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Abstract 

 Gene expression studies generate large quantities of data with the defining characteristic 

that the number of genes (whose expression profiles are to be determined) exceed the number of 

available replicates by several orders of magnitude. Standard spot-by-spot analysis still seeks to 

extract useful information for each gene on the basis of the number of available replicates, and 

thus plays to the weakness of microarrays. On the other hand, because of the data volume, 

treating the entire data set as an ensemble, and developing theoretical distributions for these 

ensembles provides a framework that plays instead to the strength of microarrays. We present 

theoretical results that under reasonable assumptions, the distribution of microarray intensities 

follows the Gamma model, with the biological interpretations of the model parameters emerging 

naturally. We subsequently establish that for each microarray data set, the fractional intensities 

can be represented as a mixture of Beta densities, and develop a procedure for using these results 

to draw statistical inference regarding differential gene expression. We illustrate the results with 

experimental data from gene expression studies on Deinococcus radiodurans following DNA 

damage using cDNA microarrays. 

 

Keywords: Mixture models, Poisson distributions, Gamma distributions, Beta distributions, 

Gene Expression. 
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Introduction 

 Standard statistical analysis involves estimating (and drawing statistical inference about) 

p parameters using a data sample of size n, typically with n >> p. The precision of the estimates, 

as well as the power of the accompanying statistical tests of significance, are well-known to 

improve with increasing n. The converse is also true: reducing sample size n reduces estimation 

precision and the power of statistical hypotheses (other things being equal). The problem with 

microarray data analysis is well-documented: p (in this context the expression levels of 

thousands of genes to be estimated) is very large, while n, the number of independent replicates, 

from which these estimates are to be determined, is quite small. Many techniques have been 

proposed for extracting information about gene expression levels from microarray data, but this 

intrinsic characteristic of the data set (large p, small n) remains a major impediment (see, for 

example, Nadon and Shoemaker, 2002). 

 

To complicate matters further, genes are known to operate, not independently as individuals, but 

in networks, suggesting that microarray data sets represent the collective behavior of a 

population best studied jointly. Still, the inference problem of primary concern is the quantitative 

determination of the differential expression level of individual genes represented in the data set: 

which ones are over-expressed, which are under-expressed—and by how much—and which are 

unchanged. None of the preceding factors change this primary focus, but they motivate us to 

consider analytical techniques that take into consideration the intrinsic characteristics of 

microarray data we have highlighted here. Our perspective in this paper is that by examining the 

entire data set as an ensemble and characterizing it as such, we are able to develop an analysis 

technique that actually plays to the strength of microarray technology. 
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The development of techniques for spot-by-spot analysis of microarray data has been the subject 

of much research effort; and many of the key results and the still unresolved issues have been 

discussed in several reviews (Allison et al., 2006; Dharmadi and Gonzalez, 2004; Nadon and 

Shoemaker, 2002; Quackenbush, 2001; Sebastiani et al., 2003). 

 

A multitude of techniques have been proposed for testing for differential gene expression, each 

incorporating varying degrees of statistical rigor, ranging from the very simple (for example, 

based on ratios, or the so-called “fold-change” criterion), to the more sophisticated and 

computationally demanding approaches. One of the simplest, and most intuitive techniques for 

analyzing microarray data uses the “fold change” criterion to decide if the changes observed in a 

gene’s mRNA-expression level between two distinct experimental conditions are truly 

significant or not. It is based on the ratio of measured expression levels, with significance 

indicated when this ratio (the so-called “fold change”) exceeds a pre-specified threshold, 

typically 2.0. “Fold-change” analysis is an example of a gene-by-gene approach where 

expression data for genes on a microarray are treated and analyzed as unrelated individual 

measurements. Analyses based on ANOVA (Cui and Churchill, 2003; Kerr and Churchill, 2001) 

and t-test (Cui and Churchill, 2003; Troyanskaya et al., 2002) are other examples of gene-by-

gene approaches. 

 

An attractive alternative to the gene-by-gene approaches is provided by the class of techniques 

based on mixture models where the genes represented on the microarray are considered as 

consisting of two or more populations. In doing so, these techniques take advantage of the vast 

number of genes on any given array and explicitly recognize the fact that these genes are not 
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isolated entities: the expression level of a specific gene should affect, or share information with, 

its biological neighbor. Examples of mixture model approaches include mixture models for gene 

effect (Lee et al., 2000); empirical Bayes analysis (Efron et al., 2001; Kendziorski et al., 2003; 

Newton et al., 2001); fits of various probability densities to intensity ratios (Ghosh and 

Chinnaiyan, 2002), or to raw intensities (Hoyle et al., 2002; Steinhoff et al., 2003); and 

hierarchical mixture methods (Ghosh, 2004; Newton et al., 2004). Also several authors have 

used Beta distributions to analyze microarray data (Allison et al., 2002; Baggerly et al., 2001; Ji 

et al., 2005), mainly because of its mathematical convenience, not for reasons of biological 

plausibility. These methods are all based on empirical approximations fitted to observed data, 

with little or no possibility for mechanistic interpretation of the resulting distributions. 

 

The objective of this paper is to present first-principles theoretical (as opposed to merely 

empirical) results for representing and characterizing microarray data as an ensemble.  These 

results are then assembled into a theoretical framework for: (i) appropriately analyzing 

microarray data sets on the basis of this ensemble characterization; and (ii) drawing realistic 

inferences from the analysis. The proposed theoretical framework is them illustrated with an 

example experimental data set and in simulation. The experimental validation of the complete 

inference procedure will be presented in an upcoming publication. 
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A theoretical model of microarray measurements 

 

Intensity measurements and gene expression levels 

 For each gene represented by a spot on a microarray, the expression level � , 

corresponding to the number of cDNA molecules, is considered fixed, but unknown. It is 

estimated by measurements of fluorescent dye intensity. 

 

For a fixed expression level, repeated fluorescent signal intensity measurements taken n separate 

and independent times, Ij; j = 1,2,...,n, will differ because of inherent variability. For fluorescent 

intensity measurements acquired from cDNA microarrays, it is typical to represent this fact as 

follows (Sebastiani et al., 2003): 

�jj aI �       (1) 

 

where the uncertainty in the measurement is considered as having arisen primarily from aj being 

a random proportionality constant, characteristic of the measurement device, relating the number 

of cDNA molecules to the observed intensity. In reality, it is more accurate to represent the raw 

intensity signal as: 

jjj baI �� �'      (2) 

 

where bj is another random component corresponding to background noise; i.e. the intensity 

measurement values one would obtain even when there are no cDNA molecules present on the 

spot (Rocke and Durbin, 2001). Because of the non-negativity of intensity measurements, bj has 

a non-zero mean value that is typically subtracted off to obtain the background-corrected 
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intensity measurement. Different technologies employ different techniques for such background 

correction. We note here that for high and medium intensity measurements, the contributions 

from bj are relatively insignificant; appropriately accounting for the presence of this component 

is critical however at very low intensity measurements. 

 

In what follows, we assume that the intensity signal has been appropriately background corrected 

so that Eq. (1) applies. Nevertheless, we will still pay due respect to the intensity magnitude. 

 

Model development 

 Let I represent the observed fluorescent intensity corresponding to a total of z cDNA 

molecules; furthermore, we consider this intensity to be cumulative in the following sense: 

 

� � � � � �zIIII ���� �21    (3) 

 

where I(m)
 is the intensity contribution from the m

th
 molecule. We now refer to z(I) as the number 

of molecules corresponding to the observed (background-corrected) total intensity measurement 

I. From this perspective, for a given observed I, z is an unknown random variable, an integer 

count. 

 

The complementary element in this model development is the fluorescent intensity measurement 

obtained from k molecules, which, for purposes of this derivation, we will refer to as y(k). From 

this intensity measurement perspective, given a fixed number k,  y  is an unknown (continuous) 

random variable. 
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Finally, let � represent the mean intensity observed per molecule, or conversely, its reciprocal, � 

= 1/�, represents the mean number of molecules per unit observed intensity. These quantities, 

characteristic of the measurement device (akin to a calibration factor), can be used to 

characterize the random behavior of both the continuous y and the discrete z and relate one to the 

other as we now show. 

 

The problem at hand is to develop a probability model to characterize y as a function of k ,  the 

number of molecules responsible for the observed intensity signal measurement. We adopt a 2-

step strategy: (i) begin with the complementary problem of characterizing z(I); the discrete count 

of the number of molecules corresponding to the observed intensity, and (ii) convert the integer 

count to the continuous variable, y. 

 

1. Characterizing z(I). First-principles analysis and experimental confirmation (Ozbudak et al., 

2002; Thattai and van Oudenaarden, 2001) have established that the steady state statistical 

properties of mRNA expression levels results in a Poisson distribution for z, i.e. 

 

� �
!z

ezf
z		
�       (4)  

 

where 	 is the mean number of molecules. Within the context of our current formulation, in 

relation to the observed intensity I, and given the characteristic parameter � as described above, 

Eq. (4) becomes: 
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� � � � � �
!z
Iezf

z
I ��
�      (5)  

 

which is now the probability model for characterizing z, the number of mRNA molecules in 

terms of I, the corresponding observed total intensity. Equation (5) provides an expression for 

computing the probability that z, the number of molecules responsible for generating the 

observed intensity I, takes on the integer values 0, 1, 2,…,�  given the population parameter �; 

 

2. Convert count variable z(I) to continuous variable y. Let y(k)  be the total observed 

intensity for k molecules, i.e. 

� � � � � � � �kIIIky ���� �21      (6) 

 

As we show in Appendix A, the probability distribution function for y given the probability 

distribution function for z(I) is: 

 

� � � �
� �1/1

,; 



�
� 
�


 
�
�
 yeyf y     (7)  

 

The implications of this result are that the total fluorescent intensity measurement for each spot 

on the microarray possesses a Gamma distribution with the shape parameter 
 related directly to 

the number of cDNA molecules responsible for the observed intensity, y; the scale parameter � is 

the mean intensity per molecule. 
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It is important to note that Newton et al. (2001), invoked this model, strictly for convenience, but 

with a constant shape parameter. Also, Sebastiani et al. (2003), alluded to the fact that the 

Gamma distribution may be a more appropriate model for intensity data since a logarithmic 

transformation still leaves the data with unsatisfactory asymmetry. 

 

A theoretical model of differential expression 

 At each spot on the microarray, the expression level of each represented gene is evaluated 

under two different conditions: 1 = “Test” conditions, 0 = “Reference” conditions (one labeled 

with Cy3 dye, the other with Cy5 dye). Let Ii1 and Ii0 be the fluorescent signal intensities 

measured from each spot i on a microarray, with Ii1 obtained from the gene in question under test 

conditions, and Ii0 from the gene under control conditions. Let �i1 and �i0 respectively represent 

the corresponding actual, but unknown, expression levels of the gene in question. 

 

Then from Eq. (1), we have: 

111 iii aI ��       (8) 

000 iii aI ��       (9) 

 

For various well-documented reasons (Dudley et al., 2002; Sebastiani et al., 2003) it is a near-

impossible task to determine the absolute value of the expression levels �i1, �i0 strictly from the 

observed microarray intensity measurements. Even so, determining by how much �i1 differs 

from �i0 without necessarily knowing the absolute value of each number is still considered 

extremely valuable information about the gene in question. While methods for determining 

absolute gene expression levels are being perfected for lower cost and higher-throughput (for 
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example, (Brenner et al., 2000; Mikkilineni et al., 2004) differential expression determination via 

standard microarray technology remains an important aspect of gene expression studies. 

 

The customary measure of differential expression is the so-called fold change statistic defined as 

the ratio: 

0

1

i

i
i �

�
� �       (10) 

and the common practice is to base inference about �i on the measured intensity signal ratio ri 

defined as 

01 / iii IIr �      (11) 

 

It is important to observe from here however, that such a strategy is based on the (tacit) 

assumption that for both the Cy3 label signal intensity as the with the Cy5, the multiplicative 

factors are approximately the same. This may not be the case in general, especially since we have 

just shown that these multiplicative constants are related directly to the “mean intensity observed 

per molecule” a number that is clearly different for Cy3 and Cy5 fluorescent dye labels (This is 

potentially one source of the well-documented dye bias). Dye-swaps and data normalization are 

some of the tactics typically employed to minimize these problems. 

 

Also, observe that if 
2

a�  is the variance associated with the random multipliers, then the 

observed variance in the signal intensity will be given by: 

 

222

aI ��� �       (12) 
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so that the variance associated with signal intensity increases quadratically with expression level 

(and hence with intensity); or equivalently, the standard deviation varies linearly with intensity. 

This is in agreement with actual microarray data (Rocke and Durbin, 2001). For example, Figure 

1 shows a plot of experimental data from gene expression studies in Deinococcus radiodurans 

following DNA damage (Tanaka et al., 2004) where the data variance is observed to increase 

with increasing intensity values. The implication for data analysis is that the statistical character 

of microarray measurements (especially measurement variance) is dependent on signal 

magnitude (Chen et al., 1997; Newton et al., 2001). 

 

The most commonly employed strategy for addressing the preceding issue is a logarithmic 

transformation of the data to obtain: 

 

000 logloglog iii aI ���      (13) 

 

turning the expression into the more familiar additive error form: 

 

iii XY ���      (14) 

 

In most cases, it is now assumed that log(ai0) is normally distributed, and the analysis proceeds 

along these lines. However, it has been shown by various investigators (Rocke and Durbin, 2001; 

Sebastiani et al., 2003) that this assumption, even though convenient, is not necessarily valid. It 

would be valid if a lognormal density is an appropriate model for the intensity distribution. 
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However, we have just established that the Gamma density is more appropriate, not the 

lognormal. 

 

An alternative transformation 

 The fan-shaped characteristics of raw cDNA microarray intensity data (illustrated by the 

example in Figure 1) suggests a strategy where the original data in the form of the ordered pair of 

measured signal intensities (yi1, yi0) for each spot i is converted from this “Cartesian” 

representation to the corresponding “polar” form (Ri ,  x i )  where Ri ,  the vector magnitude 

defined by: 

2

0

2

1 iii yyR ��      (15)  

 

is the “intensity magnitude”, and xi, the “fractional intensity” defined by: 

01

1

ii

i
i yy

yx
�

�       (16) 

 

The following are important attributes of this coordinate transformation: (i) it naturally 

compensates for the inherent heteroskedasticity of microarray data since pie-shaped regions in 

Cartesian coordinates naturally map into rectangular regions in polar coordinates. For example, 

Figure 2 shows the effect of this transformation on the data in Figure 1; (ii) it normalizes the data 

efficiently without losing any of the original information. Observe that while xi is dimensionless 

and naturally scaled between 0 and 1, Ri  retains the information about intensity magnitude, thus 

preserving the two dimensional character of the original data; (iii) the characteristics of xi are 
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such that values less than 0.5 indicate down regulation; xi = 0.5 indicates no change and xi > 0.5 

indicates up-regulation. 

 

Even though the traditional intensity ratio r is related to xi according to the expression. 

i

i

i

i
i x

x
y
yr



��

10

1      (17) 

we recommend xi as a more convenient variable on which to base inference about differential 

expression for the following reasons: a probabilistic model can be derived for xi from the model 

(as we will show shortly) while Ri  provides a rational metric for partitioning the data (allowing 

us to separate low magnitude data from higher magnitude data). 

 

Probability model for fractional intensity 

 If we represent as yi1, the measured intensities, corresponding to gene i (on spot i) under 

test conditions, and yi0, the value obtained for the same gene i under reference conditions, then 

the implications of the results given above are that: 

 

� �111 ,~ �
 ii Gammay     (18) 

� �000 ,~ �
 ii Gammay     (19) 

 

allowing the equipment calibration parameter (mean intensity per molecule), �, to be dye 

dependent, but not gene dependent, so that we need only retain the subscripts 0 and 1 but not i. 

A well-known result from probability theory (e.g., Evans et al., 1993) is that if Eqs. (18) and 

(19) are true then: 
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� �1,~/ 111 ii Gammay 
�     (20) 

� �1,~/ 000 ii Gammay 
�     (21) 

 

and the fractional variable, ix~  defined by 

 

0011

11

//

/~

��
�

ii

i
i yy

yx
�

�        

01

1

ii

i

wyy
y
�

�       (22) 

where 

0

1

�
�

�w       (23) 

 

possesses a Beta distribution, Beta(
j1, 
j0), with a probability density function given by: 

 

� � � �
� � � � � � 11

01

10 01 1


 


��
��

� ii xxxf
ii

ii 










    (24) 

 

Some of the consequences of these results for practical data analysis are now discussed. 

 

Nominal data transformation 

 A subtle but important point about Eqs. (22) and (23) is that raw data consists of yi1, 

and yi0 pairs only; the parameters �1 and �0 are unknown calibration parameters. In fact, this 

latter point is the reason why absolute estimates of expression levels are not possible from 
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microarray data. As noted earlier, the rationale for using the intensity ratios as the basis for 

drawing inference about differential expression is predicated on the tacit assumption that:  

 

10 �� �    (25) 

 

We will designate these customary assumptions as representing what we refer to as nominal 

conditions. Note that in reality these conditions may in fact not hold. The implications of 

departure from these nominal conditions, how to detect and correct for such departures will be 

discussed shortly. 

 

For now, note that under these conditions, w = 1 and Eq. (22) indicates that the nominal 

fractional intensity defined by: 

01

1

ii

i
i yy

yx
�

�       (26) 

 

obtained directly from raw data, possesses a Beta distribution, so that for each gene, the 

probability model is as shown in Eq. (24). 

 

When nominal conditions do not hold, then in reality the computed fractional intensity xi ought 

to be corrected to obtain ix~ . The relationship between the corrected variable and the nominal 

fractional intensity xi is easily established as the following dual expression: 

 

� �ii

i
i xwx

xx

�

�
1

~      (27) 
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and 

� �ii

i
i xxw

xwx ~1~

~


�
�      (28) 

 

Detecting and correcting for departure from nominal conditions 

 When nominal conditions do not hold, (i.e. w � 1) it is necessary to estimate w, and this 

is done as follows. Under conditions when there is no change in gene expression, the expected 

value of the nominal fractional intensity data, E(X) = �0 should be theoretically equal 0.5. 

However, when w � 1 in (22), even though there is no change in gene expression, E(X) � 0.5, 

and hence any significant deviation of estimates of �0 from 0.5 provides an indication that 

nominal conditions do not hold. Given a value of E(X) = �0 � 0.5, we are able to use Eq. (28) 

to estimate the value of w required so that the expectation of the corrected intensity ix~  is 0.5. It 

is easy to show that under these conditions: 

 

1
0 �
�

w
w�       (29) 

so that 

0

0

1 �
�



�w       (30) 

 

Thus, from an estimate of the expected value of the nominal x for those genes showing no 

change in gene expression, we are able (i) to determine if nominal conditions hold and then (ii) 

correct the nominal fractional intensity for the entire data set using the estimate of w given 

above when nominal conditions do not hold. 
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Application to microarray data analysis 

 The theoretical implications of the results presented in Eqs. (24) and (26) are as 

follows: for a particular microarray dataset involving a total of N genes, each nominal 

fractional intensity xi = 1,2,…,N is a random sample from its own (possibly unique) Beta 

distribution. Consequently, f(x), the underlying theoretical distribution of (nominal) spot 

fractional intensities for the entire collection of genes, will be a mixture of overlapping Beta 

density functions consisting, in principle, of as many Beta densities as there are genes. 

 

Because of the finite support [0,1] over which f(x) is defined and the large number of genes 

involved, but most importantly as a result of the necessary “coalescence” of the distributions of 

genes with theoretically identical—or statistically similar—expression levels, in practice, the 

actual number of distinct and truly discernible Beta densities required to describe any specific 

collection of microarray data will be relatively few. Practically therefore, this suggests a 

characterization strategy in which the histogram of the (nominal) fractional intensities is modeled 

as a mixture of just a few Beta densities. 

 

In particular, the distributions of all genes showing no differential expression will coalesce into 

one clearly discernible distribution, f0(x). If, at the barest minimum, the distributions of genes 

showing lower differential expression also coalesce into a single discernible distribution and 

the same happens for the genes showing higher differential expression, we may thus 

characterize the histogram of fractional intensity data (at the barest minimum) as a mixture of 

(at least) three Beta distribution functions, f1(x) for the data from the collection of genes 
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showing lower differential expression, f0(x) for those showing no differential expression, and 

f2(x) for those showing higher differential expression (Eq. (31)): 

 

� � � � � � � �xfxfxfxf 220011 ��� ���     (31) 

 

with 1210 ��� ��� . 

 

Alternatively, and more generally, this exercise may be considered as akin to an expansion of 

f(x) in a set of basis functions, fi(x), that are beta densities. The total number of basis functions 

used to represent the true function depends on the level of desired “accuracy”.  The specific 

choice of 3 basis functions in Eq. (31) is based on the arguments advanced above: each of 

these functions can be related directly to the status of the gene in question. 

 

Thus by fitting a mixture of Beta distributions to histogram data, we obtain a theoretical 

probabilistic characterization of the data where each contributing Beta distribution constitutes 

the population description of a category of genes with common differential expression 

attributes. Observe that the coefficients �0, �1 and �2 indicate the fraction of the entire 

population that belongs in each respective indicated category. In particular, for the fraction �0 

of genes for which there is truly no differential expression, x possesses a Beta distribution that 

is perfectly symmetric, with mean = mode = median = x* = 0.5. In some cases, it may be 

necessary to represent the data histogram with more than three Beta densities.  Under such 

circumstances, the appropriate number of Beta densities required to represent the histogram 

structure adequately may be determined by employing such standard  model selection criterion 
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as the Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion (BIC)  in 

selecting among various possible models involving n = 4, 5, 6,… individual densities in the 

mixture model. 

 

Finally, we note that Diaconis and Ylvisaker, 1985, have showed that any data distribution on the 

interval [0, 1] can be modeled as a finite mixture of Beta distributions, a theoretical result whose 

validity has been illustrated in a wide range of practical applications (Allison et al., 2002; Parker 

and Rothenberg, 1988; Skliar et al., 2007). In the current context, the primary implication of this 

result is that the probabilistic framework we have presented thus far does in fact extend beyond 

cDNA microarray data: data from Affymetrix GeneChips, and any other two-channel or one-

channel array technology (old or new), once expressed in the form of fractional intensities, can 

also be analyzed using the results presented here.  

 

Statistical Inference: Probability of expression status 

 The mixture model in Eq. (31) can now be used as the reference distribution for drawing 

rigorous statistical inference about the expression status of each gene as follows.  The 

probabilities that each gene gi with associated fractional intensity xi is up-regulated, not 

differentially expressed, or down-regulated may be computed from Eq. (1), respectively as: 

 

Pup,i = P(gi � 2 | X=xi ) = 
)(

)(22

i

i

xf
xf��

    (32) 

 

Pnon,i = P(gi � 0 | X=xi ) = 
)(

)(00

i

i

xf
xf��

   (33) 
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Pdown,i = P(gi � 1 | X=xi) = 1 – Pup,i – Pnon,i   (34) 

 

These probabilities provide quantitative measures of the evidence contained in the microarray 

data regarding the true expression status of each gene.  However, since each probability is itself 

computed from data xi, the uncertainty inherent in the data is transmitted to these computed 

probabilities and must be quantified.  As part of the inference framework we propose the 

following technique for quantifying these uncertainties and for converting these to a “confidence 

index” —a measure of the confidence associated with each computed probability. 

 

Confidence index associated with the probability of expression status 

 Confidence limits around statistical estimates are generated from measures of uncertainty 

in the data employed for computing the estimates in the first instance; and naturally, such 

uncertainty measures are determined from replicates or other independent measures of pure 

variability.  Microarray data are atypical in the sense that pure replicates, when available at all 

are often limited in number. Therefore, in recognition of the fact that there are very few 

situations where microarray data are generated from unreplicated experiments (Reid and Fodor, 

2008), we treat this case first before dealing with the most common and important case, where 

the data are available in (limited) replicates. 

 

From unreplicated data: Under these circumstances, a measure of data uncertainty can be 

derived from considerations of the data generation technology itself.  Under the assumption that 
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if the uncertainty in the intensity signal is proportional to the magnitude of the signal, the true but 

unknown values can be written as: 

1111
~

iii yyy ��� �      (35) 

0000
~

iii yyy ��� �      (36) 

 

with yi1 as the actual measured intensity obtained from the gene in question under test conditions, 

and yi0 from the gene under control conditions. �0 and �1 are constants representing the extent of 

multiplicative uncertainty associated with the respective signal intensities. Such parameters are 

often supplied as part of instrument calibration characteristics. 

 

From Eqs. (35) and (36), the true but unknown fractional intensity ix�  is given by: 

 

� �001101

111

01

1

~~

~

iiii

ii

ii

i
i yyyy

yy
yy

yx
�����

��
�

�
�

��
��    (37) 

 

From standard propagation-of-error analysis (Taylor, 1997), and under the reasonable 

assumption of equal multiplicative uncertainties in each signal channel (i.e., �1 = �0 = � ), the 

uncertainty propagation simplifies to: 

iii xxx ��� �2�      (38) 

 

Each computed nominal fractional intensity xi is thus located in the range iiiii xxxxx �����
  

with �xi = 2�·xi, from which corresponding probability ranges can be computed for each gene: 



Acc
ep

te
d m

an
usc

rip
t 

 23 

( 

idownP ,
, �

idownP ,
), ( 


inonP ,
, �

inonP ,
) and ( 


iupP ,
, �

iupP ,
). The superscripts ‘-’ and ‘+’ respectively denote the 

probabilities associated with the fractional intensity at the low end of the range, xx �
 , and at 

the high end xx �� . The uncertainties in the fractional intensity data have thus been translated 

into uncertainties in the probabilities with ranges defined by idownP ,� , inonP ,�  and iupP ,� , 

respectively. 

 

Thus, associated with the nominal probabilities computed from Eqs. (32)-(34) are the 

uncertainties represented by the ranges of the probabilities of expression status, for any given �. 

Clearly, the wider these ranges are, the greater the degree of uncertainty associated with each 

computed probability, reducing our confidence in these probabilities. Conversely, narrow ranges 

imply less uncertainty and hence increased confidence. 

 

Because the probabilities of certain event must add up to 1, it is easy to establish that the 

elements of ΔP, the vector of uncertainties associated with the probabilities, must satisfy the 

following fundamental constraint: 

 

0,,, ������ iupinonidown PPP      (39) 

 

so that a measure of the magnitude of the uncertainty vector defined by 

 

2

2

,

2

,

2

, iupinonidown
i

PPP
S

�����
�     (40) 
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will be scaled between 0 and 1 (since the minimum value of the numerator term is 0 and the 

maximum value is 2).  If we now define a confidence index as: 

ii Sc 
�1       (41) 

 

then observe that 0 � ci � 1, and a low value of ci corresponds to low certainty regarding the true 

state of the expression status of the gene i, as indicated by the computed probabilities; 

conversely, a high value of ci corresponds to a higher degree of confidence in what the computed 

probabilities imply about the expression status of the gene i. 

 

From replicated data: For each gene gi, the fractional intensities computed from n replicates: 

 

niii xxx ,2,1, ...,,,      (42) 

 

are characterized by the usual average and the range (since typical microarray data seldom have 

enough replicates for determining a reliable estimate of standard deviation): 

 

� �niiii xxxx ,2,1,min, ,...,,min�      (43) 

� �niiii xxxx ,2,1,max, ,...,,max�      (44) 

 

The nominal probabilities of expression status in Eqs. (32)-(34) are now computed for the 

average fractional intensities, and the associated uncertainty determined from the probabilities 

computed at the extremes, min,ix  and max,ix . The magnitude of the uncertainty vector in this case 

is defined as:  
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d
PPP

S iupinonidown
i

2

,

2

,

2

, �����
�     (45) 

 

where the scaling factor d depends on the number of replicates.  It is easy to show that 

specifically, d = 2 if n = 2 (duplicates); otherwise d = 3 if n � 3 (triplicates or more).  With Si 

thus scaled between 0 and 1, the confidence index, as before, is computed using Eq. (41). 

 

We now illustrate the application of the theoretical results we have presented thus far with an 

example involving experimental data. 

 

Illustrative examples 

Example 1: Experimental Data 

 The data set shown first in Figure 1 is from studies of approximately 3000 genes from 

D. radiodurans 0.5 hours after ionizing radiation (following DNA damage), using cDNA 

microarrays. 

 

Data representation and partitioning: The polar coordinate transformed data is shown in 

Figure 2 where the intensity magnitude R  is plotted against nominal fractional intensity x. The 

entire range of intensity magnitude is from 5.3�10
4
 to 1.42�10

7
. The data is sorted by intensity 

magnitude (from the lowest to the highest R value) and then partitioned into three groups 

containing an equal number of data points, (5.3�10
4
 < R l ow < 6.63�10

5
); (6.63�10

5
 < R m e d  < 

1.27�10
6
) and (1.27�10

6
 < Rhigh < 1.42�10

7
). 
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Nominal data characterization and model fits: A histogram of the data and the theoretical fit 

of mixture distributions are shown below. Figures 3 and 4 show the data and model fit for 

“Low R” data; Figures 5 and 6 for “Medium R”, and Figures 7 and 8 for “High R” data. 

The probability model for the Low R group is: 

 

� � � � � � � �xfxfxfxf 201 03.079.018.0 ���     (46) 

 

where the Beta density parameters are, respectively, 
11 = 64.0, 
10 = 98.8, for f1(x); 
01 = 

98.9, 
00 = 120.2, for f0(x); and 
21 = 187.8, 
20 = 104.4 for f2(x). In general, the parameters 

associated with the contributing Beta density fj(x) (for the collection of genes sharing this 

probabilistic description) are aj1, corresponding to the effective comparative number of cDNA 

molecules under test conditions for the collection, and 
j0 the counterpart value under reference 

conditions. The mixture model parameters can be estimated via a variety of approaches, for 

example, Expectation-Maximization (EM) or least squares.  We chose the latter approach,  the 

model’s parameters by fitting the mixture model to the empirical cumulative distribution of the 

fractional intensity via least-squares. 

 

The corresponding results for medium and high R values are shown in Appendix B. Note that for 

“High R” data, more than 3 Beta densities are needed to capture the indicated data 

characteristics. This latter observation underscores the importance of segregating the data by the 

intensity magnitudes. Not only are the qualitative characteristics of the data histograms in 

Figures 3, 5 and 7 visually different; quantitatively, the parameter values of the contributing Beta 
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densities, the associated mixture weights, �j's, and, in the case of the High R group, the actual 

number of Beta densities, are all different. A less discriminating analysis that lumps all the data 

together into one mass grouping will fail to detect the subtle characteristics of the lower intensity 

magnitude data which would tend to be overwhelmed by the more pronounced characteristics of 

the higher intensity magnitude data. 

Bias detection and correction: Observe from each of the indicated f0(x) densities (either 

visually from the plots, or more quantitatively directly from the parameter estimates (
01, 
00)) 

that by definition of the mean of a Beta random variable, the mean values, given by: 

 

0001

01
0 




�
�

�      (47) 

 

deviate significantly from 0.5, with the immediate implication that nominal conditions do not 

hold for this data set. By estimating w for each data group, and using these to obtain bias-

corrected fractional intensities ix~ , a re-estimation of the mixture model now gives rise to the 

results shown for High R in Figures 9 and 10 (to conserve space, Low and Medium R results are 

omitted). The resulting model parameters are shown in Appendix B. Note the corrected 

characteristics of each f0(x) corresponding to the distribution of genes showing no change in gene 

expression. 

 

The mixture beta distribution, f(x), developed above may now be used for drawing statistical 

inference regarding microarray fractional intensities. 
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Statistical inference. After fitting the mixture model to the data histogram, Eqs. (32)-(34) are 

then used to compute the probability that each gene with a fractional intensity xi belongs to one 

of the three categories: down-regulated, up-regulated and not differentially expressed. A 

summary of the results is shown in Figure 11. The model fits to the data histograms are shown in 

the thick solid lines; the dashed lines and the thin solid lines show the respective probabilities of 

being down-regulated and up-regulated as a function of the fractional intensity x. For example, 

Fig. 11(a) and Fig. 11(b) show that the probability that genes with x < 0.3 are down-regulated 

(dashed line) is almost 1.0, while the probability that genes for which x > 0.7 are up-regulated 

(thin solid line) is also close to 1.0. And when the fractional intensity for a gene is 0.50 (yi1 = yi0), 

not surprisingly the figures indicate that the probability that the gene in question is differentially 

expressed is extremely low, almost zero (for both lines). 

 

A typical output of the analysis procedure is displayed in Table 1: the fractional intensity x and 

the corresponding probabilities of expression status, are shown for the minimum, maximum and 

average values of x. The last column of the table is the confidence index (ci). 

 

There are several ways in which the researcher may use the computed probabilities and the 

confidence index. For example, Figure 12 shows a histogram of the confidence index values 

associated with the computed probabilities of expression status. This provides a means of 

quantifying the overall “quality” of the experimental data. For instance note that the figure 

indicates that a substantial number (76.3%) of the analyzed genes have a confidence index 

greater than 0.80 associated with their computed probabilities of expression status —implying 

relatively low variability associated with the data in general. 
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However, the most important use of the computed results is in identifying and selecting 

differentially expressed (down-regulated or up-regulated) genes. By using as the cut-off criteria, 

threshold values for Pdown or Pup appropriate to the study at hand, it is possible to select candidate 

genes satisfying the stipulated criteria. For example, to generate a list of down-regulated 

candidate genes, choosing a threshold value of 0.75 for Pdown (indicating a desire to select only 

those genes that have a probability greater than or equal to 0.75 of being down-regulated, 

regardless of the precision associated with the computed probability) results in a list containing 

218 out of 3,094 genes. 

 

By imposing a threshold value on the precision of the computed probabilities, we can further 

narrow down the search for potentially down-regulated genes. Thus, for example, imposing a 

cut-off value of ci � 0.90 reduces the number of candidate down-regulated genes from 218 to 129 

genes. The researcher may now use a more precise, higher resolution experimental technique to 

determine the true expression status of this smaller subset of selected genes. 

 

Example 2: A Simulation study  

 The purpose of this example is to complement Example 1 by assessing the performance 

of our approach in detecting differentially expressed genes when the “true” circumstances are 

known. 

 

The study involves five microarray datasets simulated with statistical characteristics similar to 

the ones observed in real microarray data. Each simulated microarray dataset consisted of 3,000 

genes with 750 genes differentially expressed: 300 genes were down-regulated (10% of the 
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genome), 450 genes were up-regulated (15% of the genome) and 2,250 genes were not 

differentially expressed (75% genome). The parameters of the Beta distributions were chosen to 

mimic very closely actual distributions of real microarray data (after the polar transformation) as 

observed in our laboratory. The main statistics of the three Beta distributions used to simulate the 

microarray data are summarized in Table 2. 

 

Based on the probabilities of expression status, the top 300 down-regulated and the top 450 up-

regulated genes were chosen as differentially expressed. Table 3 summarizes the total number of 

genes correctly identified as a function of the number of simulated microarrays (replicates).  

Next, the simulated microarray data was also analyzed using the nonparametric method 

Significance Analysis of Microarrays (SAM) (Tusher et al., 2001), a popular technique  that does 

not require any assumption about the distribution of the microarray data. SAM does not produce 

probabilities; rather, it generates a sorted list of candidate genes given a specified False 

Discovery Rate (FDR). (The FDR associated with a decision rule is the proportion of false 

positives among all the genes initially identified as being differentially expressed (Wit and 

McClure, 2004)). The total number of genes correctly identified by SAM (with FDR = 3%) is 

also shown in Table 3 as a function of the number of available replicates.  

 

We observe first, that the performance of the probabilistic approach is uniformly better than that 

obtained using SAM. This should come as no surprise: statistical inference based on distribution-

free techniques general tend to be less powerful when the underlying data come from known 

distributions.  Notwithstanding, the performance obtained with SAM is still quite good although 

it is unable to handle the case where no replicates are available.  Second, and, again, not 
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surprisingly,  both techniques show improved performance as the number of replicates increase. 

In particular,  it is interesting to observe that with five replicates, the probabilistic approach 

identified 744 of the original 750 differentially expressed genes, a virtually-perfect precision of 

99.6%; with SAM, 710 of the original 750 differentially expressed genes were identified, a still-

impressive precision of almost 95%. 
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Summary and Conclusions 

 The three main results of this paper are now summarized: 

 

1. The distribution of spot intensity follows a Gamma model as indicated in Eq. (7): the shape 

parameter, 
, is related directly to the number of cDNA molecules responsible for the 

observed intensity, and the scale parameter, �, is the mean intensity per molecule
an 

equipment calibration parameter. 

2. For modeling differential expression, a polar transformation of the raw spot intensity data (as 

in Eqs. (15) and (16)) yields the intensity magnitude Ri, (to be used for rationally segregating 

the data) and the fractional intensity xi, which possesses a Beta distribution as in Eq. (24); the 

distribution parameters, 
i1 and 
i0 are related directly to the number of cDNA molecules 

under test and reference conditions, respectively. 

3. The distribution of entire microarray fractional intensities is characterized, theoretically, by a 

mixture of overlapping Beta densities; in practice (and as demonstrated with an example) as a 

result of the coalescence of distributions of genes with similar expression levels, the 

discernible features of the histogram of real data may be captured by as few as three 

overlapping Beta densities, as shown in Eq. (31). 

 

This last result has the most direct impact on the quest for reliable determination of differential 

expression for thousands of genes from noisy, potentially biased, microarray data, with few or no 

replicates. It indicates that, f(x), the underlying probability density function of the fractional 

intensity, is a linear combination of Beta density basis functions providing the following 

important perspective of the data set: each contributing Beta density may be viewed as a 
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coalesced population description of a category of genes with common differential expression 

attributes. The resulting coefficients of the component Beta densities therefore indicate what 

fraction of the entire data set belong to the category represented by the Beta density in question. 

For example, for the case shown in Figures 3 and 4, with the model fit shown in Eq. (31), the 

implications are the following: the contributions from the class of potentially down-regulated 

genes, is about 18%; the contribution from the class of genes whose expression levels are 

potentially unchanged is 79%; the remaining 3% is the complement, the contribution from 

potentially up-regulated genes. 

 

In conclusion, we observe that just as classical statistical inference is based on theoretical 

reference distributions (such as the Gaussian, t-, Chi-square, or the F- distributions) we have 

developed a methodology for drawing statistical inference using the mixture distribution f(x) as 

its theoretical basis: it consists of (i) a probability statement that a gene belongs to a category 

(the down-regulated, the up-regulated, or the no-change) and (ii) a degree of confidence 

associated with such probability statements, determined from the variability estimated from 

replicates, or else by propagation-of-error techniques when there are no replicates. The final 

outcome is an ordered triplet of results for each gene: a raw computed fractional (or relative) 

change in expression level, an associated probability that this number indicates lower, higher, or 

no differential expression (a category-membership probability) and a measure of confidence 

associated with the stated result. This analysis technique, which has been illustrated with a real 

experimental data set and also via simulation, provides an alternative approach specifically 

tailored to the inherent characteristics of microarray data. 
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In a future publication we will present an experimental validation of this probabilistic framework 

using data collected in our laboratory. 
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Appendix A: Derivation of the pdf in Eq. (7) 

 To derive a probability distribution function for y as defined in Eq. (6), given the 

probability distribution function for z(I), we begin by observing that z(I) and y(k) are related 

according to the following expression: 

 

� �� � � �� �IkyPkIzP ���     (48) 

 

which, from the definition of the variables z and y, translates in words to: “if the z-count is not 

yet up to k then the observed intensity I must be less than y”. In the language of probability, the 

event that z is less than k is equivalent to the event that the observed intensity I corresponding to 

z is less than y, and the probability of one event is identical to that of the other. From Eq. (48) we 

obtain 
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� �� � � �� � � � 
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which upon introducing Eq. (5). gives 
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The key result at this point is the following identity for the RHS of Eq. (50) above: 
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To establish this result, first let 

 

� � !
�



�
a

kz dzzek 1"      (52) 

 

from where it is easy to show via integration by parts, that 

 

� � � � � �111 
�
�� 

 kkeak ak ""    (53) 

 

a recursion equation that leads immediately, upon successive substitution and rearrangement, to 

 



Acc
ep

te
d m

an
usc

rip
t 

 36 

� � � �  
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establishing the result in Eq. (51). 

 

We may now use this result in Eq. (48) to obtain: 
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or, from the definition of the cumulative distribution Fy(I), 
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Differentiating with respect to I using Leibnitz’s rule for differentiating under the integral, we 

obtain 

 

� � � �
� �1



�
��

#

# ky
k

y ye
k

yf
I

F ��
    (57) 

 

which may now be written in the familiar form: 
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� � � �
� �1/1

,; 



�
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�
�
 yeyf y    (58) 

 

as shown in Eq. (7). 



Acc
ep

te
d m

an
usc

rip
t 

 38 

Appendix B: Table of complete model results 

 

 For each data group, segregated according to the intensity magnitude R, the parameters 

(
j1, 
j0) for the contributing probability densities, fj(x), and the associated mixture coefficient 

weights, �j (j = 0, 1, 2, 3) are shown in Table 4 for both nominal and corrected conditions. For 

each group, note the inequality of the nominal parameters (
01, 
00) associated with f0(x); the 

indicated bias is eliminated upon correction. 

 

Note also that bias correction has little or no effect on the mixture coefficient weights for Low 

and Medium R data, the influence of bias correction on these weights is more noticeable for the 

High R group. 
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Figures 

Figure 1: Raw data from gene expression studies in Deinococcus radiodurans 

following DNA damage. Note the "conical" sector shape. 

Figure 2: Raw data of Figure 1 after the polar coordinates transformation. 

Figure 3: Histogram of Low R data and mixture model. 

Figure 4: Contributing Beta densities for mixture model fit to data in Figure 3. 

Figure 5: Histogram of Med R data and mixture model. 

Figure 6: Contributing Beta densities for mixture model fit to data in Figure 5. 

Figure 7: Histogram of High R data and mixture model. 

Figure 8: Contributing Beta densities for mixture model fit to data in Figure 7. 

Figure 9: Histogram of bias-corrected High R data and mixture model. 

Figure 10: Contributing Beta densities for mixture model fit to corrected data in 

Figure 9.

Figure 11: Fitted mixture model (thick solid line) for the different intensity signal 

groups: (a) Low R; (b) Medium R; (c) High R. The probability of expression status as a 

function of the fractional intensity x is shown on the secondary y axis: Pdown (thin solid 

line) and Pup (dashed line). 

Figure 12: Histogram of the confidence index associated with the probabilities of 

expression status for the D. radiodurans case study. The histogram shows that 76.3% of 

the analyzed genes have a confidence index of 0.80 or greater associated with the 

computed probabilities, indicating that the variability associated with the computed 

probabilities is low overall. 

4. Figures Legend
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4. Figure 11
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Table 2. Main statistics of the distributions used to simulate the microarray data. 

Status 

Beta 

parameters 

(α, ��) 

Mean fractional 

intensity (x) 

Standard 

deviation 

Mean 

fold- 

change 

Log2(fold-

change) 

Down-

regulated  
(38, 62) 0.38 0.048 0.62 -0.69 

Not 

differentially 

expressed 

(75, 75) 0.50 0.041 1.00 0.0 

Up-regulated (62, 38) 0.62 0.048 1.63 0.70 
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Table 3. Total number of correctly identified genes by the probabilistic framework and 

SAM (the percentages of correctly identified genes are shown in parenthesis). 

 1 array 2 arrays 3 arrays 4 arrays 5 arrays 

Probabilistic 

framework 

603 

(80.4%) 

688 

(91.5%) 

729 

(97.2%) 

743 

(98.9%) 

747 

(99.6%) 

SAM 
Requires 

replicates 

668 

(88.7%) 

699 

(93.2%) 

701 

(93.3%) 

710 

(94.7%) 
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Table 4. Table of complete model results. 

 Low R Medium R High R 

f1(
11, 
10) 

corrected 

(64.0, 98.8) 

(69.3, 88.1) 

(76.0, 126.1) 

(74.9, 100.3) 

(15.2, 30.7) 

(16.9, 28.6) 

f0(
01, 
00) 

corrected 

(98.8, 120.2) 

(106.9, 106.7) 

(121.5, 148.8) 

(136.8, 136.1) 

(31.1, 41.3) 

(30.1, 30.2) 

f2(
21, 
20) 

corrected 

(137.8, 104.4) 

(150.3, 92.8) 

(95.6, 72.5) 

(66.9, 42.4) 

(29.4, 20.3) 

(50.3, 22.3) 

f3(
31, 
30) 

corrected 

  (61.6, 9.5) 

(96.3, 11.1) 

�1 corrected 

0.18 

0.18 

0.22 

0.24 

0.22 

0.16 

�0 corrected 

0.79 

0.79 

0.73 

0.71 

0.68 

0.77 

�2 corrected 

0.03 

0.03 

0.05 

0.05 

0.07 

0.05 

�3 corrected   

0.03 

0.02 
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