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Exact analytic solutions for a global equation of1

plant cell growth2

Mariusz Pietruszka∗

Laboratory of Plant Physiology, Faculty of Biology and Environmental Protection

University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland3

Abstract4

A generalization of the Lockhart equation for plant cell expansion5
in isotropic case is presented. The goal is to account for the temporal6
variation in the wall mechanical properties - in this case by making the7
wall extensibility a time dependent parameter. We introduce a time-8
differential equation describing the plant growth process with some key9
biophysical aspects considered. The aim of this work was to improve10
prior modeling efforts by taking into account the dynamic character of11
the plant cell wall with characteristics reminiscent of damped (aperi-12
odic) motion. The equations selected to encapsulate the time evolution13
of the wall extensibility offer a new insight into the control of cell wall14
expansion. We find that the solutions to the time dependent second15
order differential equation reproduce much of the known experimen-16
tal data for long– and short– time scales. Additionally, in order to17
support the biomechanical approach, a new growth equation based on18
the action of expansin proteins is proposed. Remarkably, both meth-19
ods independently converge to the same kind, sigmoid–shaped, growth20
description functional V (t) ∝ exp(− exp(−t)), properly describing the21
volumetric growth and, consequently, growth rate as its time deriva-22
tive.23

Keywords growth functional, plant cells, wall extensibility24
∗Corresponding author: mariusz.pietruszka@us.edu.pl
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Introduction25

Plant cells are confined by a stiff, yet flexible, polymeric wall that defines26
cell shape and permits high turgor pressure to develop (Cosgrove, 1993). In27
growing cells these walls must expand to enlarge and keep the wall strong28
enough to withstand the mechanical stress arising from internal hydrostatic29
pressure. The plant cell wall consists of a network of cellulose microfibrils30
glued together by a polysaccharide matrix (ibid.). The primary wall is se-31
creted by the growing cell and is maintained in an extensible, plastic state32
during the period of cell growth, before the cell matures and the wall loses33
its ability to expand (Veytsman and Cosgrove, 1998). This process, from34
the physical point of view, can be described by a dynamic extensibility co-35
efficient. In this paper, three classes of cell (tissue) growth solutions are36
considered under time dependent extensibility coefficient.37

Lockhart (1965) model deserves a prominent place among the key mile-38
stones in the field of plant growth mechanics. The model however, has many39
shortcomings that limit usefulness. Among these shortcomings is the formu-40
lation of uniaxial cell growth when in fact cell growth involves strain rates41
along three principal directions. Moreover, the mechanical anisotropy of42
the cell wall was ignored. This latter aspect has been considered by many43
authors, and quite recently a proposal was also given (see Pietruszka, 200944
and papers cited therein) concerning a new local (coordinate dependent)45
tensor growth equation. Yet, there is still a need for a simple global (co-46
ordinate independent), easy applicable equation of volumetric cell/organ47
growth keeping positive aspects of the original Lockhart equation. This48
paper is an effort to complement previous efforts in the area.49

Lockhart equation has been known since 1965, and it is clearly not new.50
However, revisiting the mathematical application of the equation can pro-51
vide new insights. The Lockhart equations describe plant cell elongation,52
as a combination of elastic, turgor-driven extension and plastic deformation53
(yielding) of the cell wall. The Lockhart equation assumes that extension is54
driven by a constant turgor pressure due to osmotic uptake of water. The55
core portion of this equation has been an extensibility coefficient Φ0, ac-56
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counting of visco-elastic features of cell wall. The extensibility coefficient,57
Φ0, was originally defined as a constant. This coefficient should be, however,58
dynamic to address the changes taking place in the walls of the growing cell59
of a plant. Also, numerous experiments provided evidence that the extensi-60
bility coefficient is susceptible to many environmental stimuli. These include61
phytohormones or growth inhibitors and temperature, and especially its pro-62
nounced change in time. From purely mathematical point of view, as well as63
indicated by a huge body of observational data, the extensibility coefficient64
magnitude should gradually decrease with time, ceasing altogether when the65
cell matures. In fact, the conventional treatment of the Lockhart equation66
(with Φ0 = const.) delivers exclusively a divergent exponential solution for67
the expanding volume V , which is clearly flawed. The biological meaning68
of this expanding volume is that growing plant cells will extend infinitely69
with time in the model. Closer scrutiny of the original form of the Lockhart70
equation also reveals that the volumetric growth of a cell is driven exclu-71
sively by the progression of time, since the product of Φ0 and P −Y is also a72
constant (see Eq. (1)). In other words, the cell volume expands because the73
time evolves. This this is indicative of a key failure of the original form of74
the Lockhart equation, as no inner mechanisms are responsible for growth:75
ongoing biological chemistry would appear to be completely ignored.76

The benchmark of success must be in better descriptions of what is77
observed. The experiments considering wall creep (irreversible extension)78
(Cosgrove, 1989) or where the plastic extensibility (Cleland, 1986) experi-79
enced a kind of exponential decay with time. Unfortunately, there has been80
a lack of analytic description of this behavior, even at a phenomenologi-81
cal level, which we attempt to address herein (vide infra). Such modelling82
efforts are essential for description of dynamic features of the cell wall exten-83
sion. Given the above arguments, a growth-equation, free of some serious84
drawbacks mentioned above, is desirable. In this paper a new consistent so-85
lution of these problems is presented in a form of two complementary models,86
namely biomechanical and biochemical which will be discussed later.87
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Theory The Lockhart equation (Lockhart, 1965) in its raw form is given
by

1
V

dV

dt
= Φ0(P − Y ) (1)

where V denotes the volume of a growing cell. In Eq. (1) P and Y de-
scribe the turgor pressure and turgor threshold, respectively, constant Φ0

stands for the extensibility coefficient. Formal solution of Eq. (1) gives
V = V0 exp[Φ0(P − Y )t], where V0 = V (t = t0) is the initial volume. In a
more general case, Φ0 may be assumed as time-dependent, Φ0 → Φ(t), and
then the integration of Eq. (1) gives

V (t) = exp
{∫ t

0
Φ(t′)(P − Y )dt′

}
(2)

In the biomechanical approach, heuristically as an Ansatz having some bio-
mechanistic underpinning, we assume that extensibility coefficient is now
a time dependent function, Φ0 → Φ(t). Time-dependent wall extensibility
seems a reasonable assumption, because plant cells regulate cell wall prop-
erties by secreting enzymes, including expansins. We also assume the cell
wall behaves as a damped oscillator, with wall elasticity acting as a restoring
force, an inertial wall mass, and a viscotic friction due to plastic deforma-
tion of the wall. Hence we postulate that the extensibility coefficient Φ(t)
satisfies the second order differential equation, able to describe elastic and
viscotic (plastic) features of the cell wall, in the form

m
d2Φ
dt2

+ b
dΦ
dt

+ kΦ = f (3)

This type of equation is recognized as the time differential equation for
the damped harmonic oscillator. Expanding upon the analogy with the
damped harmonic oscillator, parameter m, b and k may be called inertia,
viscotic friction and restoring (elastic) coefficients, respectively, and can be
bound directly with the elastic/inelastic cell wall properties. Coefficient f

reflecting the role of growth hormones we put momentarily as equal to zero.
Turgor pressure in Eq. (1) is treated as external force acting on the system.
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Equation Eq. (3) can be solved by standard procedures (strictly speaking, in
non-isotropic case Φ should be a tensor). With f = 0 and Δ = b2−4mk > 0,
the general solution has the form of aperiodic damping

Φ(t) = Φ0 [c1 exp(λ1t) + c2 exp(λ2t)] (4)

where λ1,2 = −(b±√Δ)/2m.88
By inserting Eq. (4) into the modified form of the Lockhart equation

(see below)
1
V

dV

dt
= Φ(t)(P − Y ) (5)

where the cell wall extensibility coefficient depends explicitly on time, and
P −Y is represented, as usual, by a constant average value, the general solu-
tion of Eq. (5) may be presented in the form (without the loss of generality
we may put Φ0 = 1) as:

V (t) = V0 exp
[
2me−

bt
2m

(
c1

−b +
√

Δ
e
√

Δt
2m +

c2

−b−√Δ
e−

√
Δt

2m

)
(P − Y )

]
(6)

Remarkably, it turns out that Eq. (5) depending on the sign of the dis-89
criminant Δ one can identify three dynamic regimes (see the Appendix A90
for details) corresponding to various situations encountered in cell growth91
physiology. Some representative examples are considered in the following92
section.93

We note that, by proposing the model Ansatz in the form of Eq. (3),94
we are far away from treating the cell wall literally as a damped harmonic95
oscillator. Rather, we use such analogy, since Eq. (3) integration produces96
three classes of solutions (vide infra) that we encounter in plant growth bio-97
physics. It also turned out, that these solutions complemented by one- and98
two-parameter (for α- and β-expansins) biochemical models form a natural99
basis for simultaneous mechanical and biochemical, semi–phenomenological100
description of cell/organ growth physiology. This is because both approaches101
result in the same kind of growth functional, where the volumetric expansion102
V (t) is proportional to the double exponent exp(− exp(−t)) function.103
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The biochemical model (mechanism) of cell wall loosening, due to expansin
proteins action, underlying elongation growth of plant organs represents an
unsolved problem and is still a matter of current debate (see e.g. Cosgrove
(2000) for review). In the simplest approximation the change of expansin
proteins content in the investigated system will be proportional to its con-
centration x in the solution and to the kinetic coefficient k0 responsible
for the interaction of endogenous expansins with the investigated sample.
Therefore, trying to tackle the problem analytically, we begin with a time
differential equation for the kinetic chemical reaction in the form

dx

dt
= −k0x (7)

with 0 ≤ x ≤ 1 - expansin concentration in the growing hypocotyl/coleoptile
and k0 - kinetic coefficient responsible for expansin interaction with the
growing segment, leading to stress relaxation. Equation Eq. (7) can be
easily integrated to yield

x(t) = x0 exp(−k0t) (8)

where x0 = x(t = 0) describes the initial expansin concentration of the in-
vestigated system (cell or non-meristematic tissue). This equation describes
the exponential degradation of an initial pulse of the wall loosening enzyme
expansin. Such approach also suggests a mechanism for finite cell extension:
the cell becomes rigid as the initial pulse of expansin expires. The above
argument implies equation Eq. (8) may be treated as a modifying factor for
Φ0. Thus, we may substitute Φ(t) = Φ0x(t), which explicitly reads

Φ(t)
Φ0

= x0 exp(−k0t) (9)

where Φ0 = const. is the Lockhart term (we put Φ0 = 1 onward). Performing
insertion of Eq. (9) into Eq. (5), after integration of the resulting differential
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equation, we arrive at the formula

V (t) = V0 exp
[
−e−k0tx0(P − Y )

k0

]
(10)

Above equation can be considered, similar to Eq. (6), as volumetric exten-104
sion of a cell/tissue with V0 denoting the initial volume.105

Besides, the calculated from Eq. (10) half-time for stress relaxation, due106
to expansins action, is t1/2 = ln 2/k0 and can be compared with Cosgrove107
(1985) result (Eq. (A9), ibid.) to give k0 = εφ. This relation, represented108
in our notation by k0 = εΦ0, valid at least for t1/2, combines biochemical109
(k0) and biomechanical (ε, Φ0) aspects of plant growth, since ε stands for110
the Young modulus which, by definition, is a measure of the stiffness of an111
isotropic elastic material.112

Results113

Simulating plant cell growth is an important subject of research. It would be114
especially important when we need to further improve the plant cell growth115
properties in the future. Quite some research effort has been devoted in this116
research area. This article introduces an extension of the Lockhart equation117
that greatly expanded the predictive capacities of previous equation. There-118
fore, we are motivated first to find the basic semi-phenomenological solutions119
of growth equation that provide a better description of the time dependent120
extensibility coefficient. The interplay of parameters in our model results in121
three kinds of solutions (ready to use formulae are conveyed to the Appendix122
A). First exemplary results, due to this classification, are presented in Figs123
1-3.124

Considering the over-damped case, as in Fig. 1, we clearly see the impact125
of viscotic friction (b - parameter) on the shape of the function Φ (Eq. (14))126
and consequently how it affects the growth functional V (Eq. (15)). This127
case seems to be fundamental to investigations concerning the wall creep128
(Cosgrove, 1989, see Fig. 5 therein), plastic extensibility (Cleland, 1986,129
Fig. 3) and growth kinetics (Edelman, 1995, Figs 1 and 3) observed in130
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various experiments. This viscotic friction parameter also appears to apply131
to growth retardation due to inhibitors. The latter issue is clearly visualized132
in Fig. 1 (right column) where with increasing coefficient b the inflection133
point is shifted to the higher t - values and the value of V is significantly134
suppressed. We believe this to be a proposal worthy of further attention, as135
described in the Appendix B, where the functional form of Φ(t), see Fig. 9,136
has been substantiated by the assumptions about the sigmoid law of great137
growth, stay in accord with the results presented in Figs 1-2.138

Now, let us consider a critical case as presented in Fig. 2. This kind139
of behavior seems to be expected on the brink between periodic growth140
oscillations, as in the case of pollen tubes (vide infra) and the described141
above over-damped case. The resulting formula, Eq. (17), involved in the142
critical case is comparatively simple - note, it does not contain the restoring143
coefficient k. It looks as though, an elastic component is not present in this144
case and the cell wall is in a plastic state, exclusively.145

Pulsatile growth appears to be the dominant mode of extension of rapidly146
extending tip-growing organisms. It looks as though, at this preliminary147
stage, the under-damped solutions to the second order differential equation,148
Eq. (3), may also find a counterpart in pulsatile growth experiments (e.g.149
Messerli et al., 1999) through Eq. (19). Pollen tubes from a number of150
plants that have been studied with adequate spatial and temporal resolution151
have been found to grow in an oscillatory manner. Measurements of longer152
pollen tubes of Lilium longiflorum that were growing in a pulsatile manner153
revealed a pulsatile influx of both H+ and K+ at the growing tip. Calcium154
fluxes were also measured when pulsatile growth began, the basal Ca2+155
influx decreased and a pulsatile component appeared, superimposed on the156
reduced basal Ca2+ flux. The Ca2+ oscillations have the same frequency as157
the growth oscillations and are nearly in phase with growth rate. It gives158
hope that these phenomena, by fine-tuning model parameters to receive159
the characteristic system oscillation spectrum (Fig. 3, mid-box), can be160
described in terms of time-derivative of Eq. (19), representing the modulated161
growth rate V ′ = dV

dt corresponding to Ca2+ (K+, H+) oscillating fluxes – see162
also Fig. 3 (upper plot) and compare, for instance, with Figs 4-5, 7 in paper163
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by Messerli et al. (1999). Furthermore, as we noticed, Eq. (5) assumes,164
for simplicity, a constant turgor pressure. Probably the turgor pressure165
will rise significantly when the wall contracts. This effect has not been166
included in the presented model, although it will presumably quickly damp167
the oscillations predicted by Eq. (19) (Ω–term). In order to overcome this168
difficulty and consider a cell like a closed volume filled with an incompressible169
fluid we propose a self-consistent solution (see the derivation in Appendix170
A). Hence, even more adequate results can be obtained with the use of171
an auxiliary transcendental Eq. (21), where more realistic system can be172
considered by taking into account a dampening feedback between turgor173
pressure and elastic wall contraction. This approach, however, demands a174
selfconsistent (iterative) solution as it was pointed out in Appendix A.175

Another question arises concerning constant P − Y term. The assump-
tion that P and Y are unchanging (P − Y = const.) is valid only under
steady growth conditions. What are the consequences of this assumption to
apply the equation at a long time scale under fluctuating conditions (say,
over few weeks)? For instance Lechaudel et al. (2007) reported a non-
constant threshold pressure Y during fruit growth. To answer this question
the general solution of Eq. (5) in the following form may be introduced
(with the use of Eq. (4))

V (t) = V0 exp
[∫ t

0

(
c1e

λ1t′ + c2e
λ2t′

) (
P (t′)− Y (t′)

)
dt′

]
(11)

where either P or Y may vary with time. This equation, among other
possibilities, may also report on turgor decrease due to water deficiency,
applicable in case of a previously growing plant cell that is deprived of its
water resources. Thus, by accepting the adequate, specific form of P − Y

term it can be solved analytically. The solution of Eq. (11), for the most
suitable form of the exponential decay P (t) − Y (t) = (P0 − Y0) exp(−ξt)
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accepted for the turgor pressure term, explicitly reads

V (t) = V0 exp{(P0 − Y0)
[

c1

λ1 − ξ

(
e(λ1−ξ)t − 1

)
+

c2

λ2 − ξ

(
e(λ2−ξ)t − 1

)]
}

(12)
where P0 = P (t = 0), Y0 = Y (t = 0) and ξ is a positive number called176
decay constant1. The reciprocal constant τ = 1/ξ is called ”mean life-time”177
or ”scaling time” which is the time needed for the assembly (here: turgor178
pressure) to be reduced by a factor of e = 2.718 (Euler number). The plot179
of this exemplary solution is presented in Fig. 4. The remaining solutions180
to Eq. (11) are conveyed to the Appenix C.181

Last but not least, Lockhart equation has been derived for elongation182
growth and was intended to describe a single cell elongation by assuming183
steady growth conditions (constant turgor). Since no constraint regarding184
turgor pressure is imposed onto Eq. (11), not only it can describe the single185
cell growth in varying external conditions, but can also be useful in single186
cell simulations. A good example is presented in the Fishman and Genard187
model (1998), where the growing fruit is assimilated to one big cell separated188
from the exterior by a composite membrane (see also Liu et al., 2007). Also189
the influence of ξ parameter, as in Eq. (12), onto the volumetric growth,190
visualized in Fig. 4, can be useful in this case.191

The importance of plant growth regulators in plant tissue culture is well192
documented. Plant hormones (also known as phytohormones) are chemical193
compounds that regulate plant growth. The action of such external stimuli194
should also be recognized in solutions of Eq. (5). This can be accomplished195
by considering a positive f -term on the right side of Eq. (3). The solutions196
of such modified equation are shown in the explicit form in the Appendix197
A, as Eqs (22) and (23). An illustration of the influence of plant hormones198
onto the volumetric growth is presented in Fig. 5 (note, the volume V is199
still normalized, and does not exceed one in the case of f = 0).200

It seems tempting to link both models presented in this paper. This can201
1Equation Eq. (12) will be finite for long times if ξ ≥ λ1, λ2. Then we receive:

limt→∞ V (t) = exp{(P0 − Y0)
[

c1
ξ−λ1

+ c2
ξ−λ2

]
}.
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be accomplished with the help of Levenberg-Marquardt algorithm. The pro-202
cedure was as follows: the discrete data points were taken from the figures203
Fig. 1a-c and then interpolated with the help of Eq. (10). As a result of204
the fitting procedure (x0, k0) pairs are obtained and new plots (Fig. 6) are205
created which reproduce the original data from Fig. 1. This easy fitting ex-206
ercise shows a good agreement between both sets of growth curves (compare207
plots in Fig. 1 a-c and Fig. 6), and consequently between its biomechanical208
and biochemical representations. By setting x0 as fixed (x0 = 1) we may209
repeat calculations to receive k0 = 0.602, 0.369 and 0.309 corresponding to210
b = 2.1, 3 and 3.5, respectively. A closer scrutiny reveals (see the caption)211
that the greater k0 coefficient the lower b value, and the opposite, as it should212
be expected. Another extrapolation based on above presented numbers ap-213
proximately gives k0 = ln b/2, binding mechanical (b) and biochemical (k0)214
model quantities together in one empirical formula. Needless to say, exactly215
the same routine can be performed with data taken directly from any real216
experiment, giving the opportunity to interconnect biochemical and bio-217
physical aspects (parameters) of volumetric plant cell growth (elongation)218
for a given species. Similar procedures can be conducted, depending on the219
experimental context, with the remaining equations presented in this paper,220
thus strengthening the predicative power of the presented model.221

Also, in order to support our analysis let us take some real, experimental222
growth data from Lewicka and Pietruszka (2006) - see Fig. 2 therein. The223
result of calculations is given in Fig. 7 (see the caption). It shows, among224
others, that we may obtain quantitative (numerical) values for the relevant225
biochemical parameter (k0). More than this, since we have here considered226
data for the elongation growth of maize at two different temperatures, we227
can bind these numbers (k0) directly with temperature change. The problem228
of temperature, in this context, is of great interest and may be subjected to229

rate. Temperature is a measure of the kinetic energy of a system, so higher temperature
implies higher average kinetic energy of molecules and more collisions per unit time. A
general rule of thumb for most (not all) chemical reactions is that the rate at which the
reaction proceeds (Q10) will approximately double for each 100C increase in temperature.
Once the temperature reaches a certain point, some of the chemical species may be altered
(e.g., denaturing of proteins) and the chemical reaction will slow or stop.

2Usually, an increase in temperature is accompanied by an increase in the reaction
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future study. Beneath we consider a preliminary result.230
The environmental temperature, decisive for growth processes, can be231

taken into account by a well justified assumption that k0 = k0(T ), where232
T stands for the absolute temperature2. The effect of temperature on rates233
of reaction for a given plant species can be easily established empirically234
with the help of Eq. (10), see Fig. 8. On the other hand this outcome235
strongly supports the biochemical pathway resulting in the solution given236
by Eq. (10).237

Discussion238

Lockhart equation was conceived to explain growth for water immersed cells239
with negligible suction for which only turgor is required to calculate the240
stretching forces involved in plant growth. Our improved approach extends241
the idea of growth by relaxation of viscoelastic cell walls to plants subjected242
to suction by introducing the dynamic extensibility coefficient of the cell243
wall. In this sense the assumption made by introduction of Eq. (3) may244
be justified and accepted. Even though in this paper we focus primarily245
on the time evolution of wall samples the problem of the yield stress is not246
neglected. Green and coworkers (1971) provided experimental evidence on247
Nitella that the most labile material property in the context of Lockhart248
equation is the yield stress of the wall, not the extensibility. Nonetheless,249
it is easy to notice that all presented solutions, either of biomechanical or250
biochemical origin, have preserved the structure of the original Lockhart251
equation (also by retaining the P − Y term). Therefore, not only they252
can report on the wall properties, but also over the changes regarding the253
yielding threshold (cf. e.g. Eq. (11) and its exemplary solutions).254

Cell expansion plays a crucial role in shaping the form and size of plants.255
Expansins are plant cell proteins first discovered in studies of plant cell en-256
largement (Cosgrove, 1998). They have unique loosening effect on plant cell257
walls and enhance stress relaxation. Consequently, they induce a long-term,258
irreversible extension (creep). Even though their mechanism of action still259
remains enigmatic there exist temptation to link their influence with the260
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presented model. This is made possible by invention of the analytic expres-261
sions (as Eq. (10)) for the wall extensibility including free parameters (x0,262
k0) that can also be attributed to the action of expansins. Moreover, further263
equipment of our model by a gravitational force term (representing load),264
as a natural extension, may supposedly account for the results obtained by265
the experimental layout of the cell-wall extension assay (Cosgrove, 1989).266
This in turn can easily be linked to the expansin action. This issue, con-267
cerning – among others – similar models for a more realistic case of α– and268
β–expansins, is presently under study.269

It is worth also to emphasize that the solution of Eq. (5) possesses an
important normalization property

V (t) ∝ lim
t→+∞ exp{− exp [−t]} = 1 (13)

not present in hitherto solutions. We see, we are dealing with the natural270
(and expected) upper bound corresponding to growth cessation when the271
growing cell matures. Hence, the maximum growth is treated in the model272
as normalized to unity. Therefore, in order to obtain significant results the273
control value should be always subtracted, as it is usually done in experi-274
ment. It is clear that this result extends from the over-damping to critical275
case as well as for all solutions of Eq. (10) kind.276

I realize, the presented semi–phenomenological approach does not bring277
a new biological insight, either elucidate biological mechanisms. Phenomenol-278
ogy usually serves as qualitative and quantitative description of the observed279
phenomena. Sometimes, it leads to discovery of new solutions that can be280
verified experimentally or carry important hints for experimentalists or the-281
oreticians. Also here exploited phenomenology gives such directions about282
changing properties of the cell wall during the process of growth. Moreover,283
in our case it provides interchangeable information about mechanical and284
biochemical aspects of expanding cell walls, also in terms of calculated num-285
bers and empirical relations (k0 = ln b/2) or mathematically derived rules286
(t1/2 = ln 2/k0 or k0 = εΦ0). Also, easy but precise fitting procedures allow287
indirect (through experimental data) transformation of the following kind:288
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(x0, k0)←→ (b, k) between biochemical and biomechanical ”coordinates”. It289
looks as though, with the help of the presented mathematical apparatus we290
can ”tune” biomechanical parameters by changing the biochemical ones or,291
the opposite, draw conclusions about specific aspects of biochemical nature.292
Also, as in the case of Fig. 7, by knowing k0 coefficient at T = 200C or at293
T = 300C (by interpolation to the existing empirical data) we may easily pre-294
dict (calculate) the plot at arbitrary temperature, below the temperature of295
the optimum growth (T0), without time–consuming measurements. Among296
others, in this manner the ”predicative power” of semi–phenomenological297
formulas can be employed.298

To conclude, this paper describes a model that appears applicable to299
what we know empirically about the physical aspects of cell growth pro-300
cess. It seems clear, how realistic improvements to the modeling methods301
can be linked to study the biomechanical and biochemical features of cell302
growth. This is because of the close connection of each model with exper-303
iment through its free parameters that can be retrieved by standard inter-304
polation of the growth data. The sparse set of parameters of both models305
gives also hope for a wide application in comparative studies of the growth306
problems encountered in plant physiological experiments.307
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Appendix A311

Special solutions – exact results312
Based on the sign of the discriminant Δ solutions to Eq. (3) may be divided313
into three categories.314
Over-damping case: if Δ > 0, the solution is written explicitly as

Φ(t) = Φ0

[
c1 exp

(
−b−√Δ

2m
t

)
+ c2 exp

(
−b +

√
Δ

2m
t

)]
(14)
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To evaluate c1 and c2, the initial conditions are needed, in order to seek
for these coefficients. When a damped oscillator is subjected to a damping
force which is linearly dependent upon the velocity, such as viscous damp-
ing, the oscillation have exponential decay terms which depend on damping
coefficient. By introducing Eq. (14) into Eq. (5) the resulting differential
equation may be solved to get

V (t) = V0 exp

⎡
⎣exp

(
−b +

√
Δt

2m

)⎡
⎣2c1 exp

(√
Δ

m

)
m

−b +
√

Δ
− 2c2m

b +
√

Δ

⎤
⎦ (P − Y )

⎤
⎦

(15)
which is the explicit analytical solution for the expanding volume of the315
cell in the over-damped case. Here V0 = V (t = t0) describes the initial316
volume. The term P − Y is of the order of several tenths of MPa, and can317
be directly measured. Parameter b, m and Δ (k) are to be determined from318
experiment by interpolation of growth data by Eq. (15) with the help of e.g.319
Levenberg-Marquardt procedure. These values then can be inserted back320
in Eq. (14) thus producing complete analytic expression for the dynamic321
yielding coefficient Φ(t).322
Critical damping: if Δ = 0, the general solution takes a form

Φ(t) = Φ0

[
(c1 + c2) exp

(
− b

2m
t

)]
(16)

and c1 and c2 are to be obtained from initial conditions. By inserting Eq.
(16) into Eq. (5) the evaluation of the differential equation results in

V (t) = V0 exp
[
−2m

b
(c1 + c2) exp

(
− b

2m
t

)
(P − Y )

]
(17)

Again, this is the explicit analytical solution for the expanding volume of the323
cell in the critical (maximum damping) case. Here V0 describes the initial324
volume. The only parameter b and m are to be determined from experiment325
by interpolation of growth data with Eq. (17). These values then can be326
plugged in Eq. (16) to receive analytic expression for the dynamic yielding327
coefficient.328
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Under-damping (hereafter referred also to as cell growth (rate) oscillations):
if Δ < 0, the solution reads

Φ(t) = Φ0

[
exp

(−b

2m
t

)[
A cos

(√|Δ|
2m

t

)
+ B sin

(√|Δ|
2m

t

)]]
(18)

where from the given initial conditions, the coefficients A and B can also be
evaluated numerically. By inserting Eq. (18) into Eq. (5) the integration of
the resulting differential equation yields

V (t) = V0 exp

{
m exp

(− bt
2m

)
b2 − 2mk

(P − Y ) [Ω]

}
(19)

where

[Ω] =

[
−(Ab + B

√
Δ) cos

(
t
√

Δ
2m

)
+ (A

√
Δ−Bb) sin

(
t
√

Δ
2m

)]

Eq. (19) is the explicit analytical solution for the expanding volume of the329
cell in the oscillatory case. It exploits the sigmoid growth double exponent330
in the form of exp(− exp(−t)) in a superposition with a periodic function331
(Ω – pulse); b, m, k are free parameters to be determined from experiment332
by interpolation. Constants A and B contribute to the superimposed pulse333
amplitude whereas

√
Δ

2m = ω = 2πν – represents its frequency ν in Hz,334
respectively. These values can be inserted in Eq. (18) to get an expression335
for the dynamic yielding coefficient in this case.336

A more subtle approach requires introduction of a dampening feedback337
between turgor pressure and elastic wall contraction. In order to bring this338
feedback between turgor pressure and elastic wall contraction into Eq. (5)339
we utilize the state equation (we accommodate argumentation as given by340
Stanley (1971) and restrict to the first approximation in the virial theorem).341
Thus, we may assume P = γT/V where T is the absolute temperature (in342
Kelvin scale). The latter assumption needs a comment. There exist a few343
empirical data (e.g. Proseus et al., 2000) revealing weak turgor threshold Y344
dependence on temperature T . Despite this sparse information we are not345
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able to propose an exact model function for Y (T ). Nevertheless, in zeroth346
approximation we may surely assume Y (T ) = const. Based on this work347
(ibid.) we acknowledge that the Y (T ) dependence is much smaller than348
P (T ) and as such may be neglected (the assumption Y = const. still holds).349
V is generally interpreted as cell volume but in the context of numerical350
recalculation of experimental data in light of our model we may also refer351
V to the entire organ, the coleoptile or hypocotyl. The pressure of inner352
cell solution is proportional to T and this is a natural consequence of the353
molecular energy increase with temperature3. The reciprocal proportionality354
of P to V we introduce as in the first approximation, which gives the linear355
solution V = V (t) of Eq. (5). This assumption goes along with the fact356
that the experiments are usually performed in the linear range of the sigmoid357
growth curve. It is, however, evident that in more precise calculations one358
should solve Eq. (5) for subsequent reciprocal powers of the volume V359
by the iteration method. Such extension would be even more adequate,360
nonetheless also more complicated. However, that high accuracy in case of361
biological experiments where we deal with relatively high statistical error is362
superfluous.363

Giving the above arguments together, we receive the following equation

1
V

dV

dt
= Φ(t)

(
γT

V
− Y

)
(20)

instead of Eq. (5), where T is the absolute temperature and γ is a constant.
Returning to the problem of cell oscillations we may also change the right
side of Eq. (19) in analogous fashion, replacing P by γT/V , to receive the
self-consistent transcendental equation for the fluctuating volume V :

V (t) = V0 exp

{
m exp

(− bt
2m

)
b2 − 2mk

(
γT

V
− Y

)
[Ω]

}
(21)

Above equation can be solved by simple iterations (or other methods: bisec-364
3This statement stays also in agreement with the state equation in the general form of

P = wρ = w kBT
V

, where ρ is the energy density and w is a constant; kB is the Boltzmann
constant.
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tion, regula falsi, secant, Newton-Raphson). The temperature T is, of course365
constant during experiment, therefore we may put P = const/V in Eq. (20),366
and consequently also in Eq. (21). Then, the transcendental equation Eq.367
(21) may be solved selfconsistently by iterations. It looks as though, this368
is the simplest way the dampening feedback between turgor pressure and369
elastic wall expansion (contraction) may be taken into account.370
Stimulator present One of the most important solutions, taking into account
the role of growth regulators (phytohormones), can be obtained by adding
a non-vanishing exerting force f on the right side of Eq. (3). Then, the
solution of Eq. (3) reads

Φ(t) = Φ0

[
c1 exp

(
−b−√Δ

2m
t

)
+ c2 exp

(
−b +

√
Δ

2m
t

)
+

f

k

]
(22)

and corresponds to the volume extension in the form

V (t) = V0 exp

{[
exp

(
−b +

√
Δt

2m

)
[Υ] +

ft

k

]
(P − Y )

}
(23)

where

[Υ] =

⎡
⎣2c2 exp

(√
Δt
m

)
−b +

√
Δ

− 2c1m

b +
√

Δ

⎤
⎦

Appendix B371

Independent estimation of the dynamic yielding coefficient372
Based on the Lockhart model and the assumption that the cell volume vari-373
ation follows a sigmoid curve a formula for the extensibility coefficient can374
be constructed. Thus, one can explain, in a semi–phenomenological manner,375
the shape of the cell wall extensibility experimental plots encountered.376

In plant physiology growth is described by the law of great growth Fogg377
(1975). There is also common agreement that because the sigmoid func-378
tion has a non-negative first derivative in positive domain and exactly one379
inflection point, this functional form properly reproduces the large-scale evo-380
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lution in time. In fact, growth of any plant organ can be split into three basic381
phases: the initial phase of slow growth, the intense growth phase and, even-382
tually, the final phase of slow growth. Such regularity can be represented383
by a sigmoid curve that characterizes the time evolution of individual cell384
growth and the growth of plant organs as a whole.385

Recalling the Lockhart equation Eq. (1) and assuming Φ0 as time-
dependent Φ0 → Φ(t), integration of Eq. (1) yields

V (t) = V0 exp
[∫ t

0
Φ(t′)(P − Y )dt′

]
(24)

On the other hand, assuming sigmoid character of growth, one gets

V (t) =
1
2
V0

[
1 + tanh

(
t

t0
− 1

)]
(25)

By comparing Eqs (24) and (25), assuming the hydrostatic pressure constant
P−Y =const=c, calculating log of both sides and taking the time-derivative,
we arrive at an analytic expression for the dynamic yielding coefficient in
the form

Φ(t) =
sec2

(
t
t0
− 1

)
ct0

[
1 + tanh

(
t
t0
− 1

)] (26)

In the above equation t0 denotes the inflection point of the elongation/growth386
curve that corresponds to the time of the maximum extension rate. The387
dimension of Φ follows: [Φ]=(MPa)−1(time unit)−1, consistently with the388
Lockhart equation. Providing the application of a proper time-scale (min-389
utes, hours or days) to a particular growth problem, the above formula390
can be interpreted as an approximated expression for the dynamic yielding391
coefficient Φ (see also Fig. 9).392
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Appendix C393

Special solutions to Eq. (11) – Exact results394
Among others, we may consider the following special cases.395

1. P (t) − Y (t) = P0 exp(−ξ1t)− Y0 exp(−ξ2t), with separate decay con-
stants ξ1 and ξ2 by P and Y processes, respectively.

V (t) = e
c1 (−1+et (λ1−ξ1))P0

λ1−ξ1
+

c2 (−1+et (λ2−ξ1))P0

λ2−ξ1
− c1 (−1+et (λ1−ξ2))Y0

λ1−ξ2
− c2 (−1+et (λ2−ξ2))Y0

λ2−ξ2 V0

(27)

2. P (t)− Y (t) = P0 − Y0 exp(−ξ2t), P0 = P (t = 0) = const.

V (t) = e
c1 (−1+eλ1 t)P0

λ1
+

c2 (−1+eλ2 t)P0

λ2
− c1 (−1+et (λ1−ξ2))Y0

λ1−ξ2
− c2 (−1+et (λ2−ξ2))Y0

λ2−ξ2 V0

(28)

3. P (t)− Y (t) = P0 exp(−ξ1t)− Y0, Y0 = Y (t = 0) = const.

V (t) = e
c1 (−1+et (λ1−ξ1))P0

λ1−ξ1
+

c2 (−1+et (λ2−ξ1))P0

λ2−ξ1
− c1 (−1+eλ1 t)Y0

λ1
− c2 (−1+eλ2 t)Y0

λ2 V0

(29)
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Figure 1: Dynamic cell wall extensibility Φ, as defined by Eq. (14), and the correspond-
ing volumetric growth V , Eq. (15), as a function of time t. Over–damping case. The
parameters are: P − Y = 1, m = 1, k = 1, b = 2.1 (a and a’), b = 3 (b and b’), b = 3.5 (c
and c’). All figures are described in terms of suitable units for the considered time-scale;
also we adopt such units that Φ0 = 1. We put c1 = c2 = 1 in Figs 1-2, 4-5 and V0 = 1
in Figs 1-4. It is easy to notice how slightly changing wall mechanical properties (b -
parameter) drastically change the shape of the growth functional V .
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Figure 2: Dynamic cell wall extensibility Φ, as defined by Eq. (16), and the correspond-
ing volumetric growth V , Eq. (17), as a function of time t. Critical damping case. The
parameters are: P − Y = 1, m = 1, b = 2.
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Figure 3: Numerical simulation (A = B = 1, Δ < 0) based upon Eq. (19) resembling
tip-measured pollen tube influx of Ca2+ - a periodic signal with random noise added. The
tubes show pulsatile growth (lower plot) and pulsatile Ca2+ infux (upper plot). The Ca2+

oscillations have the same frequency ω as growth oscillations and are nearly in phase with
growth; that is, the peaks of tip-localized Ca2+ nearly coincide with growth rate. The
calculated spectrum via Fourier transform (mid-plot) shows a very strong peak at 30, the
calculated ”frequency” of the calcium influx originating the periodic signal and oscillatory
growth response. There is a second peak, which is essentially a consequence of aliasing.
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Figure 4: Volumetric growth V as defined by Eq. (12) as a function of time t. The
parameters are: m = 1, k = 1, b = 3, ξ = 0 (upper curve), ξ = 0.05 (lower curve) –
applicable in case of a previously growing plant cell that is deprived of its water resources
due to water deficiency (slightly exaggerated to highlight the effect).
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Figure 5: Volumetric growth V (upper plot), in presence of growth regulators, as defined
by Eq. (23), as a function of time t. Net growth V −V0 (lower plot), where V0 corresponds
to f = 0 – control, as an example of linear reaction due to the use of growth stimulator.
The parameters are: P − Y = 0.8, m = 1, k = 1, b = 2.1; (a) f = 0 (no stimulator), (b)
f = 0.005 and (c) f = 0.01
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Figure 6: Volumetric growth V as defined by Eq. (10) as a function of time t. The
parameters are: P − Y = 1, V0 = 1. The estimated via Levenberg-Marquardt procedure
parameters of Eq. (10) are: k0 = 0.718533, x0 = 1.52802 (upper curve, corresponding to
b = 2.1 in Fig. 1a’), k0 = 0.415263, x0 = 1.367 (middle curve, corresponding to b = 3 in
Fig. 1b’) and k0 = 0.303804, x0 = 0.955824 (lower curve, corresponding to b = 3.5 in Fig.
1c’). An exponentally decaying pool of expansin results in a mechanism for finite growth.
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Figure 7: Elongation growth of maize (Zea mays L.) coleoptile segments vs time at two
different temperatures. Both curves are fitted, with the help of Levenberg-Marquardt
interpolation routine via Eq. (10), to the original data (*, +) taken from Lewicka and
Pietruszka (2006), Fig. 2. The expansin pool is assumed to be at the same level for the
initial time, corresponding to x0 = 1. The resulting kinetic coefficient k0 leading to wall
stress relaxation and subsequent volumetric growth equals: k0 = 0.252611 (smaller) for
T = 200C and k0 = 0.418721 (greater) for T ≈ 300C , as expected. The determination
coefficient R2 for the fitting procedure exceeds 0.99 (R2 allows us to determine how certain
one can be in making predictions from a considered model: here a differential equation
V −1V ′(t) = x0 exp(−k0t)(P − Y ) leading to Eq. (10)). Left scale in [mm] – we take the
coleoptile cross-section equal to 1 mm2. The procedure is valid for all temperatures up to
the optimal growth temperature.
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Figure 8: Kinetic coefficient k0, linearly interpolated with the use of the least squares
method (Levenberg-Marquardt procedure), as a function of temperature for maize Zea
mays L. (input data: see the caption to Fig. 7). The optimum growth temperature for
maize approximately equals T0 = 300 K. The kinetic coefficient k0 changes in the interval
of 20–300C about two times. This is in agreement with ”Q10 law” stating the rate at which
the reaction proceeds will approximately double for each 100C increase in temperature.
The procedure is valid in ascending part of growth/elongation vs temperature curve (below
T0).
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Figure 9: Estimated dynamic extensibility Φ, as defined independently by Eq. (26) in
the Appendix B. The inflection time t0 = 2.
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