1
θ

θ

ηηαλ
zz

zyyz
u

z
H

=
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂−

∂
∂+=

∂
∂−=  388 

with boundary condition given by the derivative of the final function (terminal reward R in 389 

Eq. [4]) with respect to the state variable z 390 
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2

2
log)(

z
R

∂
∂=θλ  391 

(i.e., Eq. [5]; Intriligator, 1971, p. 348). 392 

The switching function for investing in structural mass is given byΣ  = ∂H/∂u, or 393 

    ( ) λθαη +−−= zzΣ ,  394 

When Σ  = 0, I obtain singular control, i.e., this is the equation satisfied by a singular arc, to 395 

which I refer throughout the main text. Singular control additionally requires dΣ/dθ = 0, 396 

which results in the general equation for the singular arc presented by Filin,  (2009)  397 

    0)1( =⎥
⎦

⎤
⎢
⎣

⎡
∂
∂+−

∂
∂

−= zyyz θ

ηαη  398 

(see derivation therein). 399 

I confine the analysis, hereafter, to the special case of reserves growth and exogenous 400 

mortality dependent only on structural mass z (i.e., Eqs. [6]-[8]). Applying the conclusion that 401 

between θ1 and θ2 no structural growth occurs (i.e., the optimal control is u*= 0; thus, z*(θ) = 402 

const = z2), Eq. (A.1) becomes  403 

     ϕχχχλ ′−+′−′= YYYY 222 cschcschcoth   404 

where Y = χy = χ(θ - z) (Eq. [8]), ϕ‘ = dϕ/dz and χ‘ = dχ/dz, all evaluated at z = z2. 405 

Integrating from θ1 to θ2 gives  406 

  
2

1

cothcoth)()( 12

Y

Y

YYY ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′
+=

χ
ϕχ

χ
χθλθλ   407 

where Y1 = χ(θ1 - z2) and Y2 = χ(θ2 - z2). Multiplying both hand sides by χ/χ‘, using the 408 

definitions of the dimensionless variables in Eq. (8), and recalling that (θ1, z2) lies on the 409 

singular arc (therefore, λ[θ1] = αη[θ1 - z2, z2] = αχcothY1 - αϕ), I finally obtain 410 

(A.2)  [ ] [ ] ( )ΦYABYYAYBYYAY −−−−=Λ−−− 1111222 cothcoth)(coth)( α  411 

where 412 



Acc
ep

te
d m

an
usc

rip
t 

 

 

19

19

(A.3)      )( 2θλ
χ
χ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

=Λ   413 

And using the definition of ftar in the main text (under Eq. [9]), Eq. (A.2) can be rewritten as 414 

(A.4)  ( ) ( ) ( )Φ−−=Λ− 112 coth,,,, YABAYfBAYf tartar α  415 

 When the objective function is survival probability to final size, Λ = 0, and I obtain 416 

Eq. (9). When the objective function includes semelparous reproduction λ(θ2) = -1/(θ2 - z2) = 417 

χ/Y2. Equation A4 then becomes Eq. (11). For iteroparous mode of reproduction, λ(θ2) = -418 

1/(θ2 - z2 - y3) + s'/(1-s) (where s' stands for ∂s/∂z2).The survival probability s between 419 

reproduction events is given by  420 

(A.5)  ( )[ ]32
2

3 exp
sinh
sinh YYΦ

Y
Ys −=  421 

(the expression for Sy in Eq. (3) of Filin, 2009) where Y3 = χy3 (y3 is taken to be a fixed 422 

parameter of the model). Consequently, s'/s= ∂logs/∂z2 = Y3'(cothY3 - Φ) - Y2'(cothY2 - Φ) + 423 

Φ'(Y2 - Y3). Given that Y2 = χ(θ2 - z2), and Φ = ϕ/χ, I obtain (χ/χ‘)Y2'  = Y2 - A and (χ/χ‘)Φ' = 424 

B - Φ (using definitions in Eq. [8]). The mass of reserves immediately after a reproduction 425 

event is y3, and its dimensionless counterpart is Y3 = χy3. Given that y3 is a fixed parameter, 426 

(χ/χ‘)Y3' = Y3, and then Eq. (A.3) becomes 427 

    [ ]333222
32

cothcoth)(
1

YYBYAΦBYYAY
s

s
YY

A −++−−
−

−
−

−=Λ   428 

Finally, by additionally utilizing the definition of ftar, I arrive at the expression for the 429 

switching curve in the case of iteroparous reproduction 430 

(A.6)     ( ) [ ] ( ) ( )ΦYABAYfYYBYAΦ
s

s
YY

ABAYf
s tartar −−=−+

−
+

−
+

− 11333
32

2 coth,,coth
1

,,
1

1 α  431 

where s is given by Eq. (A.5). 432 
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Appendix B: Modifications for nonzero starvation boundary  433 

For the survival-probability-to-target-size and iteroparous-reproduction scenarios the 434 

expressions are easily modified for nonzero starvation boundary a by redefining Y (Eq. [8]) 435 

as 436 

(B.1)    ( )ayY −= χ  437 

Similarly the hazard density in Eq. (6), is given by  438 

(B.2)   ( )[ ] ϕχχη −−= ayzy coth),(  439 

Subsequently, the expressions for the switching curves in these cases remain the same (Eqs. 440 

[9] and [10], and Eq. [A.6] in appendix A).  441 

 For semelparous reproduction, I define ã as the amount of reserves that cannot be 442 

utilized for reproduction, once target size is achieved. It may be possible that the amount of 443 

reserves that cannot be utilized for maintenance to avoid starvation, i.e., the starvation 444 

boundary a, can nonetheless be utilized for reproduction (in this case ã ≤ a). In contrast, some 445 

reserves may be utilized for maintenance, but not mobilized for reproduction (in that case ã ≥ 446 

a). Regardless of which case occurs, the terminal reward is R = θ2 - z2 - ã, and the boundary 447 

condition in Eq. (5) takes the form λ(θ2) = -1/(θ2 - z2 - ã). The expression for the switching 448 

curve is then 449 

 (B.3)  ( ) ( ) ( )ΦYABAYf
YY

ABAYf tartar −−=
−

+ 11
2

2 coth,,~,, α  450 

Where Y2 = χ(θ2 - z2 - a) and Ỹ = χ(ã - a) (Ỹ can be either positive or negative depending on 451 

which of the two above-mentioned cases occur). Equation (B.3) becomes Eq. (11) if ã = a 452 

(i.e., if Ỹ = 0). 453 

 454 

 455 

 456 
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 503 

Figure Legends 504 

 Fig. 1 (a) Switching curves (thick lines) and sample growth trajectories (thin lines) given: 505 

the standard specific model, described below (α = 1; solid lines); α is increased to 3 (dotted 506 

lines); growth variance σ 2 is uniformly reduced by a factor of 10 (dashed lines). The 507 

optimization objective is survival to target size (i.e., no reproduction). In the uppermost 508 

sample growth trajectory I marked the points representing (from left to right) the initial size, 509 

the switching size and the target size. The other three sample trajectories all emanate from the 510 

same initial point. However, because of differences in α or σ 2 both the growth path and the 511 

switching size are different. When overhead costs of structural growth (i.e., α) are increased 512 

the switching curve becomes lower, but the rate of structural growth is only slightly reduced, 513 

causing smaller final structural mass and earlier cessation of structural growth (compare solid 514 

with dotted lines). When noise in individual growth is reduced (i.e., σ 2 is reduced), the 515 

switching curve is higher for small target sizes, but lower for large target sizes (compare solid 516 

and dashed curves). Because a reduced growth variance strongly affects the rate of structural 517 

growth, cessation of structural growth occurs earlier, but at higher final structural mass. (b) 518 

Switching curves and sample growth trajectories for the standard specific model (below), 519 



Acc
ep

te
d m

an
usc

rip
t 

 

 

23

23

given: no reproduction (solid lines), semelparous reproduction (dotted lines), iteroparous 520 

reproduction (dashed lines; y3 = 4). Because in all three cases the values and functional forms 521 

of the model parameters are identical (see below), the growth paths are identical (given the 522 

same initial condition). The only variation is that structural growth ceases at different body 523 

masses (i.e., switching sizes) according to the mode of reproduction. The examples provided 524 

in both panels have been obtained using the following standard specific model: g = 3[z2/3 – 525 

(2/3)z], σ 2 = 4(0.1z2/3 + 0.9z), μ = 0.2, and α = 1. The motivation for these specific 526 

expressions follows from the work of Kooijman (2000, ch.3), where z here is comparable to 527 

Kooijman’s structural volume. The mean growth rate g is the difference between 528 

assimilation, proportional to surface area, and maintenance, proportional to volume. Time 529 

and size were rescaled such that maximum mean growth rate is g = 1, and it occurs at z = 1. 530 

The growth variance σ 2 is the sum of noise in assimilation (again proportional to surface 531 

area) and noise in maintenance (proportional to structural mass; e.g., representing 532 

independent fluctuations in metabolism among cells). Mortality rate is taken to be constant, 533 

independent of structural mass (but see online Figs 2 and 3 for examples with size-dependent 534 

mortality). 535 

536 
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Fig 1: 536 
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