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It seems obvious that as the benets of cooperation increase, the share of cooperators in the population should also increase. It is well known that positive assortment between cooperative types, for instance in spatially structured populations, provide better conditions for the evolution of cooperation than complete mixing. This study demonstrates that, assuming positive assortment, under most conditions higher cooperation benets also increase the share of cooperators. On the other hand, under a specied range of payo values, when at least two payo parameters are modied, the reverse is true. The conditions for this paradox are determined for two-person social dilemmas: the Prisoner's Dilemma, the Hawks and Doves game, and the Stag Hunt game, assuming global selection and positive assortment.

Introduction

Cooperation in single-shot two-person social dilemmas is a dicult puzzle that has attracted many theorists. If the interaction is not repeated, there is no place for reciprocity, reputation, image scoring or other similar mechanisms that sustain cooperation. Without doubt, the possibilities for the evolution of cooperation are very limited in single-shot social dilemma situations with complete mixing (random interactions), i.e., when
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individuals are paired with a partner from all possible actors with uniform probability. In social dilemmas, cooperators can be exploited by defectors, which leads to the extinction of cooperation in evolutionary terms.

The exception is the Hawks and Doves game, in which in evolutionary equilibrium, cooperators (doves) establish a share in the population [START_REF] Smith | Evolution and the Theory of Games[END_REF]. In the Hawks and Doves game (Table .1), increasing the payos for mutual cooperation ( R) will increase the proportion of cooperators at equilibrium (cf. [START_REF] Smith | Evolution and the Theory of Games[END_REF]. A smaller temptation payo (T ), a smaller payo for mutual defection ( P ), and a higher sucker's payo (S ) will also increase the proportion of cooperators in evolutionary equilibrium. Hence, the role of cooperation benets is clear: an increase always contributes to a larger share of cooperators in the population. Similarly, larger benets for defection (hawks) will always decrease the share of unconditional cooperators in the population.

INSERT TABLE .1 HERE

In all social dilemmas, when cooperators are more likely to meet each other than by pure chance, the benets of cooperation go also more likely to cooperators. This is a segmentation eect that can make cooperation a viable strategy [START_REF] Becker | Altruism, egoism, and genetic tness: Economics and sociobiology[END_REF][START_REF] Axelrod | The evolution of cooperation[END_REF][START_REF] Queller | Kinship, reciprocity and synergism in the evolution of social behavior[END_REF][START_REF] Bowles | The moral economy of communities: Structured populations and the evolution of prosocial norms[END_REF][START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF]. For instance, cooperators are more likely to meet other cooperators if interaction and reproduction takes place in a spatial structure or in a social network [START_REF] Ohtsuki | A simple rule for the evolution of cooperation on graphs and social networks[END_REF][START_REF] Wang | Learning and Innovative Elements of Strategy Adoption Rules Expand Cooperative Network Topologies[END_REF]. In most social dilemmas, the introduction of a spatial arrangement modies equilibrium conditions in favor of cooperation [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF]. A spatial structure promotes cooperation also in the mostly studied Prisoner's Dilemma (Nowak andMay, 1992, 1993;[START_REF] Hubermann | Evolutionary games and computer simulations[END_REF][START_REF] Nowak | Spatial games and the maintenance of cooperation[END_REF].

In contrast with the spatial Prisoner's Dilemma, a spatial structure has no positive eect in the Hawks and Doves game if local interaction is coupled with local competition for reproduction [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF].

Population viscosity, where neighbors compete with each other to occupy nearby spaces for their ospring, unsurprisingly has a drawback for segmented clusters of cooperators. The counterpoint of positive assortment and local competition in viscous populations has been well studied (Taylor, 1992a,b;[START_REF] Wilson | Can altruism evolve in purely viscous populations?[END_REF][START_REF] Queller | Genetic relatedness in viscous populations[END_REF][START_REF] Van Baalen | The unit of selection in viscous populations and the evolution of altruism[END_REF][START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF][START_REF] Grafen | Natural selection of altruism in inelastic viscous homogeneous population[END_REF]. Despite the
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relevance of this problem, a necessary rst step to investigate eects of cooperation benets on the share of cooperators with positive assortment is to neglect local competition and assume (for the sake of simplicity)

selection at a global level.

Hamilton's rule (1964), which has been the basis for one of the most important explanations of the evolution of altruism, can be used to determine the eect of cooperation benets assuming positive assortment.

If α denotes the frequency to which the benets of altruism accrue to other altruists rather than to average population members, b denotes the benets of altruism to the partner and c indicates the cost to the altruist, then altruists will increase their share if their inclusive tness αbc is greater than zero. Clearly, an increase in benets b will always make it more likely that this requirement of Hamilton's rule is met, indicating that larger cooperation benets always increase the proportion of cooperators in the population.

The general result of [START_REF] Ohtsuki | A simple rule for the evolution of cooperation on graphs and social networks[END_REF] is very similar to Hamilton's rule [START_REF] Grafen | An inclusive tness analysis of altruism on a cyclical network[END_REF]. They show that when interaction is not random, but determined by social networks, natural selection favors cooperation. The rule of thumb is that the benet of the altruistic act b, divided by cost c, should exceed the average number of neighbors k, which means b/c > k.

This result holds for all type of graphs, including cycles, spatial lattices, other regular graphs, random and scale-free networks. This result also implies that increasing the benets (b) of cooperation in a given structure will always support the survival of cooperators.

On the other hand, [START_REF] Németh | The evolution of altruism in spatially structured populations[END_REF] demonstrated in a simulation study that assuming spatial interaction and global selection, altruism benets might have a paradoxical eect on the proportion of altruists. They investigated a knowledge transfer interaction, in which passing knowledge is costly and an altruistic help cannot be reciprocated because knowledge is dichotomous and cannot be lost. They showed that altruists gain a share in the population, but this share decreases as the value of knowledge in terms of extended lifetime increases. This study highlights that it is misleading to draw too early conclusions from intuition and from Hamilton's rule and conclude that increased cooperation benets always result in a larger share of contributors. On the contrary, as a major contribution of this study, with a simple analysis, we intend to show that such paradoxes occur for all types of social dilemma games. With a thorough and systematic analysis of games with positive assortment, we
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will demonstrate under what conditions one can nd paradoxical eects of cooperation benets. Our ndings not only imply that an investment in extending cooperation benets might backre at a medium level of positive assortment, but also that less investment in cooperation benets can contribute to more cooperation when individuals of the same genotype meet more frequently than by chance.

1.1. The use of the Price equation

The starting point of our analysis is the Price equation [START_REF] Price | Selection and covariance[END_REF]) that has been used in its simple and general form for a wide range of evolutionary phenomena [START_REF] Frank | George Price's contributions to evolutionary genetics[END_REF][START_REF] Van Veelen | On the use of the Price equation[END_REF], including a rederivation of Hamilton's rule [START_REF] Grafen | A geometric view of relatedness[END_REF][START_REF] Queller | Kinship, reciprocity and synergism in the evolution of social behavior[END_REF]. We will use several simplications as we consider a haploid population interacting in pairs, where the genetic component of cooperation is at a single locus with two possible values: cooperation and defection. We will use the Price equation rst without payo restrictions to determine under what conditions (1) defection or (2) cooperation is an evolutionary stable strategy [START_REF] Smith | The logic of animal conicts[END_REF] and under what conditions there is a (3) mixed equilibrium of defectors and cooperators. Consider two groups: cooperators and defectors, having characteristics z 1 = 1 and z 2 = 0. As the characteristic values do not change from the parent to the child generation (Δz i = 0), we can use the simplied Price equation:

wΔz = cov(w i , z i )
where z i are the characteristic values of dierent groups of the population, w i are their absolute tness (per capita number of ospring), z is the average characteristic value, and w is the average tness. That in our special case can be further transformed to:

wΔz = z(1 -z)(w 1 -w 2 )
(1)

1.1.1. Equilibrium
At equilibrium, Δz = 0, which gives three dierent solutions: 1. z = 0. The equilibrium proportion of cooperators is zero. 2. z = 1. The equilibrium proportion of defectors is zero.
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3. w 1 = w 2 . A mixed equilibrium of cooperators and defectors. At this point, the average number of ospring of both cooperators and of defectors are the same, which means that population ratios do not change, hence the equilibrium. This equilibrium only exists if 0 < z * < 1, where z * is the equilibrium proportion of cooperators for the solution w 1 (z) = w 2 (z).

Stability

Let us take the partial derivative of equation ( 1) over z:

∂w ∂z Δz + w ∂Δz ∂z = ∂(z -z 2 ) ∂z (w 1 -w 2 ) + z(1 -z) ∂w 1 ∂z - ∂w 2
∂z At equilibrium we can simplify to:

∂Δz ∂z = (1 -2z) w 1 -w 2 w + z(1 -z) w ∂w 1 ∂z - ∂w 2 ∂z An equilibrium is stable if ∂Δz ∂z < 0.
Now we can take a look at the three equilibria again:

1. z = 0 ∂Δz ∂z = w 1 -w 2 w < 0
So this equilibrium is stable if w 1 < w 2 . A cooperator cannot penetrate the population because his or her tness falls below the tness of defectors. This means that defection is an evolutionary stable strategy (ESS).

2. z = 1 ∂Δz ∂z = - w 1 -w 2 w < 0 So this equilibrium is stable if w 1 > w 2 . This means that cooperation is an ESS. 3. w 1 = w 2 ∂Δz ∂z = z(1 -z) w ∂w 1 ∂z - ∂w 2 ∂z < 0 So this equilibrium is stable if ∂w1 ∂z < ∂w2 ∂z .
If the ratio of cooperators increases, their tness falls below the tness of defectors, so their ratio decreases back. Similarly, if the ratio of cooperators decreases, their tness exceeds the tness of defectors, so their ratio increases back. Let us now study populations in which the interaction probability of two individuals of the same genotype might be dierent from the probability of interacting with an average individual. Let us denote the tness of individuals with genotype G interacting with another individual with genotype H by w GH . We will denote the level of positive assortment by α. This is the probability that an average individual interacts with another individual of its own genotype instead of with a randomly selected partner [START_REF] Cavalli-Sforza | Cultural transmission and evolution: A quantitative approach[END_REF]. Thus α = 0 means random interaction or complete mixing, in which individuals of the same genotype only meet each other, as expected, based on their share in the population, and α = 1 means that individuals meet only members of their own genotype.
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The average tness of cooperators and defectors are given as:

w 1 = αw CC + (1 -α)[zw CC + (1 -z)w CD ] w 2 = αw DD + (1 -α)[zw DC + (1 -z)w DD ]
Using the classical notations

P = w DD , R = w CC , S = w CD , T = w DC : w 1 = αR + (1 -α)[zR + (1 -z)S] w 2 = αP + (1 -α)[zT + (1 -z)P ]
The three equilibria in this case are:

1. z = 0 is stable if α(R -S) < P -S.
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2. z = 1 is stable if α(T -P ) > T -R. 3. z * = P -αR-(1-α)S (1-α)(R+P -S-T ) exists if 0 < z * < 1 and is stable if R -S < T -P .
These comply with the results of [START_REF] Bergstrom | The Algebra of Assortative Encounters and the Evolution of Cooperation[END_REF].

Prisoner's Dilemma with positive assortment

The three equilibria in the Prisoner's Dilemma with positive assortment with T > R > P > S payos are:

1. z = 0 is stable if α < P -S R-S . 2. z = 1 is stable if α > T -R T -P . 3. z * = P -αR-(1-α)S (1-α)(R+P -S-T ) exists if P -S R-S ≤ α ≤ T -R T -P and is stable if R -S < T -P . (z * | α= P -S R-S = 0; z * | α= T -R T -P = 1; ∂z * ∂α > 0)
In the Prisoner's Dilemma with positive assortment, close to complete mixing (α < P -S R-S ) all cooperators die out, and close to perfect assortment

(α > T -R T -P ) all defectors die out. For intermediate cases of P -S R-S ≤ α ≤ T -R T -P
we have a stable mixed equilibrium with z monotonously rising from 0 to 1 as α is rising from

P -S R-S to T -R T -P (cf. Figure .

2). INSERT FIGURE .2 HERE

It is interesting to note that a homogenous population of cooperators is an evolutionary stable equilibrium when positive assortment is above a threshold level of T -R T -P . This is also one of the two thresholds that the continuation probability has to exceed in the iterated Prisoner's Dilemma for a trigger strategy Tit for Tat (TFT) being an equilibrium [START_REF] Axelrod | The evolution of cooperation[END_REF]. The similarity is more than pure resemblance: in both cases, the condition describes the minimum probability that a cooperator interacts with another cooperator. In the single-shot Prisoner's Dilemma in an evolutionary horizon, if

P -S R-S > T -R
T -P , then the mixed equilibrium is unstable and above the critical value of z * , the population evolves to full cooperation, and below the critical value of z * , the population evolves to full defection (cf. The three equilibria in the Hawks and Doves game with positive assortment with T > R > S > P payos are:

1. z = 0 is never stable. 2. z = 1 is stable if α > T -R T -P . 3. z * = P -αR-(1-α)S (1-α)(R+P -S-T ) exists if α ≤ T -R T -P and is always stable. (0 < z * | α=0 = S-P S-P +T -R < 1; z * | α= T -R T -P = 1; ∂z * ∂α > 0)
In the Hawks and Doves game with positive assortment, close to perfect assortment (α

> T -R T -P ), all defectors die out. For α ≤ T -R T -P
, there is a stable mixed equilibrium with z monotonously rising from S-P S-P +T -R to 1 as α is increasing from

0 to T -R T -P (cf. Figure .4). INSERT FIGURE .4 HERE 2.

Stag Hunt with positive assortment

The three equilibria in the Stag Hunt game with positive assortment with R > T > P > S payos are:

1.

z = 0 is stable if α < P -S R-S . 2. z = 1 is always stable. 3. z * = P -αR-(1-α)S (1-α)(R+P -S-T ) exists if α ≤ P -S R-S and is never stable. (0 < z * | α=0 = P -S P -S+R-T < 1; z * | α= P -S R-S = 0; ∂z * ∂α < 0)
The mixed equilibrium in the Stag Hunt game with positive assortment exists if α ≤ P -S R-S but it is not stable. A tiny move below the equilibrium point results in all cooperators dying out. Similarly, a tiny move above the equilibrium point has the consequence that all defectors die out. Besides, if α ≥ P -S R-S then only full cooperation is an ESS; otherwise both full cooperation and full defection are stable equilibria (cf. decreasing the benets of cooperation results in an increase in more cooperators at equilibrium in social dilemmas with positive assortment. As the eects of changing a single parameter are trivial, we highlight that paradoxes occur when two (or more) payos are modied. 
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we would intuitively expect that the proportion of cooperators in mixed equilibrium is decreasing. This is, however, not the case for all values of α.

The explanation is that if a mixed equilibrium exists, the increase in T has only an impact on the upper bound, but not on the lower bound of the range of mixed equilibrium. Consider the situation when

α L < α H that is P -S R-S < T -R
T -P . This means that a mixed equilibrium exists in the Prisoner's Dilemma game with positive assortment (see Figure .2). When the temptation reward T is increased (to T ) and R or S are increased (to R and S ) or P is decreased (to P ), then a paradox occurs in the following range of α:

α L = P -S R -S < α ≤ P -S R -S = α L
where a mixed equilibrium will be ESS while originally, full defection was the only stable equilibrium (see Figure .7). In addition, the proportion of 1 Changing P and R is a special case, since both parameters have an eect on both boundaries of α. And yet, as can be seen in Appendix I, this case may also yield a paradox. See Figure .7.

2 Let's consider two cases, when ΔT ΔR → ∞:

• ΔR is xed and ΔT → ∞:

The range of α in which a paradox occurs approaches [R , R] which has a xed length, but Δz * approaches zero, so the paradox disappears in limit value. • ΔR → 0 and ΔT is xed:

The length of the range of α in which a paradox occurs approaches zero, so the paradox disappears in limit value.

A c c e p t e d m a n u s c r i p t

cooperators in the mixed equilibrium increases in the range:

α L = P -S R -S < α < α T
where α T can be obtained from:

z * = P -α T R -(1 -α T )S (1 -α T )(R + P -S -T ) = P -α T R -(1 -α T )S (1 -α T )(R + P -S -T )
that gives:

α T = P -S R+P -S-T - P -S R +P -S -T R-S R+P -S-T - R -S R +P -S -T (2) Consider now the situation when α L > α H that is P -S R-S > T -R
T -P . This means that there is no mixed equilibrium (see Figure .3). When the temptation reward T and the cooperation reward R are both increased and ΔT > ΔR, and especially if ΔT ΔR, then conditions are seemingly more advantageous for defection. Paradoxically, in a certain range of α, conditions become more favorable for cooperation (see Figures .9 and 

α L = P -S R -S < α ≤ P -S R -S = α L
only full cooperation is possible (if the initial z is greater than the critical z * value), while originally full defection was also a stable equilibrium.

For 3 If α L < α H , the equilibrium between the two is mixed instead of the original full defection, which is favorable for cooperation, thus paradoxical.

α T < α < α L = P -S R -S the critical value of z * is
4 If α L < α H , the equilibrium between the two is mixed instead of the original full cooperation, which is favorable for defection, so there is no paradox. Let's increase T and R (to T and R ), so that ΔT > ΔR. A paradox occurs in the following range of α:

α H = T -R T -P < α < T -R T -P = α H
where mixed equilibrium gives place to full cooperation. In addition, the proportion of cooperators in the mixed equilibrium increases in the range:

α T < α < α H = T -R T -P
where α T is dened in equation ( 2 The eects of T , R, P and S on z * are the same as in the Prisoner's Dilemma except for their signs. The eects of T , R, P and S on α L are the same as in the Prisoner's Dilemma.

The paradox of cooperation benets in the Stag Hunt game with positive assortment

Let's increase T and R (to T and R ), so that ΔT > ΔR. A paradox occurs in the following range of α:

α L = P -S R -S < α ≤ P -S R -S = α L
where only full cooperation will be stable while originally both full cooperation and full defection were stable depending on the initial z. In addition, the critical value z * above which full cooperation can develop decreases in the range:

α T < α < α L = P -S R -S
where α T is dened in equation (2). See Figure .12.

INSERT FIGURE .12 HERE
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Finally, note that although we have modied T and R in our examples, other changes in the payo parameters also induce similar paradoxes. In short, for a paradox to occur it is necessary that at least two payo values change at the same time. The pairs of payos that at least need to change and the direction of change are indicated in Table .2. More than two changes also result in paradoxes, but these cannot be interpreted in such a straightforward way as our examples. As we determined α T in equation ( 2) in a general way, this could help us to derive other paradoxes. Furthermore, we have listed paradoxical results in Appendix I for the non-trivial cases of parameter changes in Table .2.

Evolution of positive assortment

It has been demonstrated that when individuals are able to select their interaction partners, this increases cooperation in the population (partner selection: Yamagishi et al, 1994;[START_REF] Yamagishi | Selective Play: Social Embeddedness of Social Dilemmas[END_REF]or exit: Schuessler, 1989;[START_REF] Vanberg | Rationality, Morality and Exit[END_REF]. Furthermore, when cooperation cannot evolve in networks with high connectivity, an additional mechanism of topological co-evolution ensures the survival of cooperation [START_REF] Santos | Cooperation Prevails When Individuals Adjust Their Social Ties[END_REF]. Some studies have also highlighted that humans have a cognitive capacity to guess accurately who are cheaters or defectors (Yamagishi et al, 2003). This trait might have evolved as a result of remembering cheater characteristics [START_REF] Cosmides | The logic of social exchange: has natural selection shaped how humans reason? Studies with the Wason selection task[END_REF][START_REF] Cosmides | Cognitive Adaptations for Social Exchange[END_REF] or just as a result of remembering characteristics (either cheaters or cooperators) that are less frequently found in the population [START_REF] Barclay | Enhanced Recognition of Defectors Depends on Their Rarity[END_REF].

A possible extension of our model could be to let the positive assortment parameter α evolve endogenously. This is equivalent to introducing an evolvable trait that enables individuals to recognize and select their interaction partners with a certain degree of accuracy. As [START_REF] Wilson | Group Selection and Assortative Interactions[END_REF] notes, it is likely that the cognitive prerequisites for assortative interactions are often satised. If defectors are able to recognize the type of others, it is reasonable to assume that they do not choose an interaction partner of their own type (cf. [START_REF] Bergstrom | The Algebra of Assortative Encounters and the Evolution of Cooperation[END_REF]. They would rather choose cooperators; because this provides them with higher payos. In this model extension α denotes the positive assortment of cooperators and β denotes the negative assortment of defectors. We assume that a certain individual is randomly selected and based on the α (β) parameter of
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this individual, an interaction partner is chosen. The interaction partner is forced to play, thus his or her α (β) parameter does not inuence whether the interaction takes place or not.

The average tness of cooperators and of defectors can be expressed as:

w C = z [α + (1 -α)z]2R + (1 -α)(1 -z)S z + (1 -z) [β + (1 -β)z]S z w D = z (1 -α)(1 -z)T 1 -z + (1 -z) [β + (1 -β)z]T + (1 -β)(1 -z)2P 1 -z
Unsurprisingly, evolution selects for α = 1 ( ∂w C ∂α > 0). The ESS value of β depends on T and P ( ∂w

D ∂β = (1 -z)(T -2P )).
If T > 2P , evolution selects for β = 1 (defectors prefer exploiting cooperators by selecting them). If T < 2P , evolution selects for β = 0 (defectors prefer interacting with themselves by selecting randomly). In the latter case, however, w C > w D for every z, so z * = 1 is the evolutionary stable equilibrium. In the former case (T > 2P , β = 1), there are more subcases:

• if S = 0 if 2R > T , then z * = 1 if 2R < T , then z * = 0 if 2R = T , then z * does not exist • if S > 0 if 2R ≥ T , then z * = 1 if 2R < T , then z * = S T +S-2R
If S > 0 and T > 2R, then z * = S T +S-2R . If we increase T and R simultaneously, and ΔR < ΔT < 2ΔR, then the ratio of cooperators increases, which is a paradox.

Discussion

This study has demonstrated that raising the rewards of cooperation might play against the success of cooperative behavior in populations where
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cooperators are more likely to meet other cooperators than by chance. We found this new and counter-intuitive result for all social dilemmas: in the Prisoner's Dilemma, in the Hawks and Doves game as well as in the Stag Hunt game.

It is important to note, however, that there is no paradox if only one payo parameter is modied. Increasing purely the rewards for mutual cooperation (R), for instance, always provides improved conditions for cooperation. To obtain a paradoxical result, it is necessary that at least two payo parameters are changed. We have shown, for instance, the case when both the temptation reward (T ) and the reward for mutual cooperation (R) have been increased in the Prisoner's Dilemma with positive assortment such that ΔT ΔR. This is a situation that is favorable for defectors. We have demonstrated, however, that in this case, there is always a non-zero range of positive assortment; when the equilibrium proportion of cooperators increases. Furthermore, the paradox only occurs at a certain range of positive assortment. This means that at certain probabilities, which describe how much more likely two cooperators meet each other, rewards of cooperation backre and increase the proportion of defectors in the population.

Similarly, it applies only to a limited range of positive assortment that payos that favor defection backre and increase the proportion of cooperators. Typically, when cooperators too often or too rarely meet each other, then increasing the rewards of cooperation will not diminish their chances of survival. In this paper, we have shown the exact conditions when the increase of rewards of cooperation and when the increase of rewards of defection contributes to a paradoxical change in the equilibrium proportion of cooperators and defectors in the Prisoner's Dilemma, in the Hawks and Doves game, and in the Stag Hunt game.

We have also claried why the paradox occurs. A mixed proportion of cooperators and defectors is evolutionary stable in a certain range of positive assortment in all social dilemmas. The boundary conditions of mixed equilibrium unequivocally determine the equilibrium proportion of cooperators within the boundaries. The boundary conditions, however, are not aected by all payo values. The lower bound is independent of the temptation reward (T ) and the upper bound is independent of the sucker's reward (S). This implies that a change of T or S and another parameter will leave place for paradoxical results. Furthermore, paradoxes can also occur when both boundaries change (P and R are modied).
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The paradox we found in this paper is very counter-intuitive in the light of previous theoretical results on the evolution of cooperation. Hamilton's rule (1964) asserts that altruists will spread in a population if αbc > 0. This means that if the benets of cooperation increase, it always benets altruists (cooperators) and results in their dissemination (see Appendix II).

In this paper, we found justication for this result and found no paradoxes in a special case of payo structure that has restrictions on payos using a single benet and cost parameter (see e.g. [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF]: Table 1). We highlighted that the counter-intuitive cases have been overlooked previously due to the simplied representation of social dilemma games.

On the contrary, we determined the conditions of paradoxical situations in which increased cooperation benets result in a lower share of cooperators using the four payo parameters (T, R, P , S) of the more general description of social dilemmas (see e.g. [START_REF] Axelrod | The evolution of cooperation[END_REF]. Our result might seem narrow, because paradoxes only occur for a certain parameter range, but they provide a general warning for research on the evolution of cooperation that parameter restrictions in social dilemmas can result in a loss of important insights. The fact that in most empirical social dilemma situations, we nd cooperators and defectors co-existing, underline the relevance of these results. In empirical cases, matching is not random, but is biased towards meeting the same types (see e.g. [START_REF] Ohtsuki | A simple rule for the evolution of cooperation on graphs and social networks[END_REF]. This might be voluntary (homophily) or unconscious, as it is the case in spatially structured populations. This paper has highlighted paradoxical eects of cooperation benets concerning these empirically highly relevant situations. As empirical situations are always more complex then simple models, it is dicult to justify that these paradoxical eects frequently occur in nature. Although there might be other explanations, there are some documented cases that at least partially in line with our theoretical ndings. Human societies vary in their level of assortativity, but interactions rarely occur randomly. In some societies people rely less on market exchange than in others (i.e., there is a lower degree of market integration), which is presumably linked to assortativity. Experiments nd more cooperation in societies with higher degree of market integration [START_REF] Henrich | In Search of Homo Economicus: Behavioral Experiments in 15 Small-Scale Societies[END_REF][START_REF]Foundations of Human sociality: Economic Experiments and Ethnographic Evidence from Fifteen Small-Scale Societies[END_REF]. In Ultimatum Game experiments conducted in societies with a moderate degree of market integration, larger stakes caused no or only minor changes in behavior [START_REF] Fehr | Do Competitive Markets with High Stakes Remove Reciprocal Fairness? Experimental Evidence from Russia[END_REF][START_REF] Slonim | Learning in High Stakes Ultimatum Games: An Experiment in the Slovak Republic[END_REF][START_REF] Cameron | Raising the Stakes in the Ultimatum Game: Experimental Evidence from Indonesia[END_REF][START_REF] Fehr | The Economics of Fairness, Reciprocity and Altruism -Experimental Evidence and New Theories[END_REF].
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In the classical Prisoner's Dilemma experiments of [START_REF] Rapoport | Prisoner's Dilemma: A Study in Conict and Cooperation[END_REF], consistent with later ndings (cf. [START_REF] Ledyard | Public Goods: A Survey of Experimental Research[END_REF], modifying single payo parameters produced the expected changes in cooperation rates. In some cases, where there are more than one payo dierence between the two games compared, however, unexpected dierences occur in cooperation rates. For instance, the comparison of Games II (T = 10, R = 1, P = -9, S = -10) and IV (T = 2, R = 1, P = -1, S = -2) reveal that modifying P in favor of defection and two other parameters ( T , S) in favor of cooperation equally within the same experiment does not cause higher, but lower cooperation rates (Game II: 77%, Game IV: 66%).

A similar paradox with three payo dierences occur for the comparison of Games I (T = 10, R = 9, P = -1, S = -10) and IV (Game I: 73%; 

deduced from α H > α H that is T +ΔT -R-ΔR T +ΔT -P > T -R
T -P . Other results in the Appendix are obtained in a similar way.

• if 1 < ΔT ΔR < T -P R-P
then Δα L < 0 and Δα H < 0: paradox for every α, because it is benecial for C (vs ΔT > ΔR)

• if ΔT ΔR < 1 then Δα L < 0 and Δα H < 0: normal for every α Increasing T and decreasing P

• if 1 < T -R R-P : if T -R R-P < ΔT |ΔP |
then Δα L < 0 and Δα H > 0: paradox for α < α T , where benecial for C (vs ΔT > |ΔP |)

if 1 < ΔT |ΔP | < T -R

R-P

then Δα L < 0 and Δα H < 0: paradox for every α, because it is benecial for C (vs ΔT > |ΔP |)

if ΔT |ΔP | < 1 then Δα L < 0 and Δα H < 0: normal for every α • if T -R R-P < 1: if 1 < ΔT |ΔP |
then Δα L < 0 and Δα H > 0: paradox for α < α T , where benecial for C (vs

ΔT > |ΔP |) if T -R R-P < ΔT |ΔP | < 1 then Δα L < 0 and Δα H > 0: paradox for α > α T , where benecial for D (vs ΔT < |ΔP |) if ΔT |ΔP | < T -R R-P
then Δα L < 0 and Δα H < 0: normal for every α

A c c e p t e d m a n u s c r i p t

Increasing T and S

• if ΔT > ΔS Δα L < 0 and Δα H > 0: paradox for α < α T , where benecial for C (vs ΔT > ΔS)

• if ΔT < ΔS
Δα L < 0 and Δα H > 0: paradox for α > α T , where benecial for D (vs ΔT < ΔS)

Increasing R and P

• if ΔP ΔR < P -S R-S (< 1) then Δα L < 0 and Δα H < 0: normal for every α

• if P -S R-S < ΔP ΔR < 1 then Δα L > 0 and Δα H < 0: paradox for α < α T , where benecial for D (vs ΔP < ΔR) • if 1 < ΔP ΔR < T -P T -R
then Δα L > 0 and Δα H < 0: paradox for α > α T , where benecial for C (vs ΔP > ΔR) The simplied Prisoner's Dilemma game nicely applies to symmetric decisions of altruistic help, where altruists suer costs, but the benets of their altruistic act are only enjoyed by their interaction partner (e.g. [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF][START_REF] Ohtsuki | A simple rule for the evolution of cooperation on graphs and social networks[END_REF]. This is however, only a special case of the Prisoner's Dilemma game. If the payos of the Prisoner's Dilemma are expressed as independent parameters with their ordinal ranking xed (see e.g. [START_REF] Axelrod | The evolution of cooperation[END_REF], then we obtain the paradoxical results in which the increase in cooperation benets can result in fewer cooperators. Table .2: Eects of changing two parameters. ↑/↓ increase/decrease, C/D benecial for cooperators/defectors, ? ambiguous (depends on the exact values of these and other parameters. * denotes cases, when there might be a paradox in certain ranges of the payo parameters (and their changes), and ** denotes cases, when there is a paradox for certain α values for all ranges of the payo parameters.

• if (1 <)
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  Figure .5). INSERT FIGURE .5 HERE 3. The Price of Cooperation 3.1. General guidelines of a comparative analysis In this section, we determine the conditions under which increasing the benets of cooperation results in fewer cooperators at equilibrium; or A c c e p t e d m a n u s c r i p t

  Figure .9 indicates the case, when α L > α H . For

  Figure .10 indicates the case, when α L < α H , so the new upper and lower bounds are swapped back. For

  paradox of cooperation benets in the Hawks and Doves game with positive assortment

then

  Δα L < 0 and Δα H > 0: paradox for α < α T , where benecial for C (vs ΔT > ΔR). See Figure.8 for this case. T -P R-P < ΔT ΔR can be

  . The simultaneous increase of c and b (if Δc > Δb) also benets defection.5 In short, the fundamental reason why Hamilton's rule leaves no space for paradoxes lies in the simplication of the social dilemma with a single cost (c) and benet (b) parameter with the restriction of T R = P -S = c.
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 12 Figure .1: ESS in Social Dilemmas with Complete Mixing. a) There is no mixed equilibrium in the Prisoner's Dilemma. The only ESS is defection. b) The only ESS in the Hawks and Doves game is a mixed equilibrium. c) The mixed equilibrium is not an ESS in the Stag Hunt game. z * = P -αR-(1-α)S(1-α)(R+P -S-T ) . For the meaning of α see section 2.1.

Figure . 3 Figure . 4 :

 34 Figure .3: z(α) in Prisoner's Dilemma with positive assortment if P -S R-S >

Figure . 5 Figure . 6 :

 56 Figure .5: z(α) in Stag Hunt with positive assortment. The solid lines indicate the stable equilibria of full cooperation and full defection. The dashed line indicates the unstable mixed equilibrium z * .

Figure . 7 :

 7 Figure .7: The paradox of cooperation benets in the Prisoner's Dilemma with positive assortment and α L < α H . The solid line is the original z(α) function. The dashed line shows the case when P and R are increased. Parameter values for this gure are: T = 7, R = 3, P = 1, S = 0, ΔR = 1, and ΔP = 0.7 (ΔR > ΔP ).

Figure . 9 :

 9 Figure .9: The paradox of cooperation benets in the Prisoner's Dilemma with positive assortment and α L > α H and α L > α H . The solid lines indicate the original stable equilibria of full cooperation and full defection. The dashed line indicates the unstable mixed equilibrium z * . The dotted line shows the case when R and T are increased (the mixed equilibrium is still unstable). Parameter values for this gure are: T = 1.75, R = 1.5, P = 1, S = 0, ΔT = 0.5, and ΔR = 0.2 (ΔT > ΔR). The x indicates a random initial ratio which evolves to full defection with the original parameters, and to full cooperation with the modied ones.

Figure . 10 :

 10 Figure .10: The paradox of cooperation benets in the Prisoner's Dilemma with positive assortment and α L > α H and α L < α H . The solid lines indicate the original stable equilibria of full cooperation and full defection. The dashed line indicates the unstable mixed equilibrium z * . The dotted line shows the case when R and T are increased (the mixed equilibrium becomes stable). Parameter values for this gure are: T = 1.75, R = 1.5, P = 1, S = 0, ΔT = 2.34, and ΔR = 0.77 (ΔT > ΔR).

d m a n u s c r i p t

  

	1.2. ESS in social dilemmas When looking at replicator dynamics based on reproductive tness, defection is the evolutionary stable strategy (ESS) in the Prisoner's Dilemma, and it is also an ESS in the Stag Hunt game (Maynard Smith, 1982; Doebeli and Hauert, 2005). On the other hand, in the Hawks and Doves game, replicator dynamics converge to a mixed stable equilibrium at which both cooperation and defections strategies are present (Maynard Smith, 1982). These textbook results are displayed in Figure .1a-c for comparison. INSERT FIGURE .1 HERE
	2. Populations with positive assortment
	2.1. General equilibrium conditions

  We do not nd any surprises when analyzing the eect of changes in single parameter values of the Prisoner's Dilemma with positive assortment on the proportion of cooperators at equilibrium. As one can already directly imply from the payo matrix (Table.1), an increase in R or S are benecial for cooperation and an increase in T or P are benecial for defection. Hence, the eects of the change in single payo parameters on z The eects of single payo parameters on the boundaries are self-explanatory and help us to determine the conditions under which paradoxes occur. For this, at least two parameters should change at the same time. Table.2 shows all possible pairs of parameter changes which may cause a paradox. In Appendix I, all cases denoted with an asterisk in Table.2 are explored. INSERT TABLE .2 HERE Consider the case when the temptation reward T is increased. This clearly favors defection, because it has an unambiguous impact on z * (see previous section) and also on α H . Let us also increase at the same time R that favors cooperation (for the other cases see Appendix I). If ΔT > ΔR, and especially if ΔT is larger than ΔR with an order of magnitude (ΔT

	3.2. Prisoner's Dilemma with positive assortment
	3.2.1. Boundary conditions (Prisoner's Dilemma)
	ΔR),

* are trivial. For instance, when the reward for mutual cooperation R is increased, the proportion of cooperators in the mixed ESS of the Prisoner's Dilemma with positive assortment also increases. Paradoxes might occur however, when at least two parameter values, one that favors cooperation and one that favors defection (for instance, R and T ) are modied at the same time. In case ΔT > ΔR, where we intuitively would expect the decrease of cooperators in ESS, the proportion of cooperators actually rises in a certain range of α (an example is shown in Figure .6). INSERT FIGURE .6 HERE One can see from Figure .2 that a mixed equilibrium is ESS in the Prisoner's Dilemma with positive assortment for P -S R-S ≤ α ≤ T -R T -P . Let us now introduce the notation α L = P -S R-S and α H = T -R T -P for the boundaries.

  1 On the other hand, a tiny increase in R already has the consequence that a mixed equilibrium will exist also for α values lower than the original lower bound of α L . This is displayed on Figure.8. We see a paradox in the range between α L and α T . Between α L and α L the full defection equilibrium has been replaced by a mixed equilibrium and between α L and α T the proportion of cooperators in mixed

	equilibrium has increased. 2 INSERT FIGURE .7 HERE INSERT FIGURE .8 HERE

3.2.2. The paradox of cooperation benets in the Prisoner's Dilemma with

positive assortment

  Δα L < 0 and Δα H < 0: paradox for every α, because it is benecial for C (vs |ΔS| > ΔR) Δα L < 0 and Δα H < 0: normal for every α

	Increasing R and decreasing S
	• if 1 < P -S R-P	:
	if P -S R-P < |ΔS| ΔR

T -P T -R < ΔP ΔR then Δα L > 0 and Δα H > 0: normal for every α then Δα L > 0 and Δα H < 0: paradox for α > α T , where benecial for C (vs

|ΔS| > ΔR) if 1 < |ΔS| ΔR < P -S R-P then if |ΔS| ΔR < 1 then

A paradoxical case (Δc > Δb and increasing αbc) might occur when b < c, but it implies that R < P , which cannot hold in a social dilemma game.
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Appendix I

In this appendix, we will look at cases in Table .2 (Prisoner's Dilemma with positive assortment and α L < α H ) marked with asterisk. For all pairs of parameters there are two mirrored cases, so we only need to analyze one of them. In all the cases below we refer to α T , which is dened in equation (2).

Increasing T and R

A c c e p t e d m a n u s c r i p t

R-P

then Δα L < 0 and Δα H < 0: normal for every α

R-P

then Δα L > 0 and Δα H > 0: paradox for every α, because it is benecial for D (vs ΔS > ΔP )

• if ΔS ΔP < 1 then Δα L > 0 and Δα H > 0: normal for every α Appendix II Consider the special case where T = b, R = bc, P = 0, and S = -c, hence T -R = P -S = c. In this special case, we have fewer parameters (b, c) and these parameters can simply be interpreted as benets and costs. In this case, z = 0 is evolutionary stable if αbc < 0, z = 1 is evolutionary stable if αbc > 0, and there is no mixed equilibrium. Hence, we have obtained a re-derivation of Hamilton's rule for this special case with positive assortment (a similar re-derivation is given in [START_REF] Hamilton | Selection of selsh and altruistic behavior in some extreme models[END_REF][START_REF] Hamilton | Inate social aptitudes of man: an approach from evolutionary genetics[END_REF][START_REF] Bergstrom | The Algebra of Assortative Encounters and the Evolution of Cooperation[END_REF]. Furthermore, there are no paradoxical cases as the increase of c is always benecial for defection and the increase of b is always