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Abstract

Transient dynamics of signal transduction pathways play an important role in many bio-

logical processes, including cell differentiation, apoptosis, metabolism and DNA damage

response. Recent examples of quantitative methods to characterize transient signals in-

clude transient metabolic control coefficients and finite time Lyapunov exponents. In our

work we compare these quantitative methods to characterize transient phenomena and

specifically discuss their predictive power for three examples. We focus on the identifica-

tion of thresholds that separate different transient dynamic behaviors. Our investigation

leads to the following results: The spectrum of the finite-time Lyapunov exponents un-

ambiguously and reliably identifies putative thresholds in transient dynamics. Metabolic

control coefficients do not reliably detect all thresholds and suffer from false positives.

Key words: signal transduction, transient dynamics, Lyapunov exponents, metabolic
control coefficient, Hill equation, relative instability exponent
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1 Introduction

The behavior of cellular processes can be classified into steady state and transient
dynamics, whereby we include biochemical oscillations with constant amplitude
as examples of steady state processes. While steady state processes are most
important in metabolic systems [1], transient dynamics play an important role in
cell communication [2, 3, 4, 5, 6, 7].

Transient dynamics describe the transition from some initial state of the sys-
tem into a steady state. For an understanding of signaling pathways and their
targets transient dynamics are often more important than steady state dynamics
as demonstrated by the following examples: Aldridge et al. [2] have established a
mathematical model which describes the regulation of active caspase 3 dynamics
in apoptosis. The temporal duration depends on the initial condition (concentra-
tion) of the protein xiap. Bolouri and Davidson [3] have shown by mathematical
modelling that genes are activated successively in a regulatory network cascade,
long before steady states are attained. The EGFR stimulated MAPK cascade in
the PC12 cell line shows a transient activation of ERK with a peak at 5 min and a
return to its basal level after 30 min, which leads to cellular proliferation [4]. Using
mathematical modelling Cheong et al. [5] have predicted that the dynamic profile
of the IKK signal must transiently peak at all TNFα doses in order to generate
the observed NFκB activity which they could experimentally validate.

Aldridge et al. have employed direct finite-time Lyapunov exponents to identify
domains in the transient dynamics of high sensitivity to initial conditions [2].
These separatrices delineate regions with different transient dynamics and can be
considered as a threshold. Furthermore, for the activation of a signalling pathway
often threshold concentrations of proteins are required to prevent the unintentional
activation of signalling pathways through random fluctuations.

The relevance of thresholds in biology is demonstrated by a large number of
publications about ultrasensitive responses ranging from Goldbeter [8] and Ferrell
[9] to the recent work of Buchler [10]. Ferrell has concluded, on the basis of exper-
imental data, that the MAPK cascade is optimized to convert a graded input into
a switch-like output [9]. Ultrasensitive responses leading to sigmoidal stimulus-
response curves have been related to activation thresholds of biochemical networks
in the literature [8, 11, 12, 13, 14, 15, 16, 17]. Experimental measurements in net-
works with multiple phosphorylations have shown that the stimulus has to exceed
a threshold concentration to activate downstream events [10, 11, 12, 13]. Mathe-
matical models for the MAPK cascade with dual phosphorylation [14] and general
models for multisite phosphorylations [17] have shown that multisite phosphoryla-
tion give rise to more threshold like responses that single site phosphorylation. So
far, however, mathematical modelling has focused on network properties leading
to sigmoidal stimulus-response curves in the steady state dynamics.
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In small networks, stimulus-response curves of the transient and steady dynam-
ics can be studied in detail, leading to the identification of putative thresholds.
In larger biochemical networks the identification of putative thresholds would be-
come very time consuming because the network components could show sigmoidal-
stimulus response curves during different time intervals. Therefore quantitative
measures to identify putative thresholds in transient dynamics are required. They
should be designed such that an inspection of trajectories is not necessary, i. e. they
should deliver initial conditions (concentrations) of proteins and respective time
intervals where a response shows a threshold. Recent examples of quantitative
methods to characterize transient signals include transient metabolic control co-
efficients (MCC) [18, 19] and finite time Lyapunov exponents (FTL) [2]. We here
focus on system structures that generate thresholds in transient dynamics and
investigate quantitative measures to identify such thresholds.

The outline of this paper is as follows. Following an introduction to MCCs
and FTLs, we define thresholds in cellular signaling, discuss their properties and
argue for the need of quantitative measures to identify them in transient dynam-
ics. We then study two model structures that can generate thresholds in their
transient response and we compare quantitative measures to identify thresholds
in the transient dynamics. We first extend the analysis of thresholds by FTLs
in an apoptosis decision network [2] by calculating the three largest FTLs and
the MCCs. Next, we study a gene transcription network as an alternative model
structure to generate thresholds in transient dynamics. Our analysis of the gene
transcription network has motivated us to analytically quantify the threshold of a
Hill equation and to discuss an alternative measure which combines properties of
the FTLs and the MCCs.

Finally the results of our comparative study will lead us to an evaluation of the
investigated quantitative measures regarding their ability to identify thresholds in
transient signaling.

2 Quantitative measures to characterize transient

dynamics

Metabolic control coefficients (MCC) measure the relative response of a state vari-
able xi, with respect to the relative perturbation by state variable xj . They are
a standard quantitative measure in sensitivity analysis [1]. MCCs can also be
calculated for finite times as described in [18, 19]. They are defined by

C
(
xi(t), xj(0)

)
=

∂ log xi(t)

∂ log xj(0)
. (1)

Comparing the influence of a perturbation at t = 0 on different state variables
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at t > 0 it is useful to consider relative changes of state variables because the
values of different state variables can have different orders of magnitude. Thus
control coefficients for different pairs (i, j) can be compared. In general one uses
the same percentaged perturbation for all xj(0) resulting in the same denominator
for all C

(
xi(t), xj(0)

)
. To perturb simultaneously initial conditions of several state

variables, global approaches have to be applied [20], which is not the focus of this
work.

The MCC in Eq. (1) is also called “concentration control coefficient”. Replac-
ing in the denominator the initial condition xj(0) by a parameter, for example a
reaction constant, leads to another type of concentration control coefficient. The
concentration control coefficients can be calculated for the transient dynamics as
well as in the steady state. In addition, flux control coefficients have been intro-
duced to quantify the control of the flux of a metabolic system in the steady state
[1].

Lyapunov exponents measure the exponential divergence between a reference
trajectory and d orthogonal perturbations to the trajectory, where d is the di-
mension of the related mathematical model which is equal to the number of state
variables [21]. Finite time Lyapunov exponents (FTL) have been introduced to
quantify dynamical instabilities over a finite interval of time [22, 23, 24, 25]. They
depend on time and on the initial conditions of the dynamical system. The FTLs
λi(t, x(0)), i = 1, . . . , d can be calculated from the numerical solution of the or-
dinary differential equations (ODE) for a finite time t and initial state x(0) at
t = 0:

ẋ = f(x) u̇ =
df

dx
u

λi

(
t, x(0)

)
=

1

2t
log

(
Λi(u

T
· u)

) (2)

where ẋ denotes a system of ODEs, and u̇ a matrix differential equation for d
initially orthonormal perturbation vectors which are the columns of the matrix u,
and uT being the transpose of u and Λi(u

T · u) denoting the eigenvalues of uT · u.
Alternatively, λi can be calculated directly from differences between trajectories
and initially perturbed trajectories [2].

The number of Lyapunov exponents is equal to d and the whole set of them
is also called the Lyapunov spectrum. The largest Lyapunov exponent quantifies
the exponential divergence of the most unstable direction and the lower Lyapunov
exponents quantify the exponential divergence in the d− 1 orthogonal directions.

Comparing the definitions of MCC and FTL the differences can be summa-
rized as follows: The FTLs identify the most unstable direction of the state space
and the stability in all orthogonal directions on the basis of absolute distances be-
tween the trajectory and perturbed trajectories. The MCCs measure the response-
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perturbation ratio on the basis of relative changes of state variables.
Recent experimental results show that biological responses can be absolute or

relative: In EGF stimulated H1299 cells the absolute change of ERK2 response
varies in different cells but the relative response is the same in different cells [26].
An absolute response mechanism seems to occur in some bacterial systems [27].

In our study we have numerically calculated the MCC according to Eq. (1)
and the FTL according to Eq. (2). We have coded the calculations in Matlab [28].
For the eigenvalues in Eq. (2) we have also coded an RQ decomposition but our
results do not depend on it. The Matlab code can be obtained from the authors
upon request.

3 Thresholds in transient dynamics

Cells respond to changes in protein concentrations, which suggests that concentra-
tion changes should be the basis for a definition of thresholds in cellular signaling.
As it has been discussed in the introduction sigmoidal stimulus-response curves
have been related to activation thresholds of biochemical networks [8, 11, 12, 13,
14, 15, 16, 17]. So far, experimental and modeling efforts have focused on sigmoidal
stimulus-response curves in the steady state.

We suggest that a threshold value of a sigmoidal stimulus response curve can
be defined by the stimulus that corresponds to the inflection point of the response
curve. An alternative definition could be based on the highest curvature of the
stimulus-response curve. Due to the fact that an interval of initial conditions can
have the same curvature, we can only determine a threshold interval instead of a
threshold value. The two suggested definitions of a threshold contain only infor-
mation about the level of a stimulus at which a threshold exists but they do not
contain information about its shape. The threshold encoded by the shape of a sig-
moidal stimulus-response curve can vary from very steep thresholds, approaching
a switch, to smoother thresholds with a lower steepness.

A typical sigmoidal stimulus-response curve, found in many references, is shown
in the first column of Fig. 1. In the second column a sigmoidal stimulus-response
curve is shown, where the response increases without saturation. Another possi-
bility is a hyperbolic stimulus-response curve, where the response increases little
below the interval of the highest curvature, while above, it increases without sat-
uration. We call this interval of the highest curvature a “hyperbolic threshold”,
illustrated in the third column of Fig. 1. These definitions can be applied to steady
states as well as to transient dynamics.

We here consider a stimulus as either some external input, say extracellular lig-
ands, as well as initial condition (concentrations) of intracellular signaling proteins
[15]. An example for an extracellular stimulus is the gene transcription network
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Figure 1: Thresholds in stimulus-response curves. The possible thresholds are
indicated by dashed lines. For the two sigmoidal curves the threshold can be
defined by the inflection point or by the interval with the highest curvature. For
the hyperbolic curve the threshold can be defined by the interval with the highest
curvature. The right-most column shows a situation in a biochemical network with
stimulus-response curves of different proteins.

studied in this work. The transient intracellular response can also sigmoidally
depend on the initial condition (concentration) of an intracellular signaling pro-
tein as in the apoptosis decision network investigated further below. Both types
of “stimuli” as thresholds have been investigated in [15]. If there is no specific
interest in certain network components, one should vary the initial conditions of
all variables to identify thresholds. In our two studied examples we have restricted
ourselves to one or two initial conditions because our objective was to compare
FTL and MCC and not a detailed analysis of the models.

In transient signaling, threshold values can depend on time, which has to be
considered in the discussion about the biological relevance for a predicted thresh-
old. The amplitude of a stimulus-response curve is also essential for this evalua-
tion. If the amplitude is too small, then the threshold effect can be lost by noise.
As raised in the introduction, in larger biochemical networks the identification
of putative thresholds would become very time consuming because the network
components could show sigmoidal-stimulus response curves during different time
intervals. The activation of a signaling pathway at the membrane-bound recep-
tor requires a particular threshold concentration of the stimulus. For downstream
components their threshold value may be higher than further up in the network
or a threshold values has to be passed to switch off an inhibitor of the pathway, as
shown in the right-most column of Fig. 1 (see the related discussion in [29]). There-
fore quantitative measures to identify putative thresholds in transient dynamics
and concepts to predict their downstream consequences are required.

Quantitative measures with an extreme value at the inflection point, or during
the interval with the highest curvature, would allow a fast identification of putative
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thresholds in larger biochemical networks. These predictions would then have to
be confirmed in experiments. In the case of different threshold values the analysis
of the related downstream networks will answer the question whether the threshold
to activate a downstream event is an integrated response.

Summarizing our discussion, we seek quantitative measures that identify the in-
flection point or the interval of the highest curvature of a stimulus-response curve.
To evaluate whether FTLs or MCCs are appropriate we have chosen three exam-
ples, which are simple enough to study in detail the dynamics of the trajectories
and stimulus-response curves but which at the same time are complex enough to
show thresholds in their transient dynamics. In our work we focus on the identi-
fication of thresholds, while in other works quantitative measures to analyze the
steepness of sigmoidal stimulus-response curves have been investigated [16, 29].

4 Apoptosis decision network

A mathematical model describing the kinetics of an apoptosis decision network
has been presented in [2]. The respective reaction network is shown in Fig. 2 and
the variables are summarized in Table 1.

c3* ub.

c8

c3*

[c8*,c3]

[c8,c3*]

[c3*,xiap]

c3

c8*

xiap

Figure 2: Apoptosis decision network. Figure adopted from [2].

The mathematical model includes interactions of the proteins caspase3, cas-
pase8 and xiap: It describes the activation of c8 by c3∗ (the asterisk denotes the
active form) and the activation of c3 by c8∗. The model represents a mutual ac-
tivation cycle. In addition, the model includes the xiap-dependent degradation of
c3∗.

The model does not include an external stimulus inducing the transient re-
sponse. Aldridge et al. [2] have investigated the transient dynamics in dependence
on the initial conditions of network components to identify critical initial concen-
trations for the survival/death decision. In addition they have shown that a steady
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Name Shorthand
caspase8 c8
caspase8* c8∗

caspase3 c3
caspase3* c3∗

complex of caspase8* and caspase3 [c8∗, c3]
complex of caspase8 and caspase3* [c8, c3∗]
xiap xiap
complex of xiap and caspase3* [c3∗, xiap]

Table 1: Assignment of names for variables.

state analysis does not reveal the critical initial concentrations for a survival/death
decision. The authors have identified a threshold for the survival/death decision
by a maximum of the largest FTL for a critical value of xiap(0). They reported
that the final decision between cell survival and controlled cell death critically
depends on the temporal duration of the activity of c3∗ in living cells. A short
duration leads to survival, while a long duration leads to cell death.

We here extend the analysis of this mathematical model by calculating the three
largest Lyapunov exponents and the MCCs and by comparing these quantities
with the dynamics of this network. We begin with a reduction of the original eight
ODEs, Eqs. (1-8) of [2] to six ODEs, by applying conservation equations for c8
and xiap. This leads to the following set of equations:

d

dt
c8∗ = kd2 · [c8, c3

∗] + (kd3 + kd4)[c8
∗, c3]− k3 · c3 · c8

∗

d

dt
c3 = kd3 · [c8

∗, c3]− k3 · c3 · c8
∗

d

dt
c3∗ = kd4 · [c8

∗, c3] + (kd1 + kd2) · [c8, c3
∗] + kd5 · [c3

∗, xiap]

− k1 · c3
∗

· c8− k5 · c3
∗

· xiap

d

dt
[c8, c3∗] = k1 · c3

∗

· c8− (kd1 + kd2) · [c8, c3
∗]

d

dt
[c8∗, c3] = k3 · c3 · c8

∗

− (kd3 + kd4) · [c8
∗, c3]

d

dt
xiap = (kd5 + kd6)[c3

∗, xiap]− k5 · c3
∗

· xiap

(3)
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Value Units Variable Initial value Units
k1 2.67·10−9 cell · (s ·molecules)−1 c8 3.5 · 105 molecules/cell
kd1 0.01 s−1 c8∗ 5 · 104 or 105 molecules/cell
kd2 0.008 s−1 c3 2.6·105 molecules/cell
k3 6.8·10−8 cell · (s ·molecules)−1 c3∗ 100 molecules/cell
kd3 0.05 s−1 [c8∗, c3] 100 molecules/cell
kd4 0.001 s−1 [c8∗, c3] 100 molecules/cell
k5 0.00007 cell · (s ·molecules)−1 xiap 103 to 105 molecules/cell
kd5 0.0000167 s−1 [c3∗, xiap] 100 molecules/cell
kd6 0.000167 s−1

Table 2: Apoptosis model: Parameter values and initial conditions.

where the conservation equations are given by

c8 = c8 + c8∗ + [c8, c3∗] + [c8∗, c3]

xiap = xiap + [c3∗, xiap] . (4)

The parameters and the initial values of the variables, including respective units
are the same as in [2] (See Table 2).

We study the dynamics of the network components for different initial condi-
tions of xiap, the inhibitor of c3∗, and thus a critical regulator of the survival/death
decision [2]. The trajectories of all network components for eleven different xiap(0)
are shown in Fig. 3. They show a more or less pronounced clustering into two
groups for each network component, thus indicating thresholds. Groups with fully
overlapping trajectories are annotated by “∗ ”. On the basis of the trajectories we
have chosen time points between t = 6h and t = 18h to study transient dynamics
of the system.

In Fig. 4 we compare the concentrations of the network components (first row)
with the FTLs λi (second row) and with the MCCs C(xi, xj) (third row) as a
function of xiap(0) (abscissa) for the three chosen time points (columns) during
the transient signal. We call the curves in the first row of Fig. 4 stimulus-response
curves, to use standard notation though the “stimulus” is the initial condition
xiap(0) in our study. The proteins c8∗ and c3 show a sigmoidal stimulus-response
curve in agreement with the clusters of the related trajectories in Fig. 3 and thus
each curve has an individual sigmoidal threshold. The intervals of the stimulus,
which corresponds to the increasing part of the stimulus-response curve, are par-
tially overlapping within a small xiap(0) interval whose position is independent of
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Figure 3: Apoptosis decision network. Trajectories of the network components
for xiap(0) = 0 molecules/cell, 104 molecules/cell, 2 · 104 molecules/cell . . . , 105

molecules/cell. An arrow indicates the direction of increasing xiap(0). A “*”
indicates a cluster of overlapping trajectories.
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time1. Thus their inflection points and the intervals with the highest curvature,
where the response raises, are in close vicinity. The three components are directly
linked in the network of Fig. 2.

The curve of xiap is sigmoidal too and for t = 6h also the curve of c3∗. For t =
12h and t = 18h, c3∗ has not a sigmoidal but a hyperbolic threshold. The sigmoidal
threshold of xiap and the hyperbolic threshold of c3∗ are in close vicinity2. Their
positions depend on time and are located around different xiap(0), compared to
the sigmoidal threshold of c8∗ and c3 for t = 12h and t = 18h.

Our results for the FTLs are shown in the second row of Fig. 4, where only the
three largest FTLs are shown3. The maximum of the largest FTL λ1 is located
at a xiap(0), which is close to the inflection points of the overlapping stimulus-
response curves for c8∗ and c3. The stimulus-response curve of c8∗ has the largest
amplitude, while the steepness of the three curves are similar. Thus c8∗ contributes
most to the maximum of λ1, although the largest FTL has identified a sigmoidal
threshold as an integrated response of c8∗, c3, and [c3, c8∗]. The profile of λ1 for
t = 6h agrees with the result in Fig. 4 of [2].

The second largest FTL has a maximum at a different critical xiap(0), which
is found close to the thresholds for c3∗ and xiap. The dynamics of the protein c3∗

contribute probably only at t = 6h to the maximum of the second largest FTL
because for the other two time points its stimulus-response curve is hyperbolic. The
value of this critical xiap(0) decreases with time, in contrast to the case above.
This means, the longer the damage persists, the higher becomes the chance for
survival. This sounds unrealistic and thus it is questionable whether the xiap(0),
leading to a maximum of the second largest Lyapunov exponent, is a true biological
threshold. On the other hand, for the opposite case, it could be realistic that the
chance for survival decreases with time.

The second largest FTL is negative and thus the respective direction in state
space is stable. A maximum of a negative FTL indicates minimal stability. Related
stimulus-response curves are sigmoidal and initial conditions with the point of
inflection form a threshold according to our definition. These relations cannot be
directly inferred from Fig. 4 due to several interacting proteins. In Appendix B
we present a one-dimensional example which allows the reader to follow this fact.

Our results for the MCCs leading to the largest maxima and minima at critical
xiap(0) are shown in the third row of Fig. 4. We have independently perturbed

1The sigmoidal curve of [c8∗, c3] has its inflection point within this interval too but it has a
too small response amplitude and is thus not visible in Figure 4.

2The curve of [c8, c3∗] has a maximum at the same xiap(0) but it is too small and is thus not
visible in this figure.

3The three smallest FTLs could not be determined due to numerical problems with orthonor-
malization of the respective tangent vectors. We have used the RQ decomposition for orthonor-
malization.
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Figure 4: Apoptosis decision network. Quantitative measures to characterize tran-
sient dynamics. c8∗(0) = 5 · 104 molecules/cell, abscissa: xiap(0). First row:
stimulus-response curves. Second row: FTLs and third row: Profiles of MCCs
which lead to largest maxima and minima at the two critical xiap(0) are shown.
Columns: different time points. Dashed lines have been added for a better compar-
ison of the maxima of FTLs, extreme values of MCCs and thresholds in stimulus-
response curves. Same colors are chosen for the same response variable in the
first and third row. The quantified threshold values are summarized in Table 3 in
Appendix A.

12



Acc
ep

te
d m

an
usc

rip
t 

the initial values of all cellular components by one percent and then calculated the
resulting responses for each xiap(0). Comparing the results for the MCCs with
the results for the FTLs and the results for the stimulus-response curves, shows
that the MCCs have extreme values for the two values of xiap(0) at which the first
and second largest FTL have their maximum. Perturbations in c3(0) cause most
sensitive responses. The global maximum is the MCC, C(c3∗, c3), found at the
critical xiap(0) with the maximum of the second largest Lyapunov exponent. At
this xiap(0) the stimulus-response curve of c3∗ shows a sharp concentration change
from an almost linear decrease to zero, which we have defined as a hyperbolic
threshold.

For an initial condition of c8∗(0) = 105 molecules/cell, the difference between
the global extremum of the MCCs and the other extreme MCCs is much more
pronounced, as shown in Fig. 5. A maximum of MCCs is visible only at the
smaller critical xiap(0). For this initial value, c3∗ has a hyperbolic threshold for
all three time points.

Comparing our results for the FTLs and MCCs, in order to identify thresholds
in the transient dynamics of the apoptosis decision network, shows that the maxima
of the two largest FTLs are found at two critical xiap(0) where also some MCCs
have extreme values. The larger value of xiap(0) is located close to the inflection
points of c8∗, c3 and [c8∗, c3]. The smaller xiap(0) is located close to the inflection
point of xiap and for c8∗(0) = 5 · 104 molecules/cell, t = 6h it is also close to
the inflection point of c3. Both measures have qualitatively identified the same
two critical xiap(0) as thresholds in the transient dynamics. However, there is a
quantitative difference: The largest FTL has identified a critical xiap(0), where
some MCCs have extreme values too but they do not form the global extremum
of the MCCs. In contrast, the maximum of the second largest FTL is found at
the same critical xiap(0) as the global extremum of the MCCs. This difference
drastically increases with increasing c8∗(0). The value of the critical xiap(0) with
the global extremum of the MCCs depends on time such that the chance for
survival increases with time which appears biologically unrealistic. The value of
the critical xiap(0) with the maximum of the largest FTL is independent of time
and is thus more likely to be a biological threshold.

5 Gene transcription network

The question arises whether there are alternative model structures whose transient
dynamics are characterized by activation thresholds. Systems with cooperativity
can show sigmoidal stimulus-response curves, which suggests them as promising
candidates. Cooperativity is a property of many gene transcription networks [30].
We therefore study in this section a simple example for a gene transcription net-
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Figure 5: Apoptosis decision network. Quantitative measures to characterize tran-
sient dynamics. c8∗(0) = 105 molecules/cell. Abscissa: xiap(0). First row:
stimulus-response curve, second row: FTLs and third row: Profiles of MCCs which
lead to largest extreme values are shown. Columns: different time points. Dashed
lines have been added for a better comparison of the maxima of FTLs, extreme val-
ues of MCCs and thresholds in stimulus-response curves. Same colors are chosen
for the same response variable in the first and third row. The quantified threshold
values are summarized in Table 4 in Appendix A.
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work. The temporal concentration changes of the network components are de-
scribed by the following set of ODE (Model I):

ẋ1 = −x1

ẋ2 = x1 · (10− x2)− x2 Model I

ẋ3 = 10 ·
x4

2

1 + x4

2

− x3 .

(5)

The first equation describes the degradation of a stimulus x1, the second the acti-
vation of transcription factor x2 by x1 and the third gene transcription activated
by x2, where we have chosen the value four for the Hill-coefficient, which is the co-
operativity measure. All variables represent concentrations but without units. In
contrast to the example in the previous section, the transient response is induced
by a transient stimulus x1 in this model. In addition we study two extended ver-
sions of this network by independently adding different feedback loops. In Model
II the deactivation of x2 is controlled by x3, while in Model III a positive feedback
enhances the activation of x2 by x3. The modified equations are

ẋ2 = x1 · (10− x2)− x2 · x3 Model II

ẋ2 = (x1 + x3) · (10− x2)− x2 Model III .
(6)

The initial condition of the stimulus x1(0) will be varied to identify a critical
value which could form an activation threshold for the output x3(t). For the other
initial conditions we have chosen x2(0) = x3(0) = 0. The trajectories for x2 and
x3 of the three models for different x1(0) are shown in Fig. 6. The trajectories of
x3 for Models I and III show a clustering into two groups during the transients.
It is difficult to detect a clustering for Model II but we will later see that the
stimulus-response curve of x3 is sigmoidal4. We have chosen time point t = 2 to
study the transient dynamics.

The related quantitative measures are presented in Fig. 7, where we compare
the stimulus-response curves with the spectrum of the FTLs and with the MCCs.
The stimulus-response curves are sigmoidal for x3 in all three models and for x2

in Model III.
The largest FTL has a maximum at the inflection point of the stimulus-response

curves of x3 in each model. It therefore identifies putative activation thresholds
in the transient dynamics for these examples too, though a threshold was hard to
detect in the trajectories of Model II. Note, that there is in general no one-to-one

4The clustering is more pronounced for a higher Hill-coefficient. In order to study whether
quantitative measures can predict thresholds that are difficult to see by visual inspection, we
preferred a moderate value, which is still greater than a typical case of a dimer. To see whether
this holds for all cases requires confirmation by experiments.
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correspondence between the FTLs and the variables. For the model without feed-
back, the dynamics of x3 is also reflected in λ2 and λ3. This can easily be verified
by removing the equation for x3 from Eqs. (5). The resulting two-dimensional
model leads to two monotonously decreasing FTLs.

The maximum of the largest FTL is preserved over a large time interval during
the transient signal as shown for the model without feedback in Fig. 8. Thus the
threshold is a temporal robust property of the system.

For the two feedback models the maximal λ1 is shifted to lower values of x1(0) as
shown in the second and third column of Fig. 7. For Model II, the second Lyapunov
exponent λ2 shows a maximum at a higher critical x1(0) than the respective value
for the maximum of λ1. The stimulus-response curve of x2 has the inflection
point of a sigmoidal decreasing part at this value which could be related to a
stabilization of the trajectory induced by the controlled deactivation of x2 by x3,
acting for x3 > 1 as a negative feedback, while for x3 < 1 as positive feedback,
according to Eq. (6). The other variables could also influence the profile of λ2.
This one can also see for Model III, where only λ1 shows a maximum and the
stimulus-response curves of x2 and x3 are sigmoidal with their inflection points at
the same x1(0).

For Models I and II, the curve of the MCC C(x3, x1) is monotonously decreasing
over the whole x1(0) interval, as shown in the last row of Fig. 7. For these two
models C(x3, x1) is not sensitive enough to identify thresholds in the transient
dynamics. The positive feedback regulation (Model III) enhances the strength of
the activation threshold by showing maxima in C(x2, x1) and C(x3, x1). For Model
II, C(x2, x1) has a negative minimal value at the inflection point of the sigmoidal
decreasing part of the respective stimulus-response curve.

So far we have studied this gene transcription network for the initial conditions
x2(0) = 0 and x3(0) = 0. Due to activation by other enzymes or transcription
factors it could be possible that initial values of proteins or mRNA are greater than
zero. The results for Model I, with two positive x3(0), are shown in Fig. 9. The
profile of the stimulus-response curve and of the largest FTL are robust against
different x3(0) but the profiles of the MCCs C(x3, x1) show a maximum whose
position x1(0) increases with increasing x3(0)5.

Our investigation of the gene transcription network has thus shown qualita-
tive differences between FTLs and MCCs regarding the identification of thresh-
olds in the transient dynamics. The FTLs have identified the inflection point of
the sigmoidal stimulus-response curves as a threshold. The MCC C(x3, x1) with
x3(0) = 0 is monotonous for Models I and II. The results for the FTLs are robust

5In Fig. 9, merging the two figures of each row into one figure, then no visible differences
can be seen for x3 and λ1. The maximum of the two curves for C(x3, x1) are found at different
positions, which are close to the interval with the highest curvature of the stimulus-response
curve for x3.
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for different initial x3(0) while the profile of the MCC shows a maximum whose
position x1(0) depends on the initial value x3(0). Thus the MCCs do not reliably
detect all thresholds and suffer from false positives.

6 The threshold of the Hill equation

Our analysis of the gene transcription network without feedback has shown that
the MCC C(x3, x1) is monotonously decreasing with increasing stimulus x1(0) for
the default case with x3(0) = 0 but shows a maximum for a positive x3(0) whose
position x1(0) is proportional to x3(0). This property motivated our analytical
investigation of the MCC, the FTL and two other quantitative measures from the
literature for a Hill curve with a positive response for a zero input. A positive
response for zero input could have been induced by other transcription factors in
case of gene transcription. The Hill equation is a standard example of a sigmoidal
stimulus-response curve. With a positive initial response b, it is defined by the
following equation

y = f(x) = b + xn/(1 + xn) . (7)

Assuming that the stimulus-response curve of a one-dimensional mathematical
model can be described by the Hill equation with a Hill coefficient n ≥ 2 at a time
point during the transient dynamics or in the steady state. Then the FTL has its
maximum at the stimulus with the inflection point of the Hill equation. Thus the
position of the maximum of the FTL is independent of a positive initial response
b. A right translation of the Hill curve would also change the position of the
maximum of the FTL but not its value. The cooperativity index f−1(0.9)/f−1(0.1)
is also independent of a positive initial response but its value depends on a right
translation of the Hill curve [8].

Perturbing the stimulus x by h percent and inserting Eq. (7) in Eq. (1) results
in the following equation for the MCC

C(f(x), x) = C(x) =

(
(b + xn(1 + b)(1 + h)n)(1 + xn)

(1 + xn(1 + h)n)(b + xn(1 + b))
− 1

)
1

h
. (8)

Next we calculate the stimulus x with the maximum of C(x):

d

dx
C(x) =

n((1 + h)n − 1)(b− (1 + b)(1 + h)nx2n)xn−1

(b + xn(b(1 + h)n + 1 + b) + (1 + b)(1 + h)nx2n)2h

with the roots at

x1 = 0 and x2 =

(
b

(1 + b)(1 + h)n

)1/2n

. (9)

21



Acc
ep

te
d m

an
usc

rip
t 

Finally

d2

dx2
C =

(b2(n− 1)− bpxn − 4bnqx2n + pq(1− 2n)x3n + q2(1− n)x4n)xn−2

(b + pxn + qx2n)3h

d2

dx2
C(x2) < 0 and

d2

dx2
C(x1) = 0

with p = b(1 + h)n + b + 1 and q = (1 + b)(1 + h)n .
(10)

Our result of Eq. (9) shows that the MCC C(f(x), x) for the Hill curve without
a positive initial response does not have any extreme value for x > 0. If the Hill
curve has a positive initial response then the MCC has a maximum whose position
x depends on the value of the initial response, as shown by Eqs. (9) and (10). Thus
a maximum of the MCC neither detects the inflection point, nor the interval of
the highest curvature hyperbolic threshold whose positions are independent of b.

Alternatively, the Hill equation can be defined with a basal activity which could
correspond to a basal transcription rate or a basal rate for phosphorylation. The
transcription rate or the phosphorylation rate have a maximum independent on
the basal activity which is different to the first model where the maximal activation
is proportional to the initial positive response. Introducing a basal activity leads
to the following form of the Hill equation:

y = f(x) = b + (1− b)xn/(1 + xn) . (11)

For the MCC it follows that

C(f(x), x) = C(x) =

(
(b + (1 + h)nxn)(1 + xn)

(1 + (1 + h)nxn)(b + xn)
− 1

)
1

h

d

dx
C(x) =

(b− (1 + h)nx2n)(b + (1 + h)n(1− b)− 1)nxn−1

(b + ((1 + h)nb + 1)xn + (1 + h)nx2n)2h

with the root leading to a maximum at

x =

(
b

(1 + h)n

)1/2n

. (12)

The MCC has a maximum for a positive basal activity for this definition of a Hill
equation too.

The Hill equation on its own is frequently used to quantify ultrasensitivity in
biochemical networks by fitting the Hill equation to the stimulus-response curve of
a network. However this approach is not appropriate if the response exhibits basal
activation [29]. An alternative approach to quantify sensitivities of networks with
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basal activity has been introduced in [29]. The authors have defined the MCC as
a function of the activated fraction f (Eq. (7) in [29])

C(f) = n
(1− f)f(1− b)

b + f(1− b)
with f =

xn

1 + xn
. (13)

The response as a function of the activated fraction shows a maximum at

f =
1

1− b

(
−b +

√
b2 + b(1− b)

)
. (14)

The result is similar to the results for the MCC according to Eqs. (9) and (12):
The response coefficient of Eq. (13) has a maximum at a critical f whose position
depends on the basal activity and the maximum vanishes for zero basal activity.

In experiments, cells are frequently starved to study their response to a specific
stimulation profile, without the influence of basal activity or without the influence
of a positive initial response. The reason for this is that a signaling pathway
can be active without stimulation in a cell culture. Our analysis has shown that
quantifying the response by the MCC, or by the response coefficient of Eq. (13), can
lead to qualitatively different results for experiments with and without starvation.
In contrast, a maximum of the FTL identifies the increasing part of a stimulus-
response curve and is thus robust against changes of basal activities or against
a positive initial response, as our results for the gene transcription network of
Eqs. (5) have shown (Fig. 9).

7 Most unstable direction of relative changes

The investigated examples have shown differences of the two quantitative measures
regarding the prediction of thresholds in transient dynamics, which could be related
to the different properties of these two measures (Section 2): The FTLs identify
the most unstable direction of the state space and the stability in all orthogonal
directions on the basis of absolute distances between the trajectory and perturbed
trajectories. The MCCs measure the response-perturbation ratio on the basis of
relative changes of state variables.

In this section, we introduce an alternative measure which combines properties
of the FTL and of the MCC: The most unstable direction of the state space is a
useful property of biochemical networks with overlapping stimulus-response curves
of different proteins as shown in Fig. 1. We start with the definition of the MCCs
according to Eq. (1). The column vectors of Eq. (1) form an orthonormal system
for t = 0. We calculate the spectral norm SN of Eq. (1) according to

SN(t, x0) =
√

Λmax(CT · C) , (15)
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where Λmax(C
T · C) denotes the largest eigenvalue of CT · C. The eigenvector

associated with the largest eigenvalue has the maximal stretching. Thus the SN
identifies the most unstable direction of the relative changes ∂ log xi(t)/∂ log xj(0).
The value of the SN depends on the size of the percentaged perturbation of the
xj(0). For perturbations of one percent or less the differences are negligible in our
studied examples.

In analogy to the largest FTL we define the relative instability exponent RIE
by

RIE(t, x0) =
1

t
log(SN) . (16)

The motivation for this is as follows. While the spectral norm helps us to identify
the maximal stretching, taking the logarithm and dividing by time ensures that
the profiles obtained are comparable to the largest FTL.

The following example illustrates the differences between FTL and RIE: ẋ = cx.
We obtain a FTL equal to c and RIE = log(1)/t = 0. This is due to the fact that
the system variable and the perturbation evolve according to the same equation,
which leads to a value for RIE equal to zero.

Fig. 10 shows the RIE of the apoptosis decision network for the same parame-
ters which have been used in Figs. 4 and 5. The RIE shows maxima at the same
critical xiap(0), where the FTLs and MCCs show extreme values too. For the two
later time points the RIE at the sigmoidal threshold of xiap is greater than the
RIE at the sigmoidal threshold of c8∗ in three of four cases. Thus for this example
the profile of the RIE is more similar to the profile of the MCCs than to the profile
of the FTLs.

The RIE for the gene transcription network without feedback is shown in Fig. 11
for three different x3(0). The RIE sensitively depends on this initial condition. Its
curve has a similar profile as the curves of the MCC C(x3, x1) in Figs. 8 and 9.

Our two examples have shown that the dependence of the RIE on the stimulus
is more influenced by the relative changes than by the most unstable direction.
From our discussion and comparison of quantitative measures it follows that the
RIE is less appropriate to identify thresholds in transient signaling, suggesting
that quantitative measures introduced to identify thresholds in transient signaling
should be defined on the basis of absolute differences between trajectories and
perturbed trajectories.

8 Summary and conclusions

We investigated transient dynamics of mathematical models describing biochem-
ical networks and compared quantitative measures to identify thresholds in tran-
sient responses. Thresholds separate different behaviors of a system. Sigmoidal
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stimulus-response curves are considered as typical thresholds in biochemical net-
works. We examined a mathematical model of an apoptosis decision network
(mutual activation cycle) and of a gene transcription network (cooperative reg-
ulation) as well as the Hill equation that can show thresholds in their transient
dynamics. We then compared finite-time Lyapunov exponents (FTL) with tran-
sient metabolic control coefficients (MCC) as quantitative measures to predict
thresholds in the dynamics of these networks.

We obtained the following results: A maximum of an FTL identifies the value
of an external stimulus or an initial condition, leading to the inflection point of
a sigmoidal stimulus-response curve. In case of overlapping sigmoidal stimulus-
response curves a FTL identifies a stimulus value close to the different inflection
points of the responses. The largest FTL can identify a different threshold value
than the second largest FTL, which are related to stimulus-response curves with
nonoverlapping rising parts.

For the gene transcription network and for the Hill equation our results demon-
strate that at the stimulus value, where the respective stimulus-response curve has
an inflection point, in several cases the MCCs have no extreme values. Further-
more, some MCCs have extreme values at stimuli where the respective stimulus-
response curve has no point of inflection and in two cases they show extreme values
near the interval with the highest curvature.

The FTLs are robust against variations of initial values of network components
which are not the stimulus of the relevant stimulus-response curves. The profiles of
the MCCs can depend on the initial values of other components, as shown for the
gene transcription network and the Hill equation. These results are important for
experimental studies of signalling pathways under starvation because mathematical
models, based on data from experiments either with or without starvation, could
show different sensitivities.

The different results for FTLs and MCCs are related to the different properties
of these two measures. We introduced the relative instability exponent, called RIE.
The RIE identifies the most unstable direction of relative changes. Our analysis
led to the result that the RIE shares more properties with the MCCs than with
the FTLs and is therefore not appropriate to identify thresholds.

We investigated examples which are complex enough to show thresholds in
transient signaling but at the same time allow us to compare in detail the dynam-
ics of the trajectories with respect to the FTLs and MCCs. In large biochemical
networks such a detailed comparison would be very time consuming. Therefore
quantitative measures to identify putative thresholds in the transient dynamics are
required. Our investigation suggests that they should identify the most unstable
direction and that they should be defined on the basis of absolute differences be-
tween responses. The spectrum of the finite-time Lyapunov exponents unambigu-
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ously and reliably identifies putative thresholds as inflection points of sigmoidal
stimulus-response curves in transient dynamics. Relative measures, like metabolic
control coefficients, do not reliably detect all thresholds and suffer from false pos-
itives. A consequence for biochemical networks that show relative responses, is
that FTLs are needed to identify thresholds, while MCCs should be applied to
compare the amplitude of different thresholds.

Finally we discuss the application of FTLs and MCCs for the prediction of
therapeutical interventions in biochemical networks [31]. For mitochondrial dis-
eases it has been shown that the hyperbolic threshold for the inhibition of different
mitochondrial complexes is a linear decreasing function of the respective flux con-
trol coefficient [32]. However, it has not been studied whether a threshold can be
identified by extreme values of the MCCs.

For the administration of a drug, which binds as an extracellular ligand to
a specific receptor on the cell membrane, the dose of the drug must exceed a
threshold to activate the intracellular biochemical network. On the other hand,
the dose of the drug should not be higher than necessary to avoid unwanted side
effects. A maximum of an FTL can identify the minimal initial concentration of
a drug that leads to the activation of a downstream network. FTL could also
support the design of dose split experiments to avoid that the dose is decreasing
below a threshold value. The threshold value could have changed over time due
to changes of intracellular protein concentrations.

MCCs are applicable in medical systems biology for a comparison of the re-
sponses of different state variables in dependence on perturbations of different
parameters or initial conditions of state variables [33]. Such perturbations could
be induced by small molecules. In case that one is interested in a measure sum-
marizing the responses of all variables the RIE could be useful. Global methods
of sensitivity analysis need to be applied to study simultaneous perturbations of
several initial conditions,[20]. A comparison with the result for the RIE would be
interesting.

FTLs and MCCs can also be applied in combination to support the design of
experiments in systems biology: An analysis of MCC leads to the identification
of drugs or small molecules which most effectively perturb a biochemical network.
Then FTLs will determine the optimal stimulus profile of a drug or small molecule.
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A Quantified threshold values

In the following two tables we summarize the values for xiap(0) leading to maxima
of the largest and second largest FTL and to extreme values of the MCCs in Figs. 4
and 5.

Row in Fig. 4 component 6h 12h 18h
inflection point c8∗ 45 44 44

c3 46 46 46
FTL λ1 45 44 44
MCC C(c8∗, c3), C(c3, c3) 46 45 45
inflection point c3∗ 45

xiap 46 34 23
highest curvature c3∗ 33 33
FTL λ2 45 32 25
MCC C(xiap, c3), C(c3∗, c3) 46 33 22

Table 3: Apoptosis decision network: xiap(0) in 104 molecules/cell leading to
maximal FTLs and extreme values of MCCs in Fig. 4.

Row in Fig. 5 component 6h 8h 10h
inflection point c8∗ 60 60 60

c3 66 67 68
FTL λ1 61 62 61
MCC
inflection point c3∗ 57

xiap 60 48 39
highest curvature c3∗ 45 37
FTL λ2 55 45 38
MCC C(c3∗, c3) 58 38

C([c8, c3∗], c3) 47

Table 4: Apoptosis decision network: xiap(0) in 104 molecules/cell leading to
maximal FTLs and extreme values of MCC in Fig. 5.
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B Maximum of negative FTL

The dynamics of the following one-dimensional example ẋ = −x/(1+x6)−x leads
to a maximum of a negative FTL . The trajectories and the FTL are shown in
Fig. 12
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Figure 10: Relative instability exponent (RIE) for the apoptosis decision network.
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Figure 11: Relative instability exponent (RIE) for the gene transcription network
without feedback at t = 2.
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Figure 12: Maximum of a negative FTL.
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