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Abstract

For infections for which the perceived risk of serious disease is steadily low, the perceived risk

of suffering some vaccine side effects might become the driving force of the vaccine demand. We
investigate the dynamics of SIR infections in homogeneously mixing populations where the vaccine
uptake is a decreasing function of the current (or past) incidence, or prevalence, of vaccine side
effects. We define an appropriate model where vaccine side-effects are modelled as functions of
the age since vaccination.
It happens that the vaccine uptake follows its own dynamics independent of epidemiological
variables. We show the conditions under which the vaccine uptake lands on a globally stable
equilibrium, or steadily oscillates, and the implications of such behaviour for the dynamics of
epidemiological variables. We finally report some unexpected scenarios caused by trends in vaccine
side effects.

Keywords: Vaccine, side effects, rational exemption to vaccination, information, delay,
stability, oscillations.

1 Introduction

The high degree of herd immunity allowed by sustained vaccination policies in many countries have
gradually forced the perceived risk of infection from a wide spectrum of diseases to decline to negligible
levels. The obvious drawback of this situation is that, despite the high degree of safety of current
vaccines, the existence of any, however small, risks of vaccine side-effects (VSE) [32], necessarily yields,
given the very large numbers of vaccines administered annually, a steady flow of VSE. According to
the WHO definition VSE are a subset of the larger family of adverse events following immunisation:
“Adverse events following immunization are defined as medical incidents that take place after an im-

munization, cause concern and are believed to be caused by immunization. Immunization can cause
adverse events from the inherent properties of the vaccine (vaccine reaction), or some error in the im-
munization process (programme error). The event may also be totally unrelated to the immunization
and only have a temporal association.” [34] For instance in the US approximately 30,000 reports of
Vaccine Adverse Event Reporting System (VAERS) are notified each year, with 10-15% classified as
serious, i.e. causing disability, hospitalization, life-threatening illness or death [7].

In such circumstances it is natural to expect that the perceived risk of experiencing a VSE will out-
weight the perceived risk from infection [3, 4, 11]. A commonly brought example is Poliomyelitis



([33] and references therein). In western countries, thanks to intensive vaccination, Polio was brought
under control already in the sixties and essentially eliminated, with the disappearance of wild po-
lio cases, since 1995. As the probability of vaccine associated Poliomyelitis has remained essentially
unchanged, mass vaccination programmes had nonetheless to face steady flows of serious VSE. For
instance in Italy during 1979-1999 an average of one vaccine-induced Poliomyelitis cases per year was
reported [19], three times more than natural Poliomyelitis cases observed in the same period. This
would unavoidably suggest to the public, which is unaware of the complex issues of disease control,
a much higher perceived risk of getting “vaccine induced Polio” compared to wild polio. In regimes
of voluntary vaccination such situations might favour forms of vaccination free riding [28],[23].
Vaccination free riding results in the family’s decision not to vaccinate children after a seemingly ra-
tional comparison between the perceived risk of infection and the perceived risk of VSE. Vaccination
free riding can take profit of the high degree of herd immunity existing in communities with high
vaccine uptake [2, 3, 4, 11]. In our previous work [11, 12] we have described vaccination free-riding as
“rational exemption”, in order to distinguish it from other forms of exemption observed in the history
of vaccination, e.g. conscientious, religious, or philosophical [24].

An increasing number of papers is being devoted to the study of the implications of rational exemp-
tion for the dynamics and control of vaccine preventable diseases. Some of these works model vaccine
uptake using explicit economic arguments [4, 23, 21] while other use more mathematically manage-
able phenomenological representations [11, 12]. As a rule all models based on homogeneous mixing,
indicate that rational exemption might make eradication impossible. Exceptions to this rule seem to
require more complex contact-network structures [21].

All previous studies have focused on the case where the driving force of the vaccine demand is rep-
resented by the time changes in the perceived risk of infection, measured for example through the
current (or past) disease incidence. Also, in such studies the perceived risk of VSE does not play a
role, or is just taken as constant ([4]).

In this paper we aim to investigate the opposite situation where the driving force of the vaccine de-
mand is given by the time changes in the perceived risk of suffering a vaccine side effect. We feel this
case is fundamentally more appropriate in the developed world than the alternative hypothesis that
demand is driven by the disease incidence, especially for those common vaccine preventable infections
which currently have very low or even zero incidence.

To this aim we study the dynamics of vaccine uptake for a homogeneously mixing vaccine preventable
SIR disease [6] with vital dynamics and vaccination by a perfect vaccine under the following circum-
stances: a) vaccination is voluntary; b) the vaccine has a constant probability to generate severe,
non-lethal, side effects; c) the perceived risk of suffering serious disease following infection is steadily
low, so that the vaccine demand is essentially related, through a decreasing function, to the perceived
risk M of suffering a vaccine associated side effect; d) the perceived risk M is evaluated from publicly
available information on current, past, or even future (through expectations) trends of side effects
caused, or attributed, to the vaccine. In particular, in order to evaluate the risk of VSE, parents
are assumed to use the public information on the current, or past, reported incidence of VSE, or the
prevalence of those who suffered side effects. For the sake of simplicity we avoid here the complexities
related to VSE misreporting, and assume that the figures on VSE which are available to the public
are those predicted by the model.

In order to properly incorporate the temporal association between vaccination and onset of VSE [34],
we assume that the risk of occurrence of VSE is essentially related to the time elapsed since the
moment of vaccination (i.e. the age since vaccination). This allows us to represent the vaccination
dynamics by, respectively, an integro-differential equation for the prevalence of individuals who suf-
fered side effects, and an integral equation for the corresponding incidence. These equations decouple
from the other dynamic variables (i.e. susceptible and infective), with the noteworthy implication
that the dynamics of VSE become the key determinant of the disease dynamics, through the influence
that the time trajectories of the incidence, or prevalence, of VSE have on the actual vaccine uptake.
Our key equations are then investigated both in general, and under specific assumption on the age
risk of suffering a VSE. These investigations are carried our both for the case of current information
and delayed information.



Our main results show that both modelling strategies lead to the existence of a unique epidemiologi-
cally meaningful steady state for the prevalence of VSE, and therefore to a unique equilibrium for the
vaccine uptake. This steady state is proven to be globally stable (GAS) provided that the reaction of
vaccine uptake to changing perceived risks of VSE a) is not too violent, and b) VSE occur without
significant time-delays from the moment of vaccination. These general results hold for both the cases
of current as well as lagged information, though in the latter case we need the further requirement
that the average information delay is not too large. If requirements a) and b) are weakened sustained
oscillations might arise. This result is not necessary but it depends on the specific patterns of onset of
VSE. For example, under current information global stability always holds when the age-risk of VSE
is constant, or when it is highly concentrated on the moment of vaccine administration. On the other
hand, VSE arising with a fixed delay can yield sustained oscillations through Hopf bifurcations of the
steady state. If finally, lagged instead of current information is used, the onset of oscillations is made
easier. Similar results hold when vaccine uptake is a function of the incidence of VSE, although in
this case oscillations are less common than under prevalence.

These dynamics of vaccine uptake act as an external forcing terms on the epidemiological variables
(susceptible and infective). We supply some asymptotic results on the dynamics of epidemiological
variables for the cases where the vaccine uptake is asymptotically constant, or it oscillates. Moreover
in the final section we report the following noteworthy scenarios, illustrating the dymamic richness
triggered by VSE: i) introduction of a new vaccine with transient (local) elimination of the disease
but eventual long-term resurgence; ii) worsening of control conditions; iii) switches between control
epochs; iv) steady (long-term) disease oscillations of the disease forced by steady oscillations in vaccine
uptake. For example scenario i) occurs after the introduction of a new vaccine which allows a transient
(local) elimination of the disease but can not prevent its long-term resurgence as a consequence of
the susceptible build-up caused by the decline in vaccine uptake due to the gradual accumulation
of VSE (which increase the perceived risk of VSE). Scenario ii) might naturally arises for diseases
which are difficult to eliminate, as measles, for which the vaccine scare gradually increases due to the
long time scales needed for elimination, which allow VSE to cumulate. Scenarios like i) and ii) had
been predicted by the medical literature [8]. On the other hand scenario iii) is an yet unobserved
phenomenon which could arise when long-period VSE-driven oscillations in vaccine uptake yield to
epochs characterised by sharply different degrees of disease control. To the best of our knowledge no
one attempted to obtain such scenarios as the output of a model with VSE-driven vaccination choice.
The paper is organised as follows. In section 2 we introduce the mathematical model in its full
generality, and derive the key equations for the prevalence and incidence of VSE. In section 3.4 we
investigate the cases where the perceived risk of VSE is evaluated by, respectively, the prevalence and
the incidence, of VSE. In section 5 we investigate how the dynamics of VSE affect epidemiological
variables. Numerical simulations are reported in section 6. Concluding remarks follow.

2 Modelling the impact of information on vaccine side effects
on vaccine uptake
Following ideas developed in d’Onofrio et al. [11, 13] we consider the following family of SIR models for

a non-fatal disease in a constant homogeneously mixing population, with state-dependent vaccination
coverage:

S'(t) = p(1— p(M(t))) — pS(t) — BH)SH)I(t)
I'(t) = B(t)ST — (u+v)I (1)
R'(t)=vI — uR

Viot(t) = 1= S(t) — I(t) — R(t) (2)

where S, I, Vi,; and R, denote the fractions of susceptible, infective, vaccinated and recovered in-
dividuals at time ¢, u > 0 represents the birth and death rate, which are assumed identical thereby
ensuring the constancy of the population, v > 0 the rate of recovery from infection, 5(¢t) > 0 the



transmission rate, which is assumed to be constant or bounded and periodically varying with minimal
period 6 usually equal to one year [1], p the coverage for vaccination at birth. The vaccine is assumed
to be 100% effective and providing lifelong immunity. As motivated in the introduction, the vaccina-
tion coverage p (M) is taken to be a positive decreasing function of the perceived risk M of suffering
vaccine side effects:

p(M)>0 ; p'(M)<0

where the perceived risk M is assumed to be measured by individuals using publicly available in-
formation on either the current (or past) incidence of VSE, or the prevalence of individuals who
suffered VSE. As clear from our assumptions the key dynamic variable becomes the vaccine uptake p.
Therefore we will postpone further analysis of (1) to section 5, because our primary task will be the
derivation of a dynamic equation for p. To this end we need appropriate dynamic equations for the
incidence and prevalence of VSE. We distinguish between the cases of current and past information.
Let us note first that the dynamics of current prevalence C(t) of VSE (for which it holds C(t) < Vi (t))
is determined by the balance between the outflow due to natural mortality (under the assumption that
having experienced a VSE does not affect mortality) and the inflow H represented by the incidence
of newly occurred VSE:

C'(t) = H(t) — uC, ®3)

In general if parents make their vaccination choices by using the current information only, we will have
either M = F (C),or M = F (H) where F is a continuous increasing function, owing to the intuition
that the higher the numbers of publicly reported VSE the higher the risk perceived by the public.
Here we assume, for the sake of simplicity, that F' is the identity map, i.e. we take either M = Cor
M=H.

To complete the specification of our model we need appropriate definitions for the time prevalence
C, or the incidence H, of VSE. Consistently with the previous: WHO definition, we assume that
the actual risk to incur a VSE is a function of the the time elapsed since vaccination. Our main
modelling ingredient is therefore an appropriate modification of the age-since-vaccination density
W (t,7), introduced for other purposed by [17], and giving, at any time ¢, the distribution of vaccinated
individuals who did not yet suffer VSE, according to the time 7 elapsed since vaccination. Letting
1(7) to define the rate of occurrence of VSE for individuals having age of vaccination 7, W (¢, 7) obeys
the balance PDE [17]:

oW oW
St =W = W
W(0,7) = Wo(r) (4)

W (t,0) = pup(M(t))

The PDE (4) states that vaccinated individuals of any age who did not yet suffer VSE, can be removed
by the onset of a VSE, at the rate ¢(7), or by mortality. The boundary condition W (¢,0) = up(M (t))
represents the per-capita incidence of new vaccinations per unit of time.

Based on the above equation for W (¢, 7), the fraction of vaccinated subjects at time ¢ that did not

suffer VSE is defined as: oo

V() = | W(t,T)dr. (5)

whereas the relative incidence of VSE is given by:

+oo
H(t) = | Y(r)W(t,7)dr, (6)

After solving eq. (4) with standard methods (see the appendix), one has the following convolution
relation for the incidence of VSE:

H(t)= (1) +p / (Mt — 7)) $(r) K o(7)dr (7)

0



By substituting into (3) we obtain the following relation for the prevalence of VSE:

C' = —uC+ f(t) + / p(M(t - 7)) (r) Ko(r)dr (8)

where the function f(t) depends on the inital age distribution of W and, for large ¢, tends to zero:
f(t) — 0; moreover

Ko(7) = exp (ﬂ” _ /U ’ 'zp(x)dx) . )

A detailed interpretation of the previous relations is posponed to next section. Note that both the
equations governing the dynamics of C' and H are independent of the epidemiological variables S, I,
so one can first study the dynamics of C' or H, and afterwards their influence on .S and I. Note also
that, both the mdoel based on the incidence and that based on the prevalence become asymptotically
autonomous since f(t) — 07.

If instead parents also use past information M will be given by some convolution of the VSE history
with some appropriate kernels L(.), e.g.

M(t) = / " AWL( - w)du, (10)

where either A(t) = C(t) or A(t) = H(t). The delaying kernel summarises how past information on
VSE concur in determining the current perceived risk of suffering a vaccine side effect. In this paper we
will only consider the most common delaying kernel, represented by the exponentially fading memory:
L(z) = ae=* (z > 0,a > 0), where the decay rate a is the reciprocal of the mean information delay
D: a=1/D. This kernel allows reduction of (10) to the ODE:

M’ = a(F (A(t)) — M) (11)

3 Dynamics of vaccine uptake when the perceived risk is eval-
uated by the prevalence of individuals who suffered VSE

If M = C, i.e. the perceived risk of VSE is evaluated by the current prevalence C of those who
incurred VSE, the relation (3) takes the form of the following non-autonomous integro-differential
equation:

t
C'(t) = 4p0% JO +1s | p(Ce = 7)) wlr)Kolr)dr, (12)
0
which is a nonlinear delay-differential equation with distributed delay [18] of the convolution form:
C'(t) = —pC + f(t) + pConv (p(C(t)), Kp(t)) (13)

with delaying kernel Kp(7) = 9(7)Ko(7). Having estyablished the law governing the dynamics of
C(t) one straightforwardly obtains the dynamics of vaccine uptake p(t) considered as a state variable:

() = L( (—pme () + () + uConv (p(t), K (1)), (14)
Tc p)

where 7¢(p) is the inverse of p(C), and 7 (p) < 0. The equation (14) has an intuitive intepretation:
if the vaccine uptake p is a function of the prevalence of individuals who suffered some VSE in the
past, then the dynamics of p depends uniquely on its current and past history, since past vaccina-
tions are the only source of the current burden of people who experienced some VSE. A substantive
consequence is then that under our hypotheses the burden of VSE becomes the unique determinant
of vaccine uptake, and through this, the key determinant of infection dynamics. Note finally that
the delaying kernel Kp depends on both the delay of onset of VSE after vaccine administration, and



the delay related to the subsequent individual survival, since we assume that VSE do never cause
mortality.

However, although the interpretation of (14) is clear, the factor 1/7((p) makes a more detailed bio-
logical and biomathematical analysis less immediate respect to eq. (12). Therefore our mathematical
analysis will focus first on the solutions of (12); once these will be known also the dynamics of vaccine
uptake will be known through the relation p = p (C).

The individual mechanisms governing the onset of vaccine associated side effects and, as a consequence,
the shape of the risk function ¢(7) are still poorly understood. Moreover such phenomena are likely
to be vaccine-specific, i.e. different vaccines could have different risk functions ¢ (7). The problem is
further complicated under the multi-vaccine schedules adopted in many countries. Therefore we will
first study (12) in the general case where the form of ¢(7) is left unspecified, in order to find general
patterns for the endemic equilibria and their stability. Then in the next section we will consider the
effects of some noteworthy forms of (7).

As for the mathematical analysis let us introduce the following useful quantity:

—+o00

Bul) = [ v (rar = | " exp () exp (— / Tw<z>dz) b(r)ar, (15)

which represents the moment generating function with parameter (—u) (or the Laplace Transform
calculated at the real A = p) of the age-density density of onset of VSE:

) =exp (- [ vtz ) uir)

where W () = exp (— [y ¥(z)dz) is the corresponding survival function. Note that h(7) is a defective
density since the cumulative lifetime probability 1— W (00) to suffer some VSE is in most cases a small
number. The function By (u) is a positive decreasing function such that B, (0) = 1.

We start by observing that (12) always has a unique epidemiologically meaningful steady state, which
fulfills:

Coo = B1/1(:U‘)p (Coo) ’ (16)

Note that Co depends of 1(.). Moreover Cy, < C where C fulfills: C = P (6)
The local stability properties of C, are determined by linearising at C, and Laplace-transforming,
which yields:

At =np' (Cso) By (n+A), (17)

The actual solutions of (17) depend on the actual form of ¢(.) and we will deepen this issue in next
section. However, the analysis of the general case yields the following simple and easily interpretable
stability condition: if the absolute value of the derivative of p(C') at the equilibrium point Cs is not
too large then the equilibrium is locally and globally stable:

Proposition 3.1 If the following constraint
P (Coo) [By(p) <1 (18)
holds then the equilibrium point Cs is locally and globally asymptotically stable.

Therefore C, is globally stable as far as the demand for vaccines p(C') is not too reactive to conditions
of changing perceived risks of suffering VSE. More precisely, as far as p(C) is not too reactive to
changing perceived risks of VSE the equilibrium is stable independently of the age mechanism through
which VSE arise after vaccination. This agrees with our findings on different models of vaccinating
behaviour [11, 12, 13].

However, as argued in previous work on prevalence-related vaccine uptake [23, 11, 13], we expect that
in realistic circumstances the index M will embed not only the current but also some information
on the past history of VSE. This case was important because, as shown in [23, 11, 13], the inclusion
of delayed information was necessary to generate oscillations in simple SIR models with prevalence-
related vaccination behaviour.



Thus, by treating M as a further state variable and by using (11) with A(t) = C(t), we have that
under an exponentially fading memory the single integro-differential equation (12) is replaced by the
system:

t

C'(t) = —uC + f(t) + / (Mt — 7)) (1)K, (r)dr (19)
M'(t) = a(C — M) (20)

It is easy to check that (19)-(20) has the equilibrium point Ecpr = (Ce, Me) = (Coo, Coo ), where Cog
is the solution of (16). The characteristic equation becomes:

(142) ot ) = i €l Bta +3) 1)

One may show (see the appendix) that also in the present case with delayed information the condition
(18) guarantees the global stability of the endemic equilibrium. The same interpretation therefore
holds.

4 TImpact of the side-effects rate ¢(7) on vaccine uptake

We now investigate how specific noteworthy forms of the risk of side effects (1) affect the dynamics
of vaccine uptake p through a more detailed stability analysis of the equilibrium C,. We focus on
the onset of stable oscillations, either in absence or in presence of information delay, as represented
by an exponentially fading memory. Letting § to denote Dirac’s delta function, we shall consider the
following (somewhat complementary) forms of ¢(7):

e (1) = 6(7): ”instantaneous” side effects, essentially occurring at the moment of vaccination;
e (1) =1 V7 > 0: the occurrence rate of VSE is independent of the age since vaccination;

o (1) = 6(t —T): VSE occur with a fixed delay T > 0 after vaccination.

The following analysis will enable us to identify simple but biologically meaningful circumstances
where (a) oscillations never occur, i.e. the equilibrium is stable independently of the form of the
VSE generating mechanism and of the presence of information delays, (b) oscillations can only be
triggered by information delay, c) oscillations arise as an endogenous property of the VSE generating
mechanism, even in absence of information delays.

4.1 Instantaneous side effects

In this case, if M depends on current prevalence, equation (12) becomes:
C" = —pC + i exp (—) p(C) (22)

(with By(p) = YExp (—1/_))), since the incidence H of VSE is proportional to the current vaccine
uptake through the factor ¥ Exp (71/_1), which represents the instantaneous probability of VSE per
vaccination episode. It is immediate to see that the equilibrium C, is globally attractive independently
of the size of p’'(Cw).

If instead M depends on past prevalence, the system (19)-(20) becomes:

C'(t) = —uC + f(t) + pp exp (—) p(M) (23)
M'(t)=a(C - M) (24)
whose equilibrium (Cwo, Cwo ) is, again, GAS independently of |p’(Cw)|. Therefore both for undelayed

and delayed information the vaccine uptake p(t) will be characterized by the convergence to a steady
state: p(Cxo)-



4.2 Constant rate of appearance of side effects

If 4(7) is constant and M depends on current prevalence, by recalling (6) and (5), we have H = ¢V
. Moreover by integrating w.r.t. 7 eq. (4) over (0,00) we get the 2-dimensional ODE system:

V'(t) = up(C) — (n+ )V (25)
C'(t) = ¥V — puC

for which By (p) = ¥/( + ). System (25) has a unique equilibrium point Eyc = (Voo, Cs) where
Voo = (11/1)Cs and which is GAS independently of p’'(C,) = p'Cwo (see appendix). Therefore, also
in this case the vaccine uptake will approach the constant value p(Coo).

Note that, in case of current information, the two somewhat opposite cases, i.e. instantaneous versus
constant rate onset of VSE, show a similar global behaviour for the vaccine uptake. On the other hand
in case of delayed information the pattern is different because, as we now demonstrate, oscillations,
which were excluded for instantaneous VSE, can occur in the constant rate case. In this case one
obtains from (19)-(20) the 3-dimensional system:

VI(t) = up(M) — (n+ )V
C'(t) = ¥V — uC, (26)
M'(t) = a(C — M)

having the unique equilibrium:

m
E [ = Voozcoomhfoo = Coo aCooacoc .
Qvom = ( ) </t T T/JP( ) )

By taking a as bifurcation parameter and linearizing at EQy car one easily obtains (see the appendix)
that if the following condition is fulfilled:

blp’ (Coo)| < (204 )% 4+ 2(2 + )/ pu(ps + ) (27)

then there is an interval (a1, az2), with a3 > 0, such that if either a < a1 or a > as the equilibrium is
locally stable, whereas if a € (a1, az), the equilibrium is unstable. Both a = a1 and a = az are Hopf
bifurcations points. Moreover for a € (a1, az) the orbits are Yakubovitch oscillatory[29, 30, 31], i.e.,
i.e. there exists two real numbers 7~ and 7+ > 7~ such that:

lzmznft_,+ooC(t) =7

and
limsups—4+0,C(t) =7t

To sum up, in the case of VSE arising at constant rate, the inclusion of the information delay can
yield sustained oscillations'in the vaccine uptake p(t), whereas global attrativeness of the equilibrium
Poo Was prevailing when only current information was considered. This confirms the destabilising role
played by the information delay. It is interesting to note from (27) that, consistently with the findings
in [11, 12, 13], the onset of oscillations also requires, besides the above described delay pattern, a
high sensitiveness of the vaccine uptake to changing perceived risk at equilibrium. If this occurs then
there is a whole window (D3 = 1/ag, D1 = 1/a1) of values of the average information delay D = 1/a,
yielding steady oscillations.

The onset of Yabucovitch oscillations[29, 30, 31] is important since, stricto sensu, the Hopf bifur-
cation theorem only gives informations on the behaviour of a system for values of the bifurcation
parameter that are close to the Hopf bifurcation threshold, and of course near the equilibrium point.
On the contrary, Yabucovitch oscillations are a global property. Moreover, although their mathe-
matical nature is not defined (they might be periodic, quasi-periodic or also chaotic), this uncertain
mathematical classification is less important from the epidemiological point of view.



4.3 Side effects appearing with a constant delay

If VSE appear with a fixed delay after vaccination: (1) = é(t — T), we get the following delay-
differential equation:

—uC+ fi)ifo<t<T

c'(t) = ) ) (28)
—uC + f(t) + pexp (—pT — ) p(C(t—T)) ift > T

Here By () = ¥ exp (— pl — 1/;) and the level of the unique steady state C'w is a decreasing function

of T _ _
oy = MOl exp (=uT = ¥)
ar > 1 — P/(Coo)pt) exp (—puT — 1)

The interesting new is that oscillations are possible even in the case of current information. In
particular 7" is a natural candidate as a bifurcation parameter.
The following result holds:

<0

Proposition 4.1 If G(T) < 1 then EQ is GAS. If G(T) > 1, let us denote as Ty, T4, . . . ... the solution
of the equation:
1
(u G(T)? fl)Tzarccos (f@) +2krm , k=0,1.... (29)
If
1
"(To) | HToG(To) + =~ 2Ty
4G (To) (WG + s ) +°(T) .0 (30)

then EQ is LAS for T < Ty, it is unstable for T > Ty and and at T =Ty there is a Hopf bifurcation.
Moreover, in the interval of instability the solutions are oscillatory in the sense of Yakubovitch

The epidemiological interpretation of the above result is that if VSE arise with a fixed time delay
after vaccination, then the steady state C is stable for small delays, whatever be the extent of the
reaction by the public, in terms of vaccine uptake, to changing perceived risks of VSE. However for
highly reactive p (C) functions C, may be destabilised in presence of longer delays, yielding sustained
oscillations of vaccine uptake without the need for information delays. The intuition underlying this
result, compared to the previous ones, is that there is a genuinous positive delay due to the age-since-
vaccination structure (and not to the information delay which is absent), confirming once more the
typically destabilising role of time lags. It is also of interest to compare this case with the one of VSE
arising at constant rate: when VSE arise at constant rate, and therefore with an exponential delay,
oscillations can not occur. Oscillations insted occur when a fixed delay is considered.

As for Yakubovitch oscillations, at the best of our knowledge Yakubovitch-type theorems have only
been demonstrated for ODE and DDE with constant lag. In the previous section we gave an example
of application to a system endowed of a simple delay kernel allowing reduction to finite dimensional
system. However, we conjecture that they might be also applied to a general model with distributed
delays with a unique equilibrium and bounded orbits, as in our general case.

In case of delayed information the model reads:

—puC+ f(t)if0<t<T
C'(t) = ) ) (31)
—pC + f(t) + ppexp (—uT — ) p(M (t = T)) if t > T

M =a(C— M) (32)

Assuming a as a bifurcation parameter, and that in absence of information delay the lag in the
occurrence of side effects, 7', is such that to guarantee the local stability of the equilibrium and
proceeding as in section one may show that (see the appendix) that for G(T') > 1:

e If a > a; then EQ is LAS;



e If a < a; EQ is unstable, and afterwards there is another series of stability switches, and at a;
there is a Hopf bifurcation;

e Moreover, from the boundedness of the solutions of system (31)-(32)it follows that in the insta-
bility interval the system undergoes Yakubovitch oscillations.

5 Dynamics of vaccine uptake when the perceived risk is eval-
uated by the incidence of VSE

The case where the perceived risk of VSE is measured through the (current or past) incidence of VSE
will be studied here quite concisely, since there are many similarities with the results of the previous
sections.

If the current incidence is used, then we get the following nonlinear integral equation in the incidence:

H(t) = f(t) +p / P(H(t — 7)) (r) Ko(r)dr, (33)

The interpretation of (34) is that the incidence of VSE at any time ¢ is the sum of two components: the
component due to VSE occurred in individuals vaccinated after time zero according to the schedule p,
and the component f (t) due to VSE arisen in individuals who already get vaccinated at ¢t = 0. As we
did in the prevalence case we can derive an equivalent nonlinear integral equation for vaccine uptake
taken as the state variable of the form:

t

X@(t) = F(®) + / Pt — TO(r) Ko (P)dr (34)

Again, however, the analysis of (34) seems to us less straightfoward than (33) on which we will focus
in subsequent analyses. Similarly to the prevalence case it happens that there is a unique positive
equilibrium Ho, = up(Hso)B(p; (.)) L.e. in terms of vaccine uptake:

X(Poo) = 1P B3 ¥(.)) (35)

and it holds that the condition:
P (Hoo)|B(p39(.)) < 1 (36)

guarantees the local and global stability of the equilibrium.
When the past incidence of VSE-is considered, we obtain, under the assumption of exponentially
fading memory, the system

H() = f(t) +p /0 Mt — 7)) (1)K, (r)dr (37)
M'(t) = a(H — M) (38)

Again a unique equilibrium (He, M.) = (Hoo, Hoo) exists. Moreover, also here condition (36) implies
the global stability of the equilibrium.

As it is easy to verify, the incidence H (t), both in the current information case (33) and in the delayed
information case (37)-(38), globally tends to the steady state Ho, for both instantaneous and constant
rate side effects, independently on the steepness of p at equilibrium. Therefore in all such cases the
vaccine uptake globally converges to the steady state p (Hso).

In particular, the result concerning the case of constant rate under delayed information is of interest
as it remarkably differs from the corresponding case where the perceived risk is evaluated from the
delayed prevalence of side effects. In the present H-case oscillations can not arise, whereas they were
possible under sufficiently long patterns of delay in the C-case. The explanation is that the two
types of information are by no means equivalent in that in the C-case a twofold delaying mechanism
is included, i.e. the information delay in the prevalence of VSE, and the past history of incidence
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included in the definition of the prevalence of VSE. ~
In case of VSE occurring with a fixed delay (i.e. ¥(7) = ¥d(7 —T')) and the information is undelayed

then it holds
t if0<t<T;
m={10 T (30)
f(t) + pbexp(— — pT)p(H(t - T)), ift>T;

The stability analysis of the unique equilibrium H,, yields (see the appendix) that if a condition
G(T) < 1 holds then the equilibrium of (39) is GAS, while if G(T') > 1 the equilibrium is unstable.
For example, in case of linearly decreasing p(M) = p, — ©OM it holds: G(T') = u© exp(—y — uT) so
that if G(0) < 1 the equilibrium is GAS for all T > 0; otherwise the zone of GAS is given by

1 _ _
T>T" = ;log (1OY exp(—1)))

In case of delayed information with mean delay D = 1/a the dynamics of H is governed, for ¢t > T,
by the scalar delay differential equation:

M’ = a(f(t) + pOEXp(— — uT)p(M(t — T)) — M) (40)

Again, if G(T') < 1 then the equilibrium is GAS. On the other hand, if G(T') > 1, we have that i) for
pairs (T, a) lying below the curve v (T, a) = 0, where vo(T, a) is defined as follows:

Y(T,a) = —aT+/G?>(T) — 1+ 7 — Atn\/G2(T) — 1 (41)

then the equilibrium is LAS; i) pairs (T, a) lying on the locus vo(7, a) = 0 are Hopf bifurcation points;
iti) for pairs (T, a) lying above the curve vo(7,a) = 0 the equilibrium is unstable and the solutions
undergo Yakubovtich oscillations.

For example, if we consider a linear p(M) function, we may have two different scenarios: in the
first the equilibrium is GAS for all T’ > 0, i.e. the stability region in the (T, a) parameter space is R? ;
in the other scenario the equilibrium is always stable in the region (T*, +00) R, while for T' € (0,T*)

stability occurs for
< o(T) m— Atn\/G?*(T) — 1
a = ,
4 T/ (T) - 1
where ¢(T') has two vertical asymptotes at 1" = 0-and at T = T*. Thus, in the region T € (0,7*) the

information delay is a stabilising force for a system that, in absence of lag, is unstable. In figure (1)
the bifurcation locus 7o(7,a) = 0 is shown for u = 0.02 years~!, 1 = 1 and © = 50000.

6 Dynamics of (S,1)

Here we analyse how the dynamics of the full epidemiological system (1) are affected by the behaviour
of the vaccine coverage p(t). As we have seen in the previous sections, for large times either p (globally
or locally) tends to an equilibrium po, or it undergoes Yacubovitch oscillations of, in principle, general
nature.

In the case where the coverage stabilyzes to poo, the (1) becomes asymptotically autonomous and
equivalent to a SIR model under constant vaccination at a rate p* = po,. Therefore if

1

Doo = Pe = 1- R_O
where Ry = 3/(p + v) is the basic reproduction number (BRN), and p. denotes the critical vaccine
uptake, then the disease free equilibrium DFE = (1 — peo,0) is GAS, otherwise it is unstable and

ptv
contact rate the same formula holds provided that one use the average BRN: R§" = (3(t)) /(1 + v).
A scenario of special interest is when p(¢) undergoes Yacubovitch oscillations, which we have shown

the unique endemic state FE = (RLD, # (1 — Poo — RLO)) is GAS. In case of periodically varying
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to occur under a variety of circumstances in the previous sections.
As a consequence, we are dealing with a nonlinear non-autonomous dynamical system with known
small oscillating forcing term F(t) = up(t):

¥ = Q(x;t) — F(t)ey, (42)

where z = (S, )77, e; = (1,0)77 and Q(z,t) = (u(1 — z1) — Bt)z122, 22 (B)21 — (1 + 1)) ". In
principle, the solutions of (42) may undergo nonlinear resonances and chaos. Note that the force F'(t)
itself might be chaotic, so that it might also happen that z(t) could “filter” it.

Now, considering for example the case of constant 3, such oscillations in vaccine uptake might for a
while lie above the critical coverage p. = 1 — 1/ Ry (we expect this to occur when the perceived risk
of vaccine associated side effects is low), but the opposite might occur during phases of vaccine scare.
Thus it is important to consider the possibility of disease-free asymptotic behaviour in response to
general oscillatory behaviour of the vaccine coverage p(t). We term a disease-free solution (DFS) one
for which:

DFS = (X;(t),0), (43)

where X (¢) is the solution of the following linear differential equation:
Xi=pl-p(t)—X1). (44)

Observe that from
S'<p(l—pmax —9),

where parax is the maximum attained by p(t) in its in principle known oscillations, and using standard
procedures one gets that if pprax > pe then DFS is globally stable, which is biologically trivial since
this case means that the vaccine coverage is constantly over the critical value p.. Linearizing at DFS
one gets i = i(BX*(t) — (1 + v)) and considering that it must be Xi > 1 (1 — ppin — X1) implying
that, for large times, X*(¢) > 1 — pin, one also gets that if pp,in < p. then DFS is unstable. Indeed
this means that p(t) is constantly under the threshold p.

More in general, if p(¢) is known by using appropriate averages one may find conditions for the global
stability of the DF'S.

The previous results suggests to what extent departures from the critical coverage might be allowed
during epochs of high (oscillating) perceived risk of VSE without compromising the target of elim-
ination. This sub-critical disease-free asymptotic behaviour is a phenomenon of special interest for
situations where elimination has been achieved but the vaccine scare generates oscillations in vaccina-
tion coverage which will in its turn build up cohorts of less vaccinated individuals. Such oscillations
could then create the conditions for epidemics of various sizes as a consequence of stochastic rein-
troduction of the infection through e.g. immigration. The size of these stochastically reintroduced
epidemics would critically depend on the patterns of oscillations in the perceived risk.

7 Simulations

We report two numerical investigations dealing with two main sub-cases discussed in the paper, i.e.
the case of VSE arising at constant rate, and the fixed-delay case. In both examples we focus on the
case where the perceived risk of VSE is measured by the (current or delayed) prevalence of individuals
with VSE. In the first simulation we present a sample of noteworthy transient and long-term scenarios
showing how disease control is affected when the vaccine uptake is mainly affected by the perceived
risk of VSE. As a rule we will see that the dependency of the vaccine demand on VSE weakens the
conditions for control but with a rich variety of dynamic patterns. In the second simulation we give
some simple insight on the mechanisms underlying the appearance of VSE-induced oscillations in
vaccine uptake.
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7.1 Simulation 1: side effects occurring at constant rate

We compare system (25), which does not include the information delay, with the corresponding delayed
system (26). This case offers predictions which, though perhaps inaccurate in quantitative terms, since
it assumes that everyone who is vaccinated is exposed to VSE with a risk which is independent of the
age since vaccination, are nonetheless very rich in qualitative terms. Note that (26) collapses into (25)
when we let the average information delay go to zero (a — o). Note further that the discriminant
A of the linearised system of (25) is given by A = ¢ (¢ + 4up’ (Cs)) suggesting that solutions to
(25) will be stable but oscillatory when, comparatively, the rate ¢ of onset of VSE is small, and the
absolute slope p’ (C,) of the vaccination response at equilibrium is large. The corresponding pseudo-
period of the linearised oscillation will be given by 47/ v/—A, and the dumping rate is proportional
to (2u + ). The following functional form was adopted for the p (M) function:

p(M)=po+(1—po—ce) p1(M)

where
(pmax - pmin)
1+ exp(—o (M — M*))

This formulation corresponds to the epidemiologically founded idea that the population is divided
into three groups, say groups 1,2,3, having different vaccination lifestyles. The first group, having
relative size po, always vaccinates independently of the perceived risk (M) of VSE; the second one
(having size €) never vaccinates independently of M; finally group 3, having relative size (1 — pg — €),
vaccinates accordingly to the perceived risk of VSE summarised by the function p; (M). The latter
function is S-shaped and decreasing in M, taking the value pyax for M = 0 and approaching py;, for
large M (here we set for simplicity pmax = 1,pmin = 0). The inflection point M* represents the average
“societal tolerance” of VSE, nearby which most change in vaccinating behaviour as a consequence of
changing perceived risk of VSE, will occur. Finally ¢ can be taken as the speed of behaviour change
in that increasing values of o correspond to increasingly violent responses by the public to changing
perceived risks of VSE. Overall, the shape of p (M) corresponds to the epidemiological intuition that
as far as the perceived risk of VSE is small then p (M) is high (i.e. roughly equal to (1 —€)) because
individuals of group 3 have no reason to change their propensity to vaccinate, while if M becomes
large the propensity to vaccinate of group 3 will fall dramatically, even up to zero, thereby making
the community vaccine uptake close to pg. We note that though M is a bounded function, so that
arbitrarily large values of M can not be considered, suitable choices of parameters (o, M*) allow to
capture all possibly relevant vaccinating behaviour discussed here.

As regards the disease dynamics we consider the following benchmark parameter constellation mim-
icking measles in developed countries: p = (1/L), where L = 75 years (so u = 3.65 * 10~%days™1)
is the life expectancy of the population, v = 1/D, where D = 7 days is the average duration of
the infective period, Ry = 15, implying an average daily transmission rate 3 = 2.143 days™', and a
critical coverage perit =1 — 1/Rp=0.93. Finally, as regards the rate 1) of onset of VSE we preferred,
for illustrative purposes, to let it to vary in order to consider different scenarios, rather than to stick
to the few, possibly biased, estimates available in the literature.

Fig. 2 shows the dependency of the equilibrium Cy,, which is the unique solution of the equation
p(C) =ry (C), where ry, (C) = %C’, on: (a) the rate ¥ of onset of VSE, (b) the shape of the p func-
ti0n7 for three distinct values of d): wloun d}'mediunw whigh (wlow = /1//10’ w'mediu'm = N/57 whigh = N/2)
As the ratio ¢/ () + u) represent the lifetime probability to suffer a VSE, for example 1, would
imply an (about) 9% lifetime probability of VSE. The p (C) function is drawn for py = 0.8, ¢ = 0.02,
M* = 0.145 and for two distinct values of o (00w = 10,0pi9n = 100). The critical coverage perit is
also added for sake of completeness.

The whole asymptotic dynamics of the system (25) and of the related epidemiological variable is there-
fore easily predicted by Fig. 2. Consider for example the case ¢ = 100. Then: (a) for the “low” rate
of onset of VSE 1,4, the steady state Co occurs in the high-flat part of p (C) yielding a low value
of Cu, i.e. a low perceived risk of VSE at equilibrium, which does not cause a substantial decline
in coverage; the equilibrium coverage p (Coo) remains in excess of the critical one, thereby allowing

P1 (]\/[) = Pmin +
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elimination; the convergence to the equilibrium uptake is monotonic since C, occurs in the flat part
of p(C); (b) for ¥ = Ynign the equilibrium Cy occurs in the low-flat part of p (C). This yields a
high value of C, i.e. a high perceived risk of VSE at equilibrium, and a substantial decline in the
equilibrium coverage, little in excess of pg, and therefore largely below the critical level. This allows
the endemic persistence of the disease, with dynamics which do not differ from those of the SIR model
with vaccine uptake set at the level of po; (c) finally, for ¥ = ¥medium, the steady state Co occurs in
the steep part of the p (C) curve, again yielding an equilibrium coverage p (Cs) below the critical level
so that the long term outcome is still disease persistence. The interesting new is that in this case the
convergence to C'y is oscillatory, thereby causing an oscillatory forcing to the epidemiological system.
In this case (o = 100) the linear pseudo-period is too large (¢ = 155 years) to have epidemiological
significance, which does not prevent other parameter constellations to yield more interesting results.
The dynamics of the vaccination variables of (25) yield however several interesting possibilities as
regards the actual patterns of the epidemiological variables (S,I). We consider first the standard
transient situation where a new vaccine is introduced at the (slightly perturbed) pre-vaccination en-
demic state of the SIR model:

S(0) =Ssir = 5,1(0) =Isir =

1 I 1 1

Ry Bt R/’
Initial conditions for V, C are in this case: V (0) = 0, C (0) = 0. After time zero VSE start to cumulate,
i.e. the C (t) function monotonically increases in the first epochs after vaccine introduction, thereby
increasing the degree of vaccine scare. The actual impact of this process on the disease dynamics
depends on the interplay of the various parameters relating to VSE and the public’s response. We
report a sample of various interesting transient post-vaccination scenarios.

(a) Elimination and eventual disease reemergence. This scenario is illustrated in Fig. 3, where the
parameters are: pg = 0.80, £¢=0.02, ¢p =2.5u, M*=0.145; 0=10. Here model (25) converges to
its steady state in a non-oscillatory way (Fig. 3, left). In particular the vaccination programme
satisfies p (t) > p. for a period of time long enough to allow elimination in the short-term.
This occurs because in this phase the accumulation of VSE is slow enough so that elimination
occurs before the perceived risk of VSE (measured through C) has increased enough to signif-
icantly affect vaccine uptake. However the disease eventually re-emerges. Indeed, the effective
reproduction number Rg(t) = RoS (t), which continued to decline for about 20 year after the
initiation of the programme, re-starts to steadily increase after that date (Fig. 3, right). This
is the consequence of the gradual accumulation of VSE which gradually enflate C' and therefore
the perceived risk of VSE, therefore reducing vaccine uptake, which in turn yields a steady
build up in the susceptible fraction. By assuming that the disease is not globally eradicated (so
that the local vaccination pelicy is continued), a stochastic reintroduction of a single infective
individual at (about) ¢ = 55 years causes a large epidemic outbreak first, and then the endemic
re-emergence of the disease, since the vaccine uptake in the long term does not significantly
exceed 80%, i.e. largely below the critical level. Note that the disease re-emergence occurs with
a gradual decrease in the inter-epidemic period, that in the long-term will land on a value which
are characteristic of the classical SIR model with 80% vaccination at birth.

(b) Worsening of control conditions. This scenario is illustrated in Fig. 4, where the parameters
are: po = 0.80, £=0.08, ¢ =2.5u, M* = .145,0 = 10). In this case C' and p (C) still converge
without oscillations. Since ¢ is large initial elimination can not occur. Nonetheless the disease is
initially brought to high levels of control (with long inter-epidemic oscillations) because vaccine
uptake is initially high because the perceived risk of VSE is initially very low, still due to the
low accumulation of VSE. However in the long term the slow but continued accumulation of
VSE make vaccine uptake much lower so that the disease progressively switches to a different
dynamic pattern by restoring shorter period inter-epidemic oscillations. This situation, which

I Finally, less interesting things occur when p (C) lies always above or always below the critical uptake: in the former
case the disease is always eliminated independently of the public responses to perceived risks of VSE, while in the latter
the disease will always persist.
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had been predicted in the medical literature [8], is a potential danger faced by developed countries
especially in the case of diseases difficult to eliminate, and for which the perceived risk of serious
disease is steadily small.

(c) Switches in control epochs. This scenario is illustrated in Fig. 5, where the parameters are:
po = 0.80, £=0.08, ¢ = u/5, M* = .145,0 = 20000. Under this parameter constellation system
(25) exhibits damped oscillations, triggered by the large o value. After the initial adjustment
phase during which the prevalence of VSE cumulate toward its steady-state, the vaccination
variables (V, C,p (C)) initiate to show pronounced waves (Fig. 5, left). These waves are triggered
by the shape of p (M) but are a natural outcome of the vaccination system, where epochs of
vaccine scare diminish vaccine uptake which subsequently reduces the prevalence of individuals
with VSE, thereby stimulating an increase in vaccine uptake. These long-period waves (the
pseudo-period of linear oscillations close to the equilibrium is in this case about 40 years) force
the epidemiological variables to oscillate in the form of sequences of “vaccination epochs”, nicely
depicted in Fig. 5 (right). Epochs of low vaccine uptake are characterised by comparatively
shorter inter-epidemic oscillations which are however gradually replaced over time by new epochs
of higher vaccine uptake with longer inter-epidemic period, and so on.

The dynamics of the delayed system (26) are richer, thereby forcing richer dynamics in the epi-
demiological variable. As the mathematical analysis suggests, we expect that as far as the speed
of behaviour change o is small then the unique equilibrium of (26) is locally (and globally) stable
independently of the delay. In this case the dynamics of the delayed system remain similar to those of
its non-delayed counterpart. When however, other things being equal, o exceeds a critical value o,
and provided the steady state lies in the steep portion of p (C), then the presence of the information
delay allows the onset of asymptotically steady oscillations through Hopf bifurcation of the steady
state. Fig. 6 shows the regions of values of the mean information delay D yielding to local stability vs
local instability computed through the Routh-Hurwitz stability condition, for two distinct values of o.
Note that: i) higher values of o yield a wider instability region, and ii) for large o values essentially
any, however small, information delays are likely to yield steady oscillations.

The onset of (asymptotically) stable oscillations in the vaccination system (V, C) supplies an asymp-
totically periodic forcing to the system of epidemiological variables (.S, I). In particular since a long-
transient is necessary in order that the stable limit cycle of the vaccination system (V, C) to materialise,
a long and complex oscillatory transient occurs also in the (S, I) system. To illustrate the asymptotic
effect of the vaccination dynamics for the epidemiological system we therefore focus only on long-term
behaviour.

For example (see Fig. 7, where: py = 0.80, £¢=0.05, ¢ = u/5, M* = .145,0 = 45000, D = 220
days. Note that this is a parametric constellation corresponding to a unstable equilibrium) an average
information delay of about 7 -months yield a nice stable limit cycle in vaccine uptake, with a period
of about 28 years (Fig 7 left). These oscillations trigger stable oscillations with the same period in
(S,I) (Fig. 6 right). In particular the very steep shape of p (C') causes the vaccine uptake to bounch
between its affordable minimum and maximum, so that the effective reproduction number shows os-
cillations of considerable amplitude. Further stretching of critical parameters, such as o, are able to
increase the amplitude of oscillations in the (V, C) variables, yielding even richer oscillation patterns
in the epidemiological ones (5, I), seemingly through period doubling and chaos (not reported here).
Nonetheless it is to be pointed out that such oscillations are characterised by minima of the infective
proportion during the low phases of such oscillations which become smaller and smaller, therefore
questioning the validity of the deterministic framework.

7.2 Simulation 2: side effects arising with a fixed delay

Here we consider system (28) under the following piecewise linear vaccine uptake function:

p(C) = max (1 - Cgo) (45)



implying that the vaccine uptake is maximal when the perceived risk of VSE is zero, but it approaches
zero as C approaches a value C* > 0, and it remains zero thereafter. The constant C* can be
taken to represent the maximal level of VSE the community is capable to tolerate. The previous
formulation is rather “extremal” but it has the advantage of being simple, thereby making transparent
the mechanisms leading to oscillations. The equilibrium equation here takes the simple form

Coo = exp (=) exp (—pT) p (Coo)
which is easily solved as: B B
_ dew(dep(4T)
= exp (—v) exp (—uT) + C*

In particular the A (T') quantity which appears in the characteristic equation sharply simplifies since
p(C) has a constant derivative:

A(T) = p exp (—@*exp (=uT)

This allows to simplify for essentially all cases of practical interest the equation (29) determining the
bifurcating delays. In fact the term exp (—uT) = exp (—=T/L) (where L is the life expectancy of the
human host) is essentially equal to unit in the most important case of short-delay VSE (the case
where the causal link to the vaccine can be meaningfully established), e.g. T of the order of days or
at most a few weeks (T'/L has the order 1075 — 10~*) and still gives an excellent approximation for T
of the order of a few years. The latter case is not of little relevance since it potentially deals with the
situation where vaccines are perceived by the public as a possible cause underlying the long-term onset
of allergic or of auto-immune diseases. Here the issue of causal imputation is of course a complex one,
but nonetheless the problem can not be ignored since what really matters is the public’s perception
that a causal link might exist. As regards the current medical literature, there seems to be little
evidence that vaccines cause allergic diseases ([5],[15],[25]); but on the other hand the possibility that
vaccines might be responsible of auto-immune diseases is an accepted hypothesis ([20]). Be things
as they may, the possibility that time series of incidence of auto-immune and/or allergic diseases
enter the “information set” on which anti-vaccinators base their decisions is a concrete one, largely
documented in the official documents and sites of anti-vaccination groups.
In all these cases we can take IE ( 1/_1)
o (—

A(T) ~ % —A

so that equation (29) simplifies to

<M)T:arccos (—%) +2km, k=0,1,...

In particular the first switch from stability to instability, which is the most relevant for practical
purposes, occurs for
Arccos(—C* [ipexp(—1))

$f (weap(—v)/C*)* - 12

It is thus easy to see that for fastly occurring VSE the first bifurcating delay Tw,1 (provided it
is meaningful) is, as expected, an increasing function of C*: indeed as C* increases, the slope of
the p (C) function decreases, thereby requiring longer average information delays to destabilise the
equilibrium. A possible shape of the bifurcation locus in the (C*,T) plane is depicted in Fig. 8 (in log
scale) for two distinct values of the rate 1) of onset of VSE. The graph indicates an exponential relation
between Ty, for relatively large C*, and, other things being equal, that the bifurcating delay Ty, is
decreasing in 1. Overall this indicates that for values of the delay T of onset of VSE of the order of a
few days, as are those specified in the protocols for identification of vaccination as the causal factor of
VSE, the onset of “VSE induced” oscillations requires a combination of unlikely high rates 1 of onset

Ty =
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of VSE, and a very low “societal” tolerance (C*) to VSE. For example for C* = 10~%, a meaningful
bifurcating delay of 11 days would require values of v close to 1 (implying that on average 67% of
vaccinated individuals incur some VSE), whereas the more reasonable value 1) = 0.05 (implying that
on average 5% of vaccinated individuals incur some VSE), already yields a bifurcating delay around
3 months. Things would be different if vaccines could be identified as responsible of long-term side
effects, as it would be the case for the onset of allergic or auto-immune diseases long after vaccination.
In this case the average delay T would take large values, say several years, therefore allowing the
onset of oscillations for less stressed values of 1) and C*. This seems to suggest that reactions by
the public to VSE are more likely to induce oscillations in vaccine uptake when long delays occur
between the moment of vaccination and the onset of the presumed VSE, as it might occur for the
scare that vaccines cause allergic diseases, or when further delaying factors, as information delays (not
considered here), are included.

Fig. 9 reports, for the sake of completeness, the convergence to a stable limit cycle fluctuating around
C* of the key variable C' (other parameter values are: ¢ = 0.1,C* = 107 | so that Ty 1 = 47days)
and T = 540 days, i.e. a delay of 1.5 years mimicking the scare of vaccine induced allergic, or auto-
immune, diseases. The inter-epidemic is around 30 years. These oscillations cause the vaccine uptake,
and therefore also the epidemiological variables, to oscillate. These oscillations can be shown to be
very small because p (C') shows small amplitude oscillations (between 0 and 0.05), which little affect
the epidemiological oscillations. This is an obvious consequence of the peculiar choice (45) of the
vaccine uptake function.

Finally, in the case of delayed information obeying an exponentially fading memory, our numerical
calculations show that not in all cases the information delay is able to destabilize the equilibrium
state. For example, let us assume, as above that 1) = 0.1 and C* = 10~*, implying a Hopf bifurcation
at T' = 47 days. If T' = 32 then there is the onset of oscillations at Dy & 95days (where N, > 0) and
the stability is lost at D ~ 1410 days (where N, < 0); for T" = 40 days the Hopf bifurcation occurs
at Dy ~ 1ldays, whereas the stability is recovered at the unrealistically high value D a 8850days.
However, if T' = 30 the equilibrium remains stable.

8 Discussion

The paper has investigated a variety of models for the dynamic implications of vaccination choices in
contexts where vaccination is voluntary, and the perceived risk of serious disease is steadily low, so
that the only endogenous determinant of vaccination choices is given by the trend in the perceived risk
of experiencing some vaccine side effect. At the best of our knowledge, compared to the large number
of works on prevalence driven vaccine demand, this is the first paper focusing on VSE as the main
determinant of vaccine uptake. We have considered two main cases, i.e. the cae where the perceived
risk of VSE is evaluated from the publicly available information on the prevalence of individuals who
suffered some VSE, and the case where the perceived risk of VSE is evaluated from the incidence of
VSE.

An interesting consequence of our modelling choice is that the vaccination sub-system, which de-
termines the perceived risk of VSE and the vaccine uptake, decouples from the epidemiological sub-
system. As regards the vaccination sub-system we have demonstrated, both in general and for selected
epidemiologically relevant sub-cases, the conditions under which the dynamics of vaccine uptake lands
on a globally stable steady state, rather than in stable oscillations, of vaccine uptake. Unlike previous
results on epidemiological models with prevalence-driven vaccination [23, 11, 13], where information
lags were necessary to trigger oscillations, in the present case steady oscillations can arise also when
current information only is used to evaluate the perceived risk (of VSE). The explanation is that
the appropriate modelling of vaccine side effects required the introduction of an age mechanism, e.g.
another type of lag, to describe the onset of VSE.

The actual dynamics of VSE then act as an external forcing for the dynamics of the epidemiological
sub-system. This leads to the interesting scenarios for disease control discussed in the simulations. In
particular we have also considered the case of VSE arising with long time-delays. Though in this case
the problem of the correct causal imputation of a given disease condition to a vaccination occurred
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several years prior to the disease onset is probably hopeless, we feel nonetheless this case well repre-
sents the case of the scare that vaccines can cause allergic or auto-immune disease, which is a main
argument by anti-vaccinators.

The type of modelling adopted here, and the related predictions, seem to be of interest for all situa-
tions where the (immediate or long-term) consequences of the disease are perceived as minor. Such
situations do not only arise as a consequence of high degrees of control through vaccination, but also
at sub-optimal degrees of control for diseases which are perceived by the public to be of little dan-
gerousness, despite circulation is still significant. An example of such situation could be Varicella, for
which the introduction of the vaccine is still under debate. We feel Varicella is a disease currently
perceived as minor by parents, which are usually unaware of the protecting role of vaccination against
zoster. We guess so that the introduction of a (voluntary) vaccination programme against varicella
could in some cases yield largely sub-optimal coverages, so that the social alarm caused by episodes
of vaccine associated side effects, from the varicella one but also from other vaccines, could become a
main driving force of disease dynamics.

Though there is little direct empirical evidence that trends and fluctuations in incidence of VSE ac-
tually affect individuals’ vaccination choices, the possibility that vaccine success in controlling disease
would ultimately yield the incidence of VSE to override disease incidence was forecasted long time
ago ([8]). Moreover there is a wide evidence indicating that the scare of the lack of vaccine safety
is a major argument behind vaccine refusal. A good example here is represented by the persistency
of the MMR- autism scare over time, which has caused a persistent decline largely below the critical
theshold in MMR vaccine uptake in the UK ([14],[26],[27]). We feel that this should not necessarily be
interpreted as an isolated rumour, but perhaps as a persistent phenomenon where families are care-
fully monitoring the incidence of autism cases over time, and taking it into account in their decision
function.

In perspective we feel that appropriate studies of the vaccine demand should abandon the “reduction-
ist” approach (i.e. focusing on a single disease at time) used by standard epidemiological modelling, to
better investigate how patterns of VSE from some vaccines could affect vaccine uptake from other (or
all) vaccines as well. Future work should improve the present model by including vaccination choices
in a behavioural, rather than phenomenological, manner (according to e.g. [4]). Stochastic extension
of the model would allow better predictions for all the circumstances where the disease becomes sub-
critical as a consequence of fluctuations in vaccine uptake. Spatial extensions would allow to better
take into account the social alert caused by VSE at the various local scales, e.g. the possibility that
mild VSE create rumours that are likely to have some importance only in the local network of contacts
(e.g. the child who suffered from VSE, his/her family, and neighbours), while episodes of severe VSE
typically receive large amplifications by media, being thereby communicated to the whole population.
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Appendix

A Proofs of propositions and of statements

A.1 Mathematical derivation of the main model

The solution of (4) is:
up (Mt —1)) Ko(r), if 0<7<t

Wo(r —1t) Klj(“T(z)t), otherwise.

(46)

W(t,T)= {
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where K, (7) is given by (9). Thus since:

t —+o0o
H(t) = /0 (Wt 7)dr+ /t ()W (L, 7)dr

and after defining the function:
+o0

FO) = exp(—ut) [ Wa(r —t)exp (f /;w(T)dT) dr = lm_f()=0°

t

we immediately get the main relation (7).

A.2 Main propositions

Proof of proposition 3.1. Let it A be a solution of (17) such that R(\) > 0. Thus, taking the
moduli of both Lh.s and L.h.s. of (17) one, respectively, obtains that:

[Lh.s.|=|A4+ul>p

(which follows from R(A) > 0 ) and:

+o0
s = 1o’ (Coo) ] [ Bapraia) Bap (e — w(w) ] < gl (Cool Bl

As a consequence if (18) holds then |r.h.s.| < p. As a consequence, due to the contradiction, (17)
cannot have solution with non-negative real part, and the equilibrium is locally stable.

The proof on global stability is essentially based method of contracting rectangles (in our case: in-
tervals) [6, 22], and in it we shall use the function g(z) = By(u)P(z). Since p(C) is decreasing, it is
p(C(t)) < p(0) and as a consequence:

C' < —uC + £(t) + upl0) /0 VK, ()dr,

which implies that: "
lim C(t) < ¢(0),

t—+00

i.e. the interval Jy = [0, ¢(0)] is attractive. Thus, we may consider initial conditions lying in Jy. For
them it is:

G uC't 1(t) + up(a(0)) /0 B(r)E,(r)dr,

implying:
lim C(t) 2 9*(0),
t——4o0
thus the interval J; = [¢(®(0), g(0)] is positively invariant and attractive. Proceeding in this way,

after k ’steps’ we obtain that the interval
Ji = [9*(0), 9 (0)]

is attractive. These intervals tend to the degenerate interval [Co., Coo]? provided that the discrete
dynamical system :
Yre+1 = 9(yr) (47)

has Cinyty as globally asymptotically stable equilibrium. Now, setting yar = ug where

(2)(

k1 = 9" (ug), uo = Yo
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and yor+1 = v where

vkr1 = g% (k) vo = 9(%0),
we have that the behaviour of (47) depends on the behaviour of the discrete dynamical system induced
by the map ¢ (z). This map is monotone increasing since it is the composition of two strictly
decreasing maps, thus the well known condition that its derivative at the equilibrium point is less
than one:

d
2.2 _ <1
9P
idest )

(9" (Cx))” <1
guarantees the global asymptotic convergence to C,. As a consequence, condition (18) implies the
global asymptotic stability of the equilibrium solution of (8)

¢

In the case of delayed information, it holds that:

Proposition A.1 Condition 18 guarantees the Local and Global Asymptotic Stability of the equilib-
rium solution of (19)-(20).

Proof Let it A be a solution of (21) such that R(\) > 0. Thus, calculating the modulus Lh.s. of (21)
it yields that:
A
|l.h.s.| =1+ E||)\+u| >

(as it is straightforward to verify). Thus, proceeding as in proposition 3.1 we may easily demonstrate
our claim.

Similarly, also the proof of the global stability is an extension of the proof of proposition 3.1. Indeed,
that proof was based on a sequence of contracting intervals determined by a sequence of differential

inequalities. Also here we shall use the function: g(z) = By (p)p(z). Since p(M) is decreasing, it is
p(C(t)) < p(0) and as a consequence:

C' < —uC + up(0) / B(r)Eo(1)dr < —iC + p(0) / BT (r)dr,

which implies that: .
lim C(t) < g(0).

t—+4o0

and that the interval Jo = [0, g(0)] is such that positively invariant and attractive for C(¢) and, thanks
to the inequalities:
—aM < M’ < a(g(0) — M),

also for M(t). Summarizing the rectangle:
A() = Jo X Jo

is attractive for (M, C'). Thus, we may consider initial conditions lying in Ag. For them it is:

C'> —uC + F(t) + 1p(a(0)) /O $(1)E,(r)dr

and esily we may show that the rectangle A; = [¢(¥(0), g(0)] x [¢(0), g(0)] is positively invariant
and attractive. Proceeding in this way, after k ’steps’ we obtain that the rectangle

Ai, = [g%(0), g™ (0)] x [g*T1)(0), g% (0)]

is positively attractive. Thus, proceeding as in the other proof, we may show that this sequence of
rectangles tends towards the point (Cs, Css) (= towards a degenerate rectangle).

&
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A.3 The delayed prevalence case: side effects occurring at a constant rate

Concerning the oscillation result of subsection (4.2), by linearising system (26) at its equilibrium point
one gets the characteristic equation:

N+ 2utv+a) N+ (ap+ (p+9)(p+a) A+ ap(p+ (1 +[p'(Cx))) =0 (48)

Since the coefficients are positive the unique requirement for local stability is the Routh-Hurwitz con-
dition, leading to the condition (27). The claim on the Yakubovitch oscillatority easily follows by )
the boundedness of C'(t) (remember that C(t) < Viot(t) < 1); i) the instability of EQ. The properties
i) and i) allow applying the Yakubovitch-Efimov-Fradkov theorems [29, 30, 31].

A.4 The prevalence case: side effects occurring with a constant delay

Proof of proposition 4.1. y linearising and applying the Laplace transform, we obtain the charac-
teristic equation:
At p=—AT)exp(—AT) (49)

where
A(T) = |p' (Coo (T)) |pp Exp (=) — pT) . (50)

It easy to show that (49 ) has, for small T' << 1 or two negative real solutions, one near —u— A(0) and
the other very large. Therefore in both cases instability can only occur through a Hopf bifurcation. In
particular, consistently with the previous example, the case T' = 0 is a stable one, and bifurcations, if
any, must occur for higher delays. Let us look therefore for Hopf bifurcation points, searching purely
imaginary solutions A = jw of the characteristic equation, leading to the following pair of equations:

-1
cos (wT) = G
sin (wT') = WG (51)

Note that GAS condition implies cos(wT') < —1. From (51) we immediately get:

w(T) = +py/G(T)2 — 1

Observe that since for T'= 0 the DDE reduces to an ODE with a unique and GAS equilibrium point,
for continuity this fact implies that G(T') > 1 implies the existence of a threshold T* where the
inequality is not fulfilled and where the equilibrium point C(T') is locally stable.

The bifurcation values are, then, determined by the eq. (29). The proof of the stability switch follows
by the considerations exposed before the statement of this proposition, and, in particular, condition
(30) is simply the non-zero speed condition:

d\
T [A=iwn (T0) -

¢
Moreover, by including the information delay, we observe that a candidate Hopf point A = iw has to
solve: ,

(1 +(%) ) (1 + %) = 2GX(T). (52)

Of course, if G(T') < 1 eq. (52) has no solutions, whereas if G(T") > 1 there is the following solution:

= —a? + /4022 GP? + (a2 — p?)?
B 2

wi(a)

(53)
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and it may be shown that the non-zero speed condition:

R (d/\ |A:M) _ppta)(G-1) - wh

— >0
(it @ + o

da

is fulfilled since also the numerator is positive, as

2u(p +a)(G = 1) + (a* + %) > +/4a?12G? + (a? — p?)2.

The bifurcation values Dy, D, ..., for D = a~! are obtained by setting A = iwg/(a), yielding:

(54)

Tws(a) = Arg <aw?{(a) —u+i(ap+ 1)wH(a)) 7

A(T)
A.5 The incidence case: instantaneous side effects

In presence of vaccination choices based on current information, instantaneous side effects yields the
equation:

H(t) = f(t) + pwbeap (=) p(H (1)),

for which it is trivial to show that H(t) — Hs globally.
When vaccination choices are based on past information according to an exponentially fading memory,
one yields the simple scalar ODE: M'(t) = a (;upp(]V[ )—M ), whose unique equilibrium is GAS.

A.6 The incidence case: side effects occurring at constant rate
In the case ¥ (1) = ¢ it holds H (t) = ¢V. In turn, V obeys the ODE:
V'=pup (V) = (n+ )V,

which has a unique GAS equilibrium given by: (1 + ¥)Voo = pp (VVoo).
In case of delayed information, we get the following 2-dimensional ODE system

M =a@V — M)
V' = uwp(M) — (n+ )V (55)

whose unique equilibrium is GAS.

A.7 The incidence case: side effects occurring after a constant delay

When vaccination choices are based on current information, the characteristic equation reads as:
1 .
A= =In(G(T)) + i
T
where:

G(T) = plp' (Hoo)| ¢ exp(—tp — pT). (56)

which quickly leads to the results reported in the main text.
When vaccination choices are based on past information according to an exponentially fading
memory the characteristic equation becomes:

1+ 2 = —A(T) exp(—AT) (57)
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where A(T) = uG(T'), and G(T') was defined above. If G(T') < 1 then the equilibrium is GAS. On
the contrary if G(T') > Maxz(1,1/a) then the Hopf bifurcation points lie on the curves v;(T,a) = 0
where v, (T, a) is defined as follows

(T a) = —aT/G*(T) — 1+ 7 — Atn\/G*(T') — 1 + 2km (58)

Therefore if the point (T, a) lies below the curve vo(7,a) = 0 then the equilibrium is LAS, while if
(T, a) lies above the curve, then the equilibrium is unstable. This is readily seen by choosing a as
bifurcation parameter and calculating the nonzero speed condition at the Hopf point, which reads:

A _aT(GH(T) - 1) )
e (G Do) = ez > o
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Figure 1: Perceived risk evaluated by the‘delayed incidence of VSE. VSE arising with a fixed delay.

Curve v(T,a) = 0 with u = 0.02, years™!, ¢ = 1 and © = 50000. Left sub-figure: plot for for
0 < T < TT ~ 131; right sub-figure : plot for 40 < T' < 120.
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Figure 2: Model (25): graphic solution of the equation for equilibria p (C') = ry (C), where 7y (C) =
“jl'—,wC. The line r (C) is drawn for three distinct values of ©: Yo = p/10, Ymedium = /5,

Yhigh = /2. The p (C) function is drawn for oj5,, = 10 and opign = 100, and its other parameters
are: po = 0.8, £ = 0.02, M* = 0.145.
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Figure 3: Model (25). The disease re-emergence scenario due to declining uptake caused by the
increase in the prevalence of VSE and stochastic reintroduction of one infective individual at time
t = 55; (left) time evolution of V,C,p (C); (right) time evolution of the effective reproduction rate
Rp = RyS (parameters: 1 =2.5u, e=0.02, M*=0.145; 0=10).
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Figure 4: Model (25). The worsening control conditions scenario with long-term contraction of the
inter-epidemic period as a consequence of gradual growth in the perceived risk of side effects. (left)
time evolution of V,C,p(C); (right) time evolution of the effective reproduction rate R = RS
(parameters py = 0.80, £€=0.08, ¢ =2.5u, M* = .145,0 = 10).
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Figure 5: Model (25). The epochs switch scenario. (left) time evolution of V,C,p (C); (right) time
evolution of the effective reproduction rate R = RoS (parameters po = 0.80, €=0.08, ¥ = u/5,

M* = .145,0 = 20000).
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Figure 6: Model (26). Values of the mean information delay D yielding local asymptotic stability
(where the Routh-Hurwitz function is positive) vs local instability (where the function is negative) of
the equilibrium, for for D < 45 years and for two values of o. Other parameters: po = 0.80, ¢ = 0.08,

¥ =p/5, M* =0.145,

28



1.4+
0.95
0.9 1.3
0.85 1.2}
0.8 F
— 1.1
=) =
= 0.75 x| I
= AT I NN 22 I SOV v R N 1L
0.7 -
065k - - - /() 0.9 H
P(C(®)
0.6 0.8:{
0.55
0.7
0.5
600 800 1000 1200 600 800 1000 1200
time (years) time (years)

Figure 7: Model (26). The steady long-term oscillations of vaccine uptake (left) force asymptotically
steady oscillations of epidemiological variables (parameters py = 0.80, e=0.08, ¢ = p/5, M* =
.145,0 = 45000, D = 220 days).
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Figure 8: Model Model (28) with fixed delay to VSE. Shape of the bifurcation locus in the (C*,T)
plane (log-scale), for distinct 1) values.
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Figure 9: Model (28) with fixed delay to VSE. Convergence toward a limit cycle of the key-variable
C (C* =0.0001, ¢» = 0.1; T = 540 days).
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