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Abstract

It seems obvious that as the benefits of cooperation increase, the share of
cooperators in the population should also increase. It is well known that
positive assortment between cooperative types, for instance in spatially struc-
tured populations, provide better conditions for the evolution of cooperation
than complete mixing. This study demonstrates that, assuming positive as-
sortment, under most conditions higher cooperation benefits also increase
the share of cooperators. On the other hand, under a specified range of pay-
off values, when at least two payoff parameters are modified, the reverse is
true. The conditions for this paradox are determined for two-person social
dilemmas: the Prisoner’s Dilemma, the Hawks and Doves game, and the Stag
Hunt game, assuming global selection and positive assortment.

Keywords: altruism, evolution of cooperation, spatially structured social
dilemmas, Price equation, Prisoner’s Dilemma, Hawks and Doves, Stag
Hunt

1. Introduction

Cooperation in single-shot two-person social dilemmas is a difficult puzzle
that has attracted many theorists. If the interaction is not repeated, there
is no place for reciprocity, reputation, image scoring or other similar
mechanisms that sustain cooperation. Without doubt, the possibilities for
the evolution of cooperation are very limited in single-shot social dilemma
situations with complete mixing (random interactions), i.e., when
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individuals are paired with a partner from all possible actors with uniform
probability. In social dilemmas, cooperators can be exploited by defectors,
which leads to the extinction of cooperation in evolutionary terms.

The exception is the Hawks and Doves game, in which in evolutionary
equilibrium, cooperators (doves) establish a share in the population
(Maynard Smith, 1982). In the Hawks and Doves game (Table .1),
increasing the payoffs for mutual cooperation (R) will increase the
proportion of cooperators at equilibrium (cf. Maynard Smith, 1982). A
smaller temptation payoff (T'), a smaller payoff for mutual defection (P),
and a higher sucker’s payoff (.S) will also increase the proportion of
cooperators in evolutionary equilibrium. Hence, the role of cooperation
benefits is clear: an increase always contributes to a larger share of
cooperators in the population. Similarly, larger benefits for defection
(hawks) will always decrease the share of unconditional cooperators in the
population.

INSERT TABLE .1 HERE

In all social dilemmas, when cooperators are more likely to meet each other
than by pure chance, the benefits of cooperation go also more likely to
cooperators. This is a segmentation effect that can make cooperation a
viable strategy (Becker, 1976; Axelrod and Hamilton, 1981; Queller, 1985;
Bowles and Gintis, 1998; Doebeli and Hauert, 2005). For instance,
cooperators are more likely to meet other cooperators if interaction and
reproduction takes place in a spatial structure or in a social network
(Ohtsuki et al, 2006; Wang et al, 2008). In most social dilemmas, the
introduction of a spatial arrangement modifies equilibrium conditions in
favor of cooperation (Doebeli and Hauert, 2005). A spatial structure
promotes cooperation also in the mostly studied Prisoner’s Dilemma
(Nowak and May, 1992, 1993; Hubermann and Glance, 1993; Nowak et al,
1994).

In contrast with the spatial Prisoner’s Dilemma, a spatial structure has no
positive effect in the Hawks and Doves game if local interaction is coupled
with local competition for reproduction (Doebeli and Hauert, 2005).
Population viscosity, where neighbors compete with each other to occupy
nearby spaces for their offspring, unsurprisingly has a drawback for
segmented clusters of cooperators. The counterpoint of positive assortment
and local competition in viscous populations has been well studied (Taylor,
1992a,b; Wilson et al, 1992; Queller, 1994; van Baalen and Rand, 1998;
Doebeli and Hauert, 2005; Grafen and Archetti, 2008). Despite the



relevance of this problem, a necessary first step to investigate effects of
cooperation benefits on the share of cooperators with positive assortment is
to neglect local competition and assume (for the sake of simplicity)
selection at a global level.

Hamilton’s rule (1964), which has been the basis for one of the most
important explanations of the evolution of altruism, can be used to
determine the effect of cooperation benefits assuming positive assortment.
If a denotes the frequency to which the benefits of altruism accrue to other
altruists rather than to average population members, b denotes the benefits
of altruism to the partner and ¢ indicates the cost to the altruist, then
altruists will increase their share if their inclusive fitness ab — c is greater
than zero. Clearly, an increase in benefits b will always make it more likely
that this requirement of Hamilton’s rule is met, indicating that larger
cooperation benefits always increase the proportion of cooperators in the
population.

The general result of Ohtsuki et al (2006) is very similar to Hamilton’s rule
(Grafen, 2007). They show that when interaction is not random, but
determined by social networks, natural selection favors cooperation. The
rule of thumb is that the benefit of the altruistic act b, divided by cost c,
should exceed the average number of neighbors &, which means b/c > k.
This result holds for all type of graphs, including cycles, spatial lattices,
other regular graphs, random and scale-free networks. This result also
implies that increasing the benefits (b) of cooperation in a given structure
will always support the survival of cooperators.

On the other hand, Németh and Takécs (2007) demonstrated in a
simulation study that assuming spatial interaction and global selection,
altruism benefits might have a paradoxical effect on the proportion of
altruists. They investigated a knowledge transfer interaction, in which
passing knowledge is costly and an altruistic help cannot be reciprocated
because knowledge is dichotomous and cannot be lost. They showed that
altruists gain a share in the population, but this share decreases as the
value of knowledge in terms of extended lifetime increases. This study
highlights that it is misleading to draw too early conclusions from intuition
and from Hamilton’s rule and conclude that increased cooperation benefits
always result in a larger share of contributors. On the contrary, as a major
contribution of this study, with a simple analysis, we intend to show that
such paradoxes occur for all types of social dilemma games. With a
thorough and systematic analysis of games with positive assortment, we



will demonstrate under what conditions one can find paradoxical effects of
cooperation benefits. Our findings not only imply that an investment in
extending cooperation benefits might backfire at a medium level of positive
assortment, but also that less investment in cooperation benefits can
contribute to more cooperation when individuals of the same genotype
meet more frequently than by chance.

1.1. The use of the Price equation

The starting point of our analysis is the Price equation (Price, 1970) that
has been used in its simple and general form for a wide range of
evolutionary phenomena (Frank, 1995; van Veelen, 2005), including a
rederivation of Hamilton’s rule (Grafen, 1985; Queller, 1985). We will use
several simplifications as we consider a haploid population interacting in
pairs, where the genetic component of cooperation is at a single locus with
two possible values: cooperation and defection. We will use the Price
equation first without payoff restrictions to determine under what
conditions (1) defection or (2) cooperation is an evolutionary stable
strategy (Maynard Smith and Price, 1973) and under what conditions there
is a (3) mixed equilibrium of defectors and cooperators.
Consider two groups: cooperators and defectors, having characteristics
z1 = 1 and zo = 0. As the characteristic values do not change from the
parent to the child generation (Az; =0); we can use the simplified Price
equation:

wAz = cov(w;, z;)

where z; are the characteristic values of different groups of the population,
w; are their absolute fitness (per capita number of offspring), z is the
average characteristic value, and w is the average fitness.

That in our special case can be further transformed to:

wAz = z(1 — z)(w; — wy) (1)

1.1.1. Equilibrium
At equilibrium, Az = 0, which gives three different solutions:

1. z = 0. The equilibrium proportion of cooperators is zero.
2. z = 1. The equilibrium proportion of defectors is zero.



3. wy; = wy. A mixed equilibrium of cooperators and defectors. At this
point, the average number of offspring of both cooperators and of
defectors are the same, which means that population ratios do not
change, hence the equilibrium. This equilibrium only exists if
0 < z* < 1, where z* is the equilibrium proportion of cooperators for
the solution wi(z) = we(2).

1.1.2. Stability
Let us take the partial derivative of equation (1) over z:

ow Az O(z —2?) Ow;  Ows
A — _ 1— g
82" v 0z 0z (wn = w2) +2(1 = 2) 0z 0z
At equilibrium we can simplify to:
0Az wy —wy  2(1—2) (Ow;  Ows
—(1-2 &
0z ( 2 w + w 0z 0z
An equilibrium is stable if
0Az <0
0z '
Now we can take a look at the three equilibria again:

1. 2=0
8Az:w1—w2<0
0z w

So this equilibrium is stable if wy < wg. A cooperator cannot
penetrate the population because his or her fitness falls below the
fitness of defectors. This means that defection is an evolutionary
stable strategy (ESS).

2. z=1 9A
z _ _w1 — W2 <0
0z w
So this equilibrium is stable if w; > ws. This means that cooperation
is an ESS.
3. w1 = Wa
0Az  2(1—z) (Ow; Ows <0
oz w 0z 0z
So this equilibrium is stable if % < %. If the ratio of cooperators

increases, their fitness falls below the fitness of defectors, so their ratio
decreases back. Similarly, if the ratio of cooperators decreases, their
fitness exceeds the fitness of defectors, so their ratio increases back.



1.2. ESS in social dilemmas

When looking at replicator dynamics based on reproductive fitness,
defection is the evolutionary stable strategy (ESS) in the Prisoner’s
Dilemma, and it is also an ESS in the Stag Hunt game (Maynard Smith,
1982; Doebeli and Hauert, 2005). On the other hand, in the Hawks and
Doves game, replicator dynamics converge to a mixed stable equilibrium at
which both cooperation and defections strategies are present (Maynard
Smith, 1982). These textbook results are displayed in Figure .1a-c for
comparison.

INSERT FIGURE .1 HERE

2. Populations with positive assortment

2.1. General equilibrium conditions

Let us now study populations in which the interaction probability of two
individuals of the same genotype might be different from the probability of
interacting with an average individual. Let us denote the fitness of
individuals with genotype G interacting with another individual with
genotype H by wgy. We will denote the level of positive assortment by «.
This is the probability that an average individual interacts with another
individual of its own genotype instead of with a randomly selected partner
(Cavalli-Sforza and Feldman, 1981). Thus « = 0 means random interaction
or complete mixing, in which individuals of the same genotype only meet
each other, as expected, based on their share in the population, and o =1
means that individuals meet only members of their own genotype.

The average fitness of cooperators and defectors are given as:

w; = awee + (1 — a)[zwee + (1 — 2)wep)

wy = awpp + (1 — a)[zwpe + (1 — 2)wpp]

Using the classical notations P = wpp, R = wee, S = wep, T = wpe:
wy =aR+ (1—a)[zR+ (1 —2)9]

wy =aP+ (1 —a)[zT + (1 —2)P]

The three equilibria in this case are:

1. z=01is stable if (R — 5) < P — S.
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2. z=1isstable if (T — P) > T — R.
3. z*= ﬁ;ﬁ% exists if 0 < z* < 1 and is stable if
R-S5<T-P.
These comply with the results of Bergstrom (2003).

2.2. Prisoner’s Dilemma with positive assortment

The three equilibria in the Prisoner’s Dilemma with positive assortment
with 7> R > P > S payoffs are:

1. zinsstableifa<g—:§
2. z=11is stable if o > %.
3. zf = Loafi-(-a)S  oyigts if £=5 < o < Z=B and is stable if

R-S T—P
oz*
_ps =0; 2% _r-r =1; >0
=r-5 ’ ‘a*ﬁ ' Oa )

(—a)(R+P—5-T)
R—-S<T—-P. (2

«

In the Prisoner’s Dilemma with positive assortment, close to complete
mixing (o < ;—:g) all cooperators die out, and close to perfect assortment
T—R

(a > T=£) all defectors die out. For intermediate cases of £=2 < o < =&

we have a stable mixed equilibrium with z monotonously rising from 0 to 1
as o is rising from £=5 to Z=£ (cf. Figure .2).

INSERT FIGURE .2 HERE

It is interesting to note that a homogenous population of cooperators is an
evolutionary stable equilibrium when positive assortment is above a
threshold level of %. This is also one of the two thresholds that the
continuation probability has to exceed in the iterated Prisoner’s Dilemma
for a trigger strategy Tit for Tat (TFT) being an equilibrium (Axelrod,
1984). The similarity is more than pure resemblance: in both cases, the
condition describes the minimum probability that a cooperator interacts
with another cooperator.

In the single-shot Prisoner’s Dilemma in an evolutionary horizon, if

g—:g > ;:ﬁ, then the mixed equilibrium is unstable and above the critical
value of z*, the population evolves to full cooperation, and below the
critical value of z*, the population evolves to full defection (cf. Figure .3).

INSERT FIGURE .3 HERE




2.3. Hawks and Doves with positive assortment

The three equilibria in the Hawks and Doves game with positive assortment
with T'> R > S > P payoffs are:

1. z = 0 is never stable.
2. z = 1is stable if > IT=£

3. 2= % exists if a < % and is always stable.
S5—P ) _ 1. 0z
(0 < 2*|a=0 = SPIT-R < L; Z*la:% =L e > 0)

In the Hawks and Doves game with positive assortment, close to perfect

assortment (o > I=8) all defectors die out. For a < Z=£ there is a stable

. a1 . .. S—_P : .
mixed equilibrium with z monotonously rising from g tolasais
increasing from 0 to 2= (cf. Figure .4).

INSERT FIGURE .4 HERE

2.4. Stag Hunt with positive assortment

The three equilibria in the Stag Hunt game with positive assortment with
R>T > P > S payoffs are:

0 : P-S
1. z=01is stable if o < ol

2. z =1 is always stable.
3. 2F = % exists if a < g:g and is never stable.
_ _ PS8 ) _ Q. 9z
(0 < Z*|a:0 = P_STR-T < 1, Z*la:% = 0, é < 0)

The mixed equilibrium in the Stag Hunt game with positive assortment
exists if a < % but it is not stable. A tiny move helow the equilibrium
point results in all cooperators dying out. Similarly, a tiny move above the
equilibrium point has the consequence that all defectors die out. Besides, if
o> % then only full cooperation is an ESS; otherwise both full
cooperation and full defection are stable equilibria (cf. Figure .5).

INSERT FIGURE .5 HERE

3. The Price of Cooperation

3.1. General guidelines of a comparative analysis

In this section, we determine the conditions under which increasing the
benefits of cooperation results in fewer cooperators at equilibrium; or



decreasing the benefits of cooperation results in an increase in more
cooperators at equilibrium in social dilemmas with positive assortment. As
the effects of changing a single parameter are trivial, we highlight that
paradoxes occur when two (or more) payoffs are modified.

3.2. Prisoner’s Dilemma with positive assortment

3.2.1. Boundary conditions (Prisoner’s Dilemma)

We do not find any surprises when analyzing the effect of changes in single
parameter values of the Prisoner’s Dilemma with positive assortment on the
proportion of cooperators at equilibrium. As one can already directly imply
from the payoff matrix (Table .1), an increase in R or S are beneficial for
cooperation and an increase in T or P are beneficial for defection. Hence,
the effects of the change in single payoff parameters on z* are trivial.

For instance, when the reward for mutual cooperation R is increased, the
proportion of cooperators in the mixed ESS of the Prisoner’s Dilemma with
positive assortment also increases. Paradoxes might occur however, when at
least two parameter values, one that favors cooperation and one that favors
defection (for instance, R and T') are modified at the same time. In case
AT > AR, where we intuitively would expect the decrease of cooperators in
ESS, the proportion of cooperators actually rises in a certain range of « (an
example is shown in Figure .6).

INSERT FIGURE .6 HERE

One can see from Figure .2 that a mixed equilibrium is ESS in the
Prisoner’s Dilemma with positive assortment for P=S<a< %. Let us

R—5
now introduce the notation oy, = % and ay = % for the boundaries.
The effects of single payoff parameters on the boundaries are
self-explanatory and help us to determine the conditions under which
paradoxes occur. For this, at least two parameters should change at the
same time. Table .2 shows all possible pairs of parameter changes which
may cause a paradox. In Appendix I, all cases denoted with an asterisk in
Table .2 are explored.
INSERT TABLE .2 HERE
Consider the case when the temptation reward T is increased. This clearly
favors defection, because it has an unambiguous impact on z* (see previous
section) and also on «y. Let us also increase at the same time R that
favors cooperation (for the other cases see Appendix I). If AT > AR, and
especially if AT is larger than AR with an order of magnitude (AT > AR),



we would intuitively expect that the proportion of cooperators in mixed
equilibrium is decreasing. This is, however, not the case for all values of «.
The explanation is that if a mixed equilibrium exists, the increase in T has
only an impact on the upper bound, but not on the lower bound of the
range of mixed equilibrium.! On the other hand, a tiny increase in R
already has the consequence that a mixed equilibrium will exist also for «
values lower than the original lower bound of «y. This is displayed on
Figure .8. We see a paradox in the range between o/ and ay. Between o
and «y, the full defection equilibrium has been replaced by a mixed
equilibrium and between aj, and ap the proportion of cooperators in mixed
equilibrium has increased.?

INSERT FIGURE .7 HERE

INSERT FIGURE .8 HERE

3.2.2. The paradox of cooperation benefits in the Prisoner’s Dilemma with
positive assortment

Consider the situation when o < ag that is g—:g < %. This means that

a mixed equilibrium exists in the Prisoner’s Dilemma game with positive

assortment (see Figure .2). When the temptation reward T is increased (to

T') and R or S are increased (to R’ and_.S’) or P is decreased (to P’), then

a paradox occurs in the following range of «:
o Py <a<P—Si
P R=S" T T R-S
where a mixed equilibrium will be ESS while originally, full defection was
the only stable equilibrium’ (see Figure .7). In addition, the proportion of

ar,

!Changing P and R is a special case, since both parameters have an effect on both
boundaries of a. And yet, as can be seen in Appendix I, this case may also yield a
paradox. See Figure .7.

AT

2Let’s consider two cases, when AR — 00t

e AR is fixed and AT — oo:

The range of « in which a paradox occurs approaches [R’, R] which has a fixed
length, but Az* approaches zero, so the paradox disappears in limit value.

e AR — 0 and AT is fixed:

The length of the range of « in which a paradox occurs approaches zero, so the
paradox disappears in limit value.
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cooperators in the mixed equilibrium increases in the range:

P-S o<
o = a < o
L= B3 T
where a7 can be obtained from:
% P*OCTR* (1*CYT)S P/*OzTRI* (I*QT)SI

z = =

l-ar)(R+P-5-T7) (I-an)(R+P -9 -T)

that gives:

P-S il
_ RP-S5-T _ R+P—-5'-T
ar RS RS (2)
R+P—S—T ~ R+P—5—T'
Consider now the situation when oy, > ay that is ;—:‘; > %. This means

that there is no mixed equilibrium (see Figure .3). When the temptation
reward T and the cooperation reward R are both increased and AT > AR,
and especially if AT > AR, then conditions are seemingly more
advantageous for defection. Paradoxically, in a certain range of «,
conditions become more favorable for cooperation (see Figures .9 and .10).
INSERT FIGURE .9 HERE

Figure .9 indicates the case, when o/ > o/;. For

pP—S X/ )

o — =
R =5 “R-S
only full cooperation is possible (if the initial z is greater than the critical

z* value), while originally full defection was also a stable equilibrium.
For

af = ag,

pP-S

R -5

the critical value of z* is decreased, which is clearly favorable for
cooperation. Tf the initial ratio of cooperators is random (marked with an x
on Figure .9), a lower z* means a higher chance of reaching full cooperation.
INSERT FIGURE .10 HERE

Figure .10 indicates the case, when o/, < oy, so the new upper and lower
bounds are swapped back.

For

/
ar <o <ap=

11



/
ag < a<dap

full defection is the only stable equilibrium instead of full cooperation and
full defection depending on the initial z. This is favorable for defection.?
For

ay <a<ag

full cooperation is the only stable equilibrium instead of full cooperation
and full defection depending on the initial z. This is favorable for
cooperation, thus paradoxical.?

For

af <a<aly

the mixed equilibrium z* becomes ESS instead of full cooperation and full
defection. As « approaches oy, the change in the parameters gets more
favorable for cooperation, but there is no unambigous interval where the
effect of change is paradoxical.

3.3. Hawks and Doves with positive assortment

3.3.1. Boundary conditions (Hawks and Doves)

A similar analysis can be carried out for the Hawks and Doves game with
positive assortment. We will avoid overlapping discussions. It is easy to see,
for instance, that the effects'of T, R, P and S on z* are the same as in the
Prisoner’s Dilemma with positive assortment (see Section 3.2.1).

One can see from Figure .4 that a mixed equilibrium is ESS in the Hawks
and Doves game with positive assortment for o < ay = %. The effects of
single payoff parameters on this boundary are the same as in the Prisoner’s
Dilemma.

3If o, < ay, the equilibrium between the two is mixed instead of the original full
defection, which is favorable for cooperation, thus paradoxical.

*f ar < oy, the equilibrium between the two is mixed instead of the original full
cooperation, which is favorable for defection, so there is no paradox.

12



3.8.2. The paradox of cooperation benefits in the Hawks and Doves game
with positive assortment

Let’s increase T and R (to 7" and R'), so that AT > AR. A paradox

occurs in the following range of a:

T — R T—-R

P T T-p"

where mixed equilibrium gives place to full cooperation. In addition, the

proportion of cooperators in the mixed equilibrium increases in the range:

’
Oy = o

T'— R
<a<dy=——-
ar <a<ap =
where ay is defined in equation (2). See Figure .11.
INSERT FIGURE .11 HERE

3.4. Stag Hunt with positive assortment

3.4.1. Boundary conditions (Stag Hunt)

The effects of T, R, P and S on z* are the same as in the Prisoner’s
Dilemma except for their signs. The effects of T', R, P and S on «y, are the
same as in the Prisoner’s Dilemma.

3.4.2. The paradoz of cooperation benefits in the Stag Hunt game with
positive assortment

Let’s increase T and R (to T and R'), so that AT > AR. A paradox

occurs in the following range of «:

P-5 < pP-S
R-5~““R-§5°~
where only full cooperation will be stable while originally both full
cooperation and full defection were stable depending on the initial z. In
addition, the critical value z* above which full cooperation can develop
decreases in the range:

o) = ar

, P-S
apr < a < oy = m
where ay is defined in equation (2). See Figure .12.
INSERT FIGURE .12 HERE

13



Finally, note that although we have modified T and R in our examples,
other changes in the payoff parameters also induce similar paradoxes. In
short, for a paradox to occur it is necessary that at least two payoff values
change at the same time. The pairs of payoffs that at least need to change
and the direction of change are indicated in Table .2. More than two
changes also result in paradoxes, but these cannot be interpreted in such a
straightforward way as our examples. As we determined ar in equation (2)
in a general way, this could help us to derive other paradoxes. Furthermore,
we have listed paradoxical results in Appendix I for the non-trivial cases of
parameter changes in Table .2.

4. Evolution of positive assortment

It has been demonstrated that when individuals are able to select their
interaction partners, this increases cooperation in the population (partner
selection: Yamagishi et al, 1994; Yamagishi and Hayashi, 1996; or exit:
Schuessler, 1989; Vanberg and Congleton, 1992). Furthermore, when
cooperation cannot evolve in networks with high connectivity, an additional
mechanism of topological co-evolution ensures the survival of cooperation
(Santos et al, 2006).

Some studies have also highlighted that humans have a cognitive capacity
to guess accurately who are cheaters or defectors (Yamagishi et al, 2003).
This trait might have evolved as a result of remembering cheater
characteristics (Cosmides, 1989; Cosmides and Tooby, 1992) or just as a
result of remembering characteristics (either cheaters or cooperators) that
are less frequently found in the population (Barclay, 2008).

A possible extension of our model could be to let the positive assortment
parameter « evolve endogenously. This is equivalent to introducing an
evolvable trait that enables individuals to recognize and select their
interaction partners with a certain degree of accuracy. As Wilson and
Dugatkin (1997) notes, it is likely that the cognitive prerequisites for
assortative interactions are often satisfied. If defectors are able to recognize
the type of others, it is reasonable to assume that they do not choose an
interaction partner of their own type (cf. Bergstrom, 2003). They would
rather choose cooperators; because this provides them with higher payoffs.
In this model extension « denotes the positive assortment of cooperators
and ( denotes the negative assortment of defectors. We assume that a
certain individual is randomly selected and based on the « (/) parameter of

14



this individual, an interaction partner is chosen. The interaction partner is
forced to play, thus his or her a () parameter does not influence whether
the interaction takes place or not.

The average fitness of cooperators and of defectors can be expressed as:

wo = 0T LT OPRRE AU =28 () B+ (= DS
wp = 2(1—0{)# (12 B+ (11— ﬁ)Z]Tlt(i - B)(1—2)2P

Unsurprisingly, evolution selects for a =1 (aa%f > (). The ESS value of

depends on T" and P (%"—; =(1—=2)(T —2P)). If T > 2P, evolution-selects

for 3 =1 (defectors prefer exploiting cooperators by selecting them). If

T < 2P, evolution selects for 3 = 0 (defectors prefer interacting with
themselves by selecting randomly). In the latter case, however, we > wp
for every z, so z* = 1 is the evolutionary stable equilibrium. In the former
case (T > 2P, = 1), there are more subcases:

e if S=0

— if 2R > T, then z* =1

— if 2R < T, then z* =0

— if 2R =T, then z* does not exist
e if §>0

— if 2R > T, then z* =1

— if 2R < T, then z* S

= T+S—2R

If $>0and T > 2R, then z* = 75— If we increase T and R

simultaneously, and AR < AT < 2AR, then the ratio of cooperators
increases, which is a paradox.

5. Discussion

This study has demonstrated that raising the rewards of cooperation might
play against the success of cooperative behavior in populations where
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cooperators are more likely to meet other cooperators than by chance. We
found this new and counter-intuitive result for all social dilemmas: in the
Prisoner’s Dilemma, in the Hawks and Doves game as well as in the Stag
Hunt game.

It is important to note, however, that there is no paradox if only one payoff
parameter is modified. Increasing purely the rewards for mutual
cooperation (R), for instance, always provides improved conditions for
cooperation. To obtain a paradoxical result, it is necessary that at least two
payoff parameters are changed. We have shown, for instance, the case when
both the temptation reward (7) and the reward for mutual cooperation (R)
have been increased in the Prisoner’s Dilemma with positive assortment
such that AT > AR. This is a situation that is favorable for defectors. We
have demonstrated, however, that in this case, there is always a non-zero
range of positive assortment; when the equilibrium proportion of
cooperators increases.

Furthermore, the paradox only occurs at a certain range of positive
assortment. This means that at certain probabilities, which describe how
much more likely two cooperators meet each other, rewards of cooperation
backfire and increase the proportion of defectors in the population.
Similarly, it applies only to a limited range of positive assortment that
payoffs that favor defection backfire and increase the proportion of
cooperators. Typically, when cooperators too often or too rarely meet each
other, then increasing the rewards of cooperation will not diminish their
chances of survival. In this paper, we have shown the exact conditions
when the increase of rewards of cooperation and when the increase of
rewards of defection contributes to a paradoxical change in the equilibrium
proportion of cooperators and defectors in the Prisoner’s Dilemma, in the
Hawks and Doves game; and in the Stag Hunt game.

We have also clarified why the paradox occurs. A mixed proportion of
cooperators and defectors is evolutionary stable in a certain range of
positive assortment in all social dilemmas. The boundary conditions of
mixed equilibrium unequivocally determine the equilibrium proportion of
cooperators within the boundaries. The boundary conditions, however, are
not affected by all payoff values. The lower bound is independent of the
temptation reward (7') and the upper bound is independent of the sucker’s
reward (S). This implies that a change of T or .S and another parameter
will leave place for paradoxical results. Furthermore, paradoxes can also
occur when both boundaries change (P and R are modified).
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The paradox we found in this paper is very counter-intuitive in the light of
previous theoretical results on the evolution of cooperation. Hamilton’s rule
(1964) asserts that altruists will spread in a population if ab — ¢ > 0. This
means that if the benefits of cooperation increase, it always benefits
altruists (cooperators) and results in their dissemination (see Appendix II).
In this paper, we found justification for this result and found no paradoxes
in a special case of payoff structure that has restrictions on payoffs using a
single benefit and cost parameter (see e.g. Doebeli and Hauert, 2005: Table
1). We highlighted that the counter-intuitive cases have been overlooked
previously due to the simplified representation of social dilemma games:.
On the contrary, we determined the conditions of paradoxical situations in
which increased cooperation benefits result in a lower share of cooperators
using the four payoff parameters (T, R, P, S) of the more general
description of social dilemmas (see e.g. Axelrod, 1984). Our result might
seem narrow, because paradoxes only occur for a certain parameter range,
but they provide a general warning for research on the evolution of
cooperation that parameter restrictions in social dilemmas can result in a
loss of important insights.

The fact that in most empirical social dilemma situations, we find
cooperators and defectors co-existing, underline the relevance of these
results. In empirical cases, matching is not random, but is biased towards
meeting the same types (see e.g. Ohtsuki et al, 2006). This might be
voluntary (homophily) or unconscious; as it is the case in spatially
structured populations. This paper has highlighted paradoxical effects of
cooperation benefits concerning these empirically highly relevant situations.
As empirical situations are always more complex then simple models, it is
difficult to justify that these paradoxical effects frequently occur in nature.
Although there might be other explanations, there are some documented
cases that at least partially in line with our theoretical findings.

Human societies vary in their level of assortativity, but interactions rarely
occur randomly. In some societies people rely less on market exchange than
in others (i.e., there is a lower degree of market integration), which is
presumably linked to assortativity. Experiments find more cooperation in
societies with higher degree of market integration (Henrich et al, 2001;
2004). In Ultimatum Game experiments conducted in societies with a
moderate degree of market integration, larger stakes caused no or only
minor changes in behavior (Fehr and Tougareva, 1995; Slonim and Roth,
1998; Cameron, 1999; Fehr and Schmidt, 2005).
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In the classical Prisoner’s Dilemma experiments of Rapoport and Chammah
(1965), consistent with later findings (cf. Ledyard, 1995), modifying single
payoff parameters produced the expected changes in cooperation rates. In
some cases, where there are more than one payoff difference between the
two games compared, however, unexpected differences occur in cooperation
rates. For instance, the comparison of Games II
(T=10,R=1,P=-9,S=-10)and IV (T =2,R=1,P=-1,5=-2)
reveal that modifying P in favor of defection and two other parameters (T,
S) in favor of cooperation equally within the same experiment does not
cause higher, but lower cooperation rates (Game II: 77%, Game IV: 66%).
A similar paradox with three payoff differences occur for the comparison of
Games I (T =10,R=9,P = —1,5 = —10) and IV (Game I: 73%;
Rapoport and Chammah, 1965: 37).

Our results imply that interventions that invest less in cooperation benefits
lead to a larger proportion of cooperators if interactions take place at a
certain level of positive assortment, but also imply that environmental
systems that reward cooperators to a lesser extent can sustain more
cooperation, if cooperators meet each other more often than pure chance
would dictate.
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Appendix I

In this appendix, we will look at cases in Table .2 (Prisoner’s Dilemma with
positive assortment and o« < ay) marked with asterisk. For all pairs of

parameters there are two mirrored cases, so we only need to analyze one of
them. In all the cases below we refer to ap, which is defined in equation (2).

Increasing T and R
o if (1 <)% < %
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then Aoy, < 0 and Aay > 0: paradox for o < ap, where beneficial for

C (vs AT > AR). See Figure .8 for this case. =5 < 2L can be
T+AT-R-AR o T-R

deduced from o > ap that is =575 75 Other results in

the Appendix are obtained in a similar way.

o if 1 < 8L < I=F

then Aap < 0 and Aag < 0: paradox for every «a, because it is
beneficial for C (vs AT > AR)

¢ AT
.lfﬁ<1

then Aay, < 0 and Aay < 0: normal for every «

Increasing T and decreasing P
o if 1 < %:

_ e T-R _ AT
if =5 < 1am

then Acay, < 0 and Aay > 0: paradox for o < ar, where
beneficial for C (vs AT > |AP|)

. AT _ T-R

— lf 1< W < R_P
then Aay < 0 and Aay < 0: paradox for every «, because it is
beneficial for C (vs AT > |AP|)

i AT

then Aap < 0 and Aayg < 0: normal for every o

4 T—R .
.lfﬁ<1

: AT
—1f1<m

then Aaj, < 0 and Aay > 0: paradox for o < ag, where
beneficial for C (vs AT > |AP|)
o T A
then Aoy < 0 and Aay > 0: paradox for o > o, where
beneficial for D (vs AT < |AP|)

~if AL < 1on
then Aa;, < 0 and Aay < 0: normal for every «
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Increasing T and S
o if AT > AS

Aap < 0 and Aag > 0: paradox for @ < ag, where beneficial for C
(vs AT > AS)

o if AT < AS

Aoy, < 0 and Aay > 0: paradox for o > a, where beneficial for D
(vs AT < AS)

Increasing R and P
¢ AP _ P—S
[ ] lf AR < ﬁ(< 1)
then Aay, < 0 and Aay < 0: normal for every «
e P—S _ AP
[ ] lf R_S < AR < 1
then Aay, > 0 and Aag < 0: paradox for o < aq, where beneficial for

D (vs AP < AR)

o if 1 < £8 < IT-£

then Aay, > 0 and Aay < 0: paradox for o > a7, where beneficial for
C (vs AP > AR)

o if (1 <)% < %
then Aay, > 0 and Aoy > 0: normal for every «

Increasing R and decreasing S
o if 1 < £5:

_ lf pP-S < M
R—P ~ AR
then Aoy > 0 and Aay < 0: paradox for o > ap, where

beneficial for C (vs |AS| > AR)
P-53

_ |AS|
1f1<AR<R}D

then Aayp < 0 and Aag < 0: paradox for every «, because it is
beneficial for C (vs |AS| > AR)

_ e |AS]
if ~n <1

then Aay, < 0 and Aay < 0: normal for every «
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¢ P—S .
.lfﬁ<1

; |AS]

—ifl< AR
then Aay > 0 and Aay < 0: paradox for o > ar, because it is
beneficial for C (vs |AS| > AR)

¢ P—S |AS
then Aay, > 0 and Aay < 0: paradox for o < ay, where
beneficial for D (vs |[AS] < AR)

_ :r |AS] P-5
if X7 < 75

then Acay, < 0 and Aay < 0: normal for every a

Increasing P and S
o if (1 <)% < %
then Aayp < 0 and Aay > 0: paradox for a > ar, where beneficial for
D (vs AS > AP)

. AS _ R-S
[ ] lf 1 < AP < ﬁ
then Aay > 0 and Aay > 0: paradox for every «, because it is

beneficial for D (vs AS > AP)
e A
o if Tﬁ <1

then Aay > 0 and Aay > 0: normal for every o

Appendix IT

Consider the special case where T =0, R=b—¢, P =0, and S = —¢,
hence T'— R = P — S = c¢. In this special case, we have fewer parameters
(b, ¢) and these parameters can simply be interpreted as benefits and costs.
In this case, z = 0 is evolutionary stable if ab — ¢ < 0, z = 1 is evolutionary
stable if ab — ¢ > 0, and there is no mixed equilibrium. Hence, we have
obtained a re-derivation of Hamilton’s rule for this special case with
positive assortment (a similar re-derivation is given in Hamilton, 1971;
1975; Bergstrom, 2003). Furthermore, there are no paradoxical cases as the
increase of ¢ is always beneficial for defection and the increase of b is always
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beneficial for cooperation. The simultaneous increase of ¢ and b (if

Ac > Ab) also benefits defection.”

In short, the fundamental reason why Hamilton’s rule leaves no space for
paradoxes lies in the simplification of the social dilemma with a single cost
(c¢) and benefit (b) parameter with the restriction of T — R=P — S =c.
The simplified Prisoner’s Dilemma game nicely applies to symmetric
decisions of altruistic help, where altruists suffer costs, but the benefits of
their altruistic act are only enjoyed by their interaction partner (e.g.
Doebeli and Hauert, 2005; Ohtsuki et al, 2006). This is however, only a
special case of the Prisoner’s Dilemma game. If the payoffs of the Prisoner’s
Dilemma are expressed as independent parameters with their ordinal
ranking fixed (see e.g. Axelrod, 1984), then we obtain the paradoxical
results in which the increase in cooperation benefits can result in fewer
cooperators.

A paradoxical case (Ac > Ab and increasing ab — ¢) might occur when b < ¢, but it
implies that R < P, which cannot hold in a social dilemma game.
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Figure .1: ESS in Social Dilemmas with Complete Mixing. a) There is no
mixed equilibrium in the Prisoner’s Dilemma. The only ESS is defection.
b) The only ESS in the Hawks and Doves game is a mixed equilibrium.

¢) The mixed equilibrium is not an ESS in the Stag Hunt game. z*
P—aR—(1-a)S
A—a)(RTP—5-T)"

For the meaning of « see section 2.1.
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Figure .2: Evolutionary stable values of z as a function of « in Prisoner’s
Dilemma with positive assortment if £=5 < I=£,
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Figure .3: z(a) in Prisoner’s Dilemma with positive assortment if
T

R—5
:g. The solid lines indicate the stable equilibria of full cooperation and full

P-53
defection. The dashed line indicates the unstable mixed equilibrium z*.
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Figure .4: Evolutionary stable values of z as a function of « in the Hawks
and Doves game with positive assortment.
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Figure .5: z(«) in Stag Hunt with positive assortment. The solid lines indi-
cate the stable equilibria of full cooperation and full defection. The dashed
line indicates the unstable mixed equilibrium z*.
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Figure .6: Mixed equilibria (ESS) in the Prisoner’s Dilemma with positive
assortment when R and T are increased. The solid lines indicate the original
fitness functions. Dashed and dotted lines indicate the new fitness functions.
wy(z) in green and wy(z) in red. 2” is the normal, 2’ is the paradoxical case.
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Figure .7: The paradox of cooperation benefits in the Prisoner’s Dilemma
with positive assortment and ay < ag. The solid line is the original z(«)
function. The dashed line shows the case when P and R are increased.
Parameter values for this figure are: T =7, R=3, P=1,5 =0, AR =1,
and AP =0.7 (AR> AP).
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Figure .8: The paradox of cooperation benefits in the Prisoner’s Dilemma
with positive assortment and oy < ag. The solid line is the original z(«)
function. The dashed line shows the case when R and T are increased.
Parameter values for this figure are: T=7, R=3, P=1,5 =0, AT = 14,
and AR =2 (AT > AR).
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Figure .9: The paradox of cooperation benefits in the Prisoner’s Dilemma
with positive assortment and «j > ay and o > of;. The solid lines indi-
cate the original stable equilibria of full cooperation and full defection. The
dashed line indicates the unstable mixed equilibrium z*.

The dotted line
shows the case when R and 7' are increased (the mixed equilibrium is still
unstable). Parameter values for this figure are: T'=1.75, R=1.5, P =1,

S =0, AT = 0.5, and AR = 0.2 (AT > AR). The x indicates a random
initial ratio which evolves to full defection with the original parameters, and
to full cooperation with the modified ones.
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Figure .10: The paradox of cooperation benefits in the Prisoner’s Dilemma
with positive assortment and oy > ay and o < of;. The solid lines indi-
cate the original stable equilibria of full cooperation and full defection. The
dashed line indicates the unstable mixed equilibrium z*.

The dotted line
shows the case when R and T are increased (the mixed equilibrium becomes
stable). Parameter values for this figure are: T = 1.75, R = 1.5, P =1
S =0, AT =234, and AR =0.77 (AT > AR).
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Figure .11: The paradox of cooperation benefits in the Hawks and Doves
game with positive assortment. The solid line is the original z(«a) function.
The dashed line shows the case when R and T are increased. Parameter
values for this figure are: T=3, R=1, P=0,5S=1, AT =5,and AR =3
(AT > AR).
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Figure .12: The paradox of cooperation benefits in the Stag Hunt game with
positive assortment. The solid lines indicate the original stable equilibria of
full cooperation and full defection. The dashed line indicates the unstable
mixed equilibrium. z*. The dotted line shows the case when R and T are
increased. Parameter values for this figure are: T=1, R=3, P=1, 5 =0,
AT =3, and AR =2 (AT > AR).
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Table .1: Payoffs in Social Dilemma Games. 7 > R > P > S in the
Prisoner’s Dilemma, T" > R > S > P in the Hawks and Doves game, and
R >T > P > S in the Stag Hunt game.
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Table .2: Effects of changing two parameters. 1/| increase/decrease, C/D
beneficial for cooperators/defectors, ? ambiguous (depends on the exact
values of these and other parameters. * denotes cases, when there might be
a paradox in certain ranges of the payoff parameters (and their changes), and
** denotes cases, when there is a paradox for certain « values for all ranges
of the payoff parameters.
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