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Abstract 

For many years in evolutionary science, the consensus view has been that while 

reciprocal altruism can evolve in dyadic interactions, it is unlikely to evolve in sizable 

groups.  This view had been based on studies which have assumed cooperation to be 

discrete rather than continuous (i.e., individuals can either fully cooperate or else fully 

defect, but they cannot continuously vary their level of cooperation).  In real world 

cooperation, however, cooperation is often continuous.  In this paper, we re-examine the 

evolution of reciprocity in sizable groups by presenting a model of the n-person 

prisoner’s dilemma that assumes continuous rather than discrete cooperation.  This model 

shows that continuous reciprocity has a dramatically wider basin of attraction than 

discrete reciprocity, and that this basin’s size increases with efficiency of cooperation 

(marginal per capita return).  Further, we find that assortative interaction interacts 

synergistically with continuous reciprocity to a much greater extent than it does with 

discrete reciprocity.  These results suggest that previous models may have underestimated 

reciprocity’s adaptiveness in groups.  However, we also find that the invasion of 

continuous reciprocators into a population of unconditional defectors becomes realistic 

only within a narrow parameter space in which the efficiency of cooperation is close to its 

maximum bound. Therefore our model suggests that continuous reciprocity can evolve in 

large groups more easily than discrete reciprocity only under unusual circumstances. 

 

Keywords: evolution of cooperation; reciprocal altruism; reciprocity; collective action; 

assortative interaction 
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1. Introduction 

 

Direct reciprocity has long been regarded as a plausible route for the evolution of 

cooperation in genetically unrelated dyads (Axelrod & Hamilton, 1981; Trivers, 1971), 

particularly in humans.  However, human sociality extends far beyond dyadic 

cooperation, and is characterized by collective action (Olson, 1965), i.e., a large group of 

unrelated members involved in the joint production of a shared resource.  Based on the 

pessimistic results of models of the evolution of reciprocity in large groups (Bender & 

Mookherjee, 1987; Boyd & Richerson, 1988; Joshi, 1987; Taylor, 1976), the standard 

view in biology has for years been that reciprocity is unlikely to evolve in groups much 

larger than dyads (e.g. Boyd et al., 2003; Fehr 2004; Fehr & Fischbacher, 2003; Gächter 

& Herrmann, 2009; Hagen & Hammerstein, 2006; Hauert et al., 2002; Henrich, 2004, 

2006; Kurzban & Houser, 2005; Sigmund & Nowak, 2000; Suzuki & Akiyama, 2005).  

This view has led many theorists to suggest alternative routes for the evolution of group 

cooperation, for example genetic or cultural group selection (Boyd et al., 2003; Gintis, 

2000; Henrich, 2004; Wilson & Sober, 1994), costly signalling (Gintis et al., 2001), 

opting out of a group (Hauert et al., 2007),  and indirect reciprocity (Panchanathan & 

Boyd, 2004).  

Reciprocity in dyads is traditionally modelled as the tit-for-tat strategy (Axelrod & 

Hamilton, 1981) that continues cooperating as long as the partner cooperates, but stops 

cooperating if the partner did not cooperate in the previous round.  Tit-for-tat is a discrete 

strategy that contributes either fully or not at all.  Models of reciprocity in groups have 

defined reciprocity as a discrete strategy that continues cooperating as long as all other 
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group members cooperate, but stops cooperating if one or more co-members defect 

(Bender & Mookherjee, 1987; Boyd & Richerson, 1988; Joshi, 1987; Taylor, 1976).  

However, the evidence that people actually engage in a discrete all-or-nothing strategy – 

also called a trigger strategy – is weak (Ostrom et al., 1994; Watabe, 1992; Watabe & 

Yamagishi, 1994).  Furthermore, many instances of real-world cooperation seem to be 

better modelled as continuous rather than discrete, because individuals continuously vary 

their degree of cooperation from full defection to full cooperation.  Bshary & Bronstein 

(2004), for example, review real world examples of interspecific mutualism and find 

many instances of continuous cooperation.  Continuous cooperation is also common in 

human groups: members tend to modulate their contribution levels in order to 

approximately match the mean co-member contribution (Croson, 2007; Croson et al., 

2005; Fischbacher et al., 2001; Kurzban & Houser, 2005; Kurzban et al., 2001).  

The representation of reciprocity as a discrete strategy could be regarded as a trivial 

or inevitable simplification of a complex reality, of the kind that is often required in 

formal models.  However, we found that replacing discrete reciprocity with continuous 

mean-matching reciprocity effected significant changes in model results.  In Section 2 

below, we first review a model of discrete reciprocity in the n-person prisoner’s dilemma 

(Boyd & Richerson, 1988) that is widely cited as having shown the difficulty of the 

evolution of (discrete) reciprocity in large groups.  We then compare this model with a 

new model that replaces discrete reciprocity with continuous reciprocity.  We find that 

like discrete reciprocity, continuous reciprocity can be evolutionarily stable against an 

unconditional defection strategy, while unconditional defection can also be evolutionarily 
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stable against both reciprocity strategies.  The most important finding is that the basin of 

attraction for continuous reciprocity gets wider as cooperation gets more efficient, while 

the basin of attraction for discrete reciprocity remains quite small even when cooperation 

is extremely efficient.  We also investigate the influence of assortative interaction and 

find it to have a strong synergic effect with continuous reciprocity but not with discrete 

reciprocity. These results hold even when an unconditional cooperation strategy exists in 

the population.   

However, we find that the advantage of continuous reciprocity is strictly 

constrained by the efficiency of cooperation; the invasion of continuous reciprocity into a 

population of defectors becomes realistic only when cooperation is extremely efficient, 

i.e. when a contribution from a single individual produces a very large benefit for the 

entire group.  Because conditions of such efficiency are probably relatively rare, this 

finding suggests that in a population divided up into large groups, continuous reciprocity 

could invade only under unusual circumstances. In Section 3, we demonstrate the 

robustness of continuous reciprocity in highly efficient public goods situations by 

extending the strategy space from one in which continuous reciprocators can only match 

the mean partner contribution to one in which they can contribute above or below this 

mean. 

 

2. Discrete versus Continuous Reciprocity 

2.1. Repeated n-person Prisoner’s Dilemma Game 
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To model the evolution of cooperation in sizable groups, we considered a large 

population subdivided into randomly-formed groups of size n which play repeated n-

person prisoner’s dilemma games.  Every round, individual members decide whether to 

contribute c to their group, in order to create the benefit Bc which is divided equally 

among all n group members.  B is assumed to be smaller than n, so a member’s private 

return is always less than that member’s contribution (Bc/n < c), and groups are thus 

public good-producing collective actions characterized by social dilemmas.  The game is 

repeated with the probability w.  

2.2. The evolution of discrete reciprocity 

First, let us consider two classes of strategies: unconditional defector (D) and 

discrete reciprocator (Ta).  D never contributes, while Ta contributes fully (c = 1) in the 

first round and continues contributing fully as long as a or more group co-members also 

contribute fully.  Let V(x|y) be the payoff to an individual with a strategy x in a group 

with y reciprocators (in this section, Ta).  When D is common, the expected payoff to D is 

V(D|0) = 0 while the payoff to a rare Ta is V(Ta |1) = B/n − 1 when a = n −1, and (B/n − 1) 

/ (1 − w) when a < n − 1.  In both cases, the payoff to Ta is smaller than 0 and thus a rare 

Ta cannot invade a population when D is common.  When Ta is common, the expected 

payoff to Ta is V(Ta |n) = (B − 1) / (1 − w).  The expected payoff to a rare D is V(D|n–1) = 

B(n 1) /n
1 w

 when a < n - 1.  As V(Ta |n) < V(D|n–1) when n > 2, Ta cannot prevent the 

intrusion of D.  On the other hand, when a = n - 1, the expected payoff to D is V(D |n–1) 

= B (n – 1) / n and this is smaller than the expected payoff to Tn-1 when w is sufficiently 

large (Boyd & Richerson, 1988).  Thus, Tn-1 is an evolutionary stable strategy that 
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prevents the intrusion of rare D when interactions are sufficiently iterated.  In the 

following, we will consider only Tn−1 (hereafter referred to simply as T).  

It is proved that, when T is evolutionarily stable, there is a unique unstable 

internal equilibrium (Boyd & Richerson, 1988).  However, the basin of attraction for a 

pure T equilibrium gets smaller quickly as group size increases.  The proportion of T at an 

internal equilibrium is p
1 B /n

w(B 1) /(1 w)ww

1/ n

.  Figure 1a illustrates how this proportion 

of T changes as a function of the efficiency of cooperation B/n (marginal per capita 

return) and w when group size is 100.
i
  The upper two lines in Figure 1a show that T 

cannot increase its share in a population unless it already composes a large majority of 

that population; if the proportion of T falls below 85-90%, D increases its share.  

2.3. The evolution of continuous reciprocity 

We now replace the discrete strategy T with a simple continuous reciprocal strategy R.  

Like T, R contributes fully in the first round.  R then matches the average contribution 

made by the other n-1 players in the previous round.  When D is common, the expected 

payoff to D is V(D|0) = 0.  The expected payoff to rare R is V(R|1) = B/n – 1 because R 

contributes fully only in the first round and contributes nothing from the second round.  

As V(R|1) < V(D|0), D is evolutionarily stable.  On the other hand, when R is common, it 

is proved that the expected payoff to R, V(R|n) = (B – 1) / (1 – w), is larger than D’s 

expected payoff, V(D|n – 1), and R is evolutionarily stable when 

B 1
1 w

B(n 1)/n
1 w(n 2)/(n 1)

 (see Appendix A).  Because the condition for T to be an ESS 
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is 
B 1
1 w

B(n 1) / n  and 1–w(n–2)/(n-1) is always smaller than 1, R can avoid an 

invasion of D in a narrower range of conditions than can T. 
 
 

The basin of attraction for R is drastically larger than that for T, however.  Figure 

1a shows the minimum proportion of R and T that must exist in a population in order to 

prevent the intrusion of D (i.e., the proportion of R and T at an unstable internal 

equilibrium).  In contrast to T, the proportion of R is generally small, especially when the 

efficiency of cooperation, B/n, is high.  For instance, when n = 100 and B/n is 0.95 (so 1 

unit of cooperation [c = 1] produces 95 units of benefit [B = 95]), R can proliferate even 

when its initial proportion is only 10% or less.  This is markedly different from T, which 

must compose 85-95% of the population in order to evolve.  We increased group size in 

increments of 100 from 100 to 500, and confirmed that this advantage of R over T holds 

across all these group sizes.  Figure 1c shows how the basin of attraction for T and R 

changes in response to the size of benefit of cooperation (B) and group size (n); the basin 

of attraction for R changes almost linearly as benefit of cooperation approaches the 

maximum size (i.e., as B approaches n).  For all three group sizes (n=20, 50 and 100), the 

proportion of R at internal equilibrium gets lower than 10% when the efficiency of 

cooperation (B/n) is larger than about 0.9 (i.e., B ≈ 18, 45 and 90 for n = 25, 50 and 100, 

respectively) which indicates that the invasion of R becomes realistic only in a narrow 

range of B that is close to B’s maximum value.  On the other hand, the basin of attraction 

for T is less sensitive to the size of B as group size increases. 

2.4. Synergic effect between continuous reciprocity and assortative interaction 
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In dyadic cooperation, a strong synergic effect between reciprocity and assortative 

interaction is known to exist (Axelrod & Hamilton, 1981); rare reciprocators can invade a 

population of unconditional defectors much more easily if reciprocators can preferentially 

interact with other reciprocators and thus decrease the risk of being exploited by 

defectors.  On the other hand, a model of discrete group reciprocity (Boyd & Richerson, 

1988) found that assortative group formation does not facilitate the invasion of rare 

reciprocators very much.  

Figure 2 shows the threshold number of interactions that must be exceeded in 

order for a rare reciprocator strategy, T or R, to invade a population of unconditional 

defectors given a specific group size and level of assortative interaction (r) (see Appendix 

B).  The figure illustrates that both T and R can invade when group size is very small (n = 

3 or 5) and when groups continue to interact for a very long time.  The threshold value for 

number of interactions is slightly smaller for R than T, implying that R can more readily 

evolve, although this difference is minor.  As group size gets larger, it quickly gets much 

tougher or even impossible for both T and R to invade (see also Boyd & Richerson, 

1988). 

We also investigated the synergic effect of reciprocity and assortative interaction 

by considering the size of the basin of attraction for reciprocators.  We did find a strong 

synergic effect, but only for R: with assortative interaction, the basin of attraction for R 

remains large even when cooperation is relatively inefficient.  Figure 1b shows the 

minimum proportion of discrete reciprocators, T, necessary for T to increase its share 

when assortative interaction is fairly low (r = 1/16) and very low (r = 1/64), and suggests 
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that assortation does not help T very much: in both cases, T cannot prevent the invasion 

of D if its proportion in a population is smaller than around 85-95%.  In contrast, a small 

degree of assortative interaction drastically decreases the value of efficiency of 

cooperation (B/n) that is necessary for R to evolve.  When r = 1/16, a small proportion of 

R can proliferate even when cooperation is relatively inefficient (B/n = 0.13).  Again, 

similar results are obtained even when group size is increased from 100 to 500, in 

increments of 100.  Figure 1d shows how the basin of attraction for T and R changes in 

response to the size of benefit of cooperation (B) and the group size (n) when r = 1/16. As 

when there is no assortative interaction existing (i.e., Figure 1c), the basin of attraction 

for R changes almost linearly as B increases to its maximum value (i.e., n/{(n–1)r+1}; if 

B is larger than this point, even a rare unconditional cooperator can increase its share in 

the population of unconditional defectors). 

Where does the synergic effect between assortative interaction and continuous 

reciprocity come from?  First, T gains the benefits of mutual cooperation only when all of 

its co-members are also T; the introduction of just one D co-member induces the collapse 

of cooperation.  The introduction of one or more D also results in the collapse of 

cooperation when D and R coexist in the same group.  However, R gains some benefit 

from mutual cooperation because of its gradual decrease of cooperation.  As the number 

of D co-members increases, R stops cooperating more quickly and thus minimizes the 

extent of its own exploitation.  R is thus able to reduce cooperation when interacting with 

too many Ds, and to maintain a moderately high level of cooperation with fewer Ds.  As a 

result, payoffs to D and R marginally increase as the number of reciprocators increases, 
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while payoffs to D and T mostly linearly increase.  This non-linearity advantages R, 

especially when assortative interaction exists (see Figure 3).   

2.5. The third strategy: unconditional cooperators 

So far we have investigated interactions between only two strategies (D and either 

R or T) at one time.  Do results change when a third strategy – unconditional cooperation 

(C) – is added?  When D is completely absent, C receives the same benefit as T or R, and 

C can drift into the populations composed of reciprocators (T or R).  However, C is easy 

prey to D, and after drifting onto a population, C may even help D to beat a reciprocal 

strategy.  In order to examine the influence of unconditional cooperators, we extended the 

model by adding C and examined the evolutionary dynamics of the system.  Appendix C 

discusses the payoffs and Figure 4 illustrates the dynamics of three strategies, C, D and 

either T (Figure 4a) or R (Figure 4b), when n = 100.  In both figures, any points on the 

line QC are unstable internal equilibria and the area above the line QC (including the 

point C but excluding the point Q) is the basin of attraction for D.  Any points on the line 

TC or RC other than the point C are neutrally stable fixed points, and the area below the 

line QC is the basin of attraction for a mixture of cooperative strategies.  We found that 

D’s basin of attraction composes a large majority of the triangular area when it coexists 

with C and T, but only a small minority of this area when it coexists with C and R.  

Again, similar results were obtained when group size was increased incrementally to 500.  

 

3. Extending the strategy space to allow below- and above-mean continuous 

reciprocity 
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 We next investigated the stability of the continuous mean matching strategy 

against other variants of continuous reciprocity, such as those who give above or below 

the mean.  Following Le & Boyd (2007), we modelled the strategy space of continuous 

reciprocal strategies using a parameter, ρ, which ranges from 0 to 2.  When ρ = 1, it is 

identical with the R mean matching strategy.  As ρ gets larger, a player gets more 

generous than R and contributes more than the mean contribution.  When ρ = 2, it is 

identical with unconditional cooperation.  As ρ gets smaller than 1 it gets less generous, 

and when ρ = 0 it is identical with unconditional defection.  Contribution at the round t (≠ 

1) is ρut-1 when 0 ≤ ρ ≤ 1 and ut-1 + (ρ-1)(1– ut-1) when 1 < ρ  ≤ 2 where ut-1 is the mean 

contribution made by the other players at round t-1.  For simplicity, we assumed that all 

strategies other than D (ρ = 0) contribute fully in the first round.  As we could not find a 

closed form expression of the payoffs, we conducted a numerical simulation by fixing a 

number of interactions instead of using a continuation probability of interactions.  

3.1 Numerical analysis 

 We first assumed that the population consists of a single strategy, ρk, and checked 

if a rare single strategy, ρr, could invade this population.  Figure 5 is the payoff map of 

various combinations of ρk and ρr that shows local dynamics of the system.  This system 

has one non-cooperative attractor, ρk = 0: when the common strategy ρk is below the 

threshold value q, a more generous strategy (ρr  > ρk) cannot invade the population.  

When the common strategy is more generous than this threshold line q but less generous 

than the mean matching strategy (i.e., q < ρk < 1), a more generous strategy (ρr > ρk) can 

invade the population.  Remember that strategies 1 ≤ ρk < q’ are neutrally stable against 
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any invading strategy ρr ≥ 1, as neither perception nor implementation error exists in the 

model and both the common and invading strategies receive the same fitness value.  If a 

population becomes too generous (ρk > q’), any strategy that is less generous than the 

mean matching strategy (ρk < 1) can invade the population.  We found that the basin of 

attraction for ρk = 0 is rather small as long as efficiency of cooperation remains high.    

3.2 Agent-based simulations 

We then conducted agent-based simulations to further investigate global dynamics 

of the system and the stability of cooperative states in a heterogeneous population where 

agents’ strategy ρ can take any value ranging from 0 to 2.  At the first generation, the 

entire population was occupied by ρ = 1.  At the end of each generation, each individual 

produced a number of offspring that was proportional to the payoff that the individual 

received in that generation, and Gaussian error mutation ~ N(0,SD) was added to each 

individual’s strategy.  Figure 6 shows the results of simulations of 5,000 agents that were 

randomly subdivided into 50 groups of 100 agents at the beginning of each generation 

and that played 20 rounds (  w = 0.95) of the repeated n-person prisoner's dilemma game 

for 5,000 generations under several mutation sizes (SD of Gaussian mutation: 0.002, 

0.02, 0.05 and 0.07).  

As the mutation size increased, the system fluctuated more frequently.  In general, 

however, the system exhibited cooperative polymorphism: the average of ρ fluctuated 

between cooperative (ρ > 1) and less cooperative values (ρ  0.2~1) across generations 

but never arrived or stayed at a non-cooperative equilibrium (ρ = 0).  
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4. Discussion  

This model investigated reciprocity under rather specific conditions, where new 

groups were formed and dismissed in each generation, in the absence of errors of 

perception and implementation.  We intentionally chose those settings so that our model 

would be directly comparable to a very influential study (Boyd & Richardson, 1988) that 

is often cited for suggesting that (discrete) reciprocity is unlikely to have played a very 

important role in the evolution of group cooperation (e.g. Boyd et al., 2003; Fehr 2004; 

Fehr & Fischbacher, 2003; Gächter & Herrmann, 2009; Hagen & Hammerstein, 2006; 

Hauert et al., 2002; Henrich, 2004, 2006; Kurzban & Houser, 2005; Sigmund & Nowak, 

2000; Suzuki & Akiyama, 2005).  Our results suggest that models which represent 

reciprocity as discrete rather than continuous may underestimate the adaptiveness of 

reciprocity in groups. 

Although some real world group cooperation surely involves all-or-nothing 

discrete decisions, continuous cooperation has been observed in numerous species 

(Bshary & Bronstein, 2004).  The disregard of reciprocity’s role in the evolution of 

collective action is surprising, given that (continuous) reciprocity is the most commonly-

observed strategy pursued by subjects in n-person cooperation experiments (Croson, 

2007; Croson et al., 2005; Fischbacher et al., 2001; Kurzban & Houser, 2005; Kurzban et 

al., 2001; Yamagishi, 1986; Yamagisi & Sato, 1986).  In this study, we pointed out the 

difference between the discrete reciprocity that has prevailed in past modelling efforts, 

and the continuous reciprocity that has been observed in these experiments.  While the 
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difference between discrete and continuous reciprocity may at first glance seem trivial, it 

affected model results significantly: compared to discrete reciprocity, the continuous 

mean matching strategy greatly enlarged the basin of attraction where reciprocity can 

evolve. However, this advantage of continuous reciprocity was heavily constrained by the 

size of the benefit from cooperation; the basin of attraction for continuous reciprocators 

increased almost linearly as the benefit from cooperation (B) increased.  In the absence of 

assortative interaction, when the efficiency of cooperation (B/n) approached around 0.9 

(i.e., B = 18, 45 and 90 for groups of 20, 50 and 100 individuals, respectively), the 

proportion of continuous reciprocators necessary for invading a population of defectors 

dropped to below 10% (Figure 1c). When groups were assortatively formed, the value of 

B required for continuous reciprocity to invade the population fell significantly (Figure 

1d).  For instance, when degree of assortative group formation was fairly weak (r = 1/16), 

the proportion of continuous reciprocators necessary for invading the population dropped 

below 10% when the values of B were around 8, 11, and 12.5 for groups of size 20, 50 

and 100, respectively. In both cases with and without assortative interaction, invasion of 

continuous reciprocity seems to be realistic only in narrow range where the size of the 

benefit from cooperation comes close to its maximum bound. When the value of the 

benefit from cooperation was sufficiently large, continuous reciprocity was stable even in 

a heterogeneous population where strategy space was extended to allow for below- and 

above-mean reciprocity.  

It is important to remember that the value of B indicates the extent to which one 

unit of contribution by one member benefits the member’s entire group. For example, if B 
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= 20, this means that when one member expends one unit of effort, it produces 20 units 

of public good for the group. Cooperation may under some extreme circumstances lead to 

extraordinarily efficient public good provisioning—for example, contributing to the 

discovery of a new food source during a time of starvation, or helping to build a higher 

wall in order to defend a village against a large-scale attack. Further, with some public 

goods, for example public buildings or roads, B tends to increase as n increases, because 

the total benefit produced often increases with the number of people who utilize the good. 

However, it is not clear that such efficient public goods production would have been a 

realistic aspect of the societies in which human adaptations for reciprocity evolved. 

The model presented suggests that continuous reciprocity can evolve in large 

groups only under a narrow range of circumstances involving unusually high productive 

efficiency.  In this sense, the puzzle of the evolution of large-scale cooperation still 

remains to be solved.  On the other hand, the overall effects of replacing discrete with 

continuous reciprocity were significant. Future models of the evolution of cooperation 

should incorporate real-world behavioural regularities that are observed in the context of 

both cooperation and punishment (e.g., Carpenter 2007), while still keeping models as 

simple as possible.   
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i
 Throughout this paper, we manipulate the value of B/n as a model parameter instead of 

independently varying the values of B and n.  B/n is frequently used as an index of 

efficiency of cooperation; in order for the game to be a public goods dilemma, its value 

needs to lie between 0 and c (= 1 in our model).  Differences between the two reciprocal 

strategies were exhibited mainly when this index’s value was close to its upper limit.  

Note that the value of B, the amount of benefit produced from one unit of contribution, 

varies with the increase of the group size, n, even when the efficiency of cooperation 

index remains constant.  
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FIGURE CAPTIONS 

 

Figure 1: The minimum proportion of discrete (T) and continuous (R) reciprocity 

strategies necessary to invade a population of unconditional defectors (D).  For both 

1a and 1b, the group size is set to 100; the horizontal axis is the probability w of 

interaction continuation, and the vertical axis is the proportion of the reciprocity strategy 

that must compose the population in order to successfully invade; and the two upper lines 

represent the discrete strategy T, while the two lower lines represent the continuous 

strategy R. For 1a, groups are formed randomly; the two circle-studded lines show that 

when efficiency of cooperation (B/n) is moderate, T can invade only when very common, 

while R can invade when less common, especially as w increases; the two triangle-

studded lines show that when efficiency is high, T can again invade only when very 

common, while R can invade when much less common.  For 1b, groups are formed 

assortatively; triangle-studded lines show R’s advantage in invasion ability when 

assortation (r) is fairly weak and efficiency is very low, while circle-studded lines show 

this advantage when assortation is very weak and efficiency is fairly low.  For both 1c 

and 1d, the horizontal axis is the size B of the benefit to the group, the three dotted lines 

represent T, and the three solid lines represent R.  Group size n is 20, 50 and 100 for each 

strategy, while continuation probability w is set to 0.99.  For 1c, groups are formed 

randomly and B is truncated at the maximum value – 1 for each group size.  For 1d, 

groups are formed assortatively (r = 1/16) and B is truncated at the integer value that is 

smaller and closest to n/{(n–1)r+1}. 
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Figure 2: Minimum number of interactions that must be exceeded for rare 

reciprocators (T and R) to invade a population of unconditional defectors (D) under 

assortative group formation.  T and R are represented by solid and broken lines, 

respectively.  Thinner lines indicate r = 1/64 and thicker lines indicate r = 1/16. 

Horizontal axis represents efficiency of cooperation (B/n) and vertical axis represents 

logarithm of expected number of interactions (i.e., 1/1–w).  For 2a, n = 3; 2b, n = 5. 

 

Figure 3: Payoff to defectors (D) and discrete (T) and continuous (R) reciprocity 

strategies as a function of the number of reciprocators in the group. For both 3a and 

3b: parameter values are n = 100, B/n = 0.50, and w = 0.95; the circle-studded and x-

studded lines represent payoffs to D and to reciprocators (T in 3a and R in 3b), 

respectively.  Solid arrows in 3a and 3b represent expected numbers of reciprocators in 

one’s group when p is 0.50 and when one is a D (left arrow) or when one is a reciprocator 

(right arrow).  Both 3a and 3b show that a reciprocator’s payoff in a group of 50 

reciprocators is smaller than a D’s payoff in a group of 49 reciprocators, so both 3a and 

3b suggest that reciprocity cannot evolve under this parameter setting when there is no 

assortative interaction.  When groups are assortatively formed, reciprocators will find 

more reciprocators and D will find fewer reciprocators in their groups, so the arrows will 

move apart from each other.  The dotted arrows in 3a and 3b represent expected numbers 

of reciprocators in one’s group when one is a D (left arrow) or a reciprocator (right 

arrow) and when p is 0.50 and assortation (r) is 1/16.  The payoff advantage for 
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reciprocators over D increases at a much greater rate for R (3b) then for T (3a), indicating 

that assortative interaction benefits continuous reciprocators more than discrete 

reciprocators.  

 

Figure 4: Evolutionary dynamics of unconditional cooperators (C), unconditional 

defectors (D) and discrete (T) and continuous (R) reciprocity strategies.  An all-D 

population is evolutionarily stable, and an all-R or all-T population is neutrally stable, as 

C can receive the same payoff as R or T when D is absent from the population.  In both 4a 

and 4b, the line QC separates two regions.  Within DQC, the system evolves towards a 

non-cooperative equilibrium (point D).  Within QCR or QCT, the system evolves towards 

a point on the line CR or CT (i.e., a mix of strategies C and R or T).  On the line QR or 

QT, the system evolves towards an all-reciprocator equilibrium (point R or point T).  

When R is present in the population (4a), the basin of attraction of cooperative strategies 

C and R is much larger than that of D; however when T is present (4b), the basin of 

attraction of cooperative strategies C and T is much smaller than that of D.  For both 4a 

and 4b, the parameter values are n = 100, B/n = 0.13, w = 0.95, and r = 1/16. 

 

Figure 5: Comparisons of payoffs of common strategy ρk and rare invading strategy 

ρr.  Vertical axis represents a common strategy in a population and horizontal axis 

represents a rare invading strategy.  Equality and inequalities inside of the rectangle 

indicate relative size of payoffs.  For instance, in the area denoted k > r, common 

strategies receive higher payoffs than invading strategies.  Both strategies receive the 
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same payoffs on the thick lines (k = r).  Parameter values are set to n = 100, B/n = 0.95 

and maximum number of rounds = 10 (  w = 0.9).  The parameters q and q’ are strongly 

influenced by the efficiency of cooperation.  For instance, when B/n is decreased to 0.65, 

q increases to 0.36~0.41 and q’ decreases to 1.61.  

 

Figure 6: Evolution of generosity (ρ) in the agent-based computer simulations.  For 

6a, SD=0.002; 6b, SD=0.02; 6c, SD=0.05; 6d, SD=0.07.  Each of four lines in the figure 

represents an independent replication of simulations.  
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Appendix 

A. When reciprocity is continuous  

When more than one R coexists with D in a group, R gradually decreases its 

contribution because it matches the average contribution made by other group members.  

When there are m continuous reciprocators and n - m defectors in a group, the 

contribution made by any R in round i is zi = v i-1
 where v = (m-1)/(n-1).  Thus in this 

group, in round i the payoff to R isB zi m /n zi and the payoff to D is B zi m/n .  The 

expected payoff to D in a group of m R players is V(D|m) = wii 1 B zi m /n
ii 1
w . V(R|n) is 

strictly larger than V(D|n-1) when the following condition is satisfied: 

B 1
1 w

B(n 1)/n
1 w(n 2)/(n 1)

 because wi 1 zi
i 1
w 1

1 wv
. 

The expected payoff to R in a group of m R players and n - m D players is V(R|m) =

wii 1 B zi m /n
ii 1
w wii 1 zi

ii 1
w .  Assuming random group formation, the average payoff to 

R at the population level is 

W (R) W0 p(x) V (R |m x 1)
x 0

n 1

p(
n 1

W0 p(x) (x 1)B /n 1
1 w x /(n 1)x 0

n 1

p(
n 1

 , 

where W0 is the baseline fitness, p(x) is the probability for a focal player to find himself 

in a group of x other R players and n-x-1 other D players given that the proportion of R in 

a population is pm; p(x)
n 1
x
nn

pm
x (1 pm )

n 1 x
.  The average payoff to D is 
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W (D) W0 p(x) V (D |m x)
x 0

n 1

p(
n 1

W0 p(x) x B /n
1 w(x 1) /(n 1)x 0

n 1

p(
n 1

.  

The proportion of R at an internal equilibrium, pm
*
 is numerically derived by calculating 

the value of pm in the equation, W(D) = W(R).  Figure 1a in the paper illustrates how this 

value changes as a function of B/n and w when group size is 100.  

 

B. When groups are assortatively formed 

Consider two strategies existing in a population and let p(x) be the probability that 

a focal player will find himself in a group of x players of the same strategy and n–x–1 

players of the other strategy.  When the proportion of a focal strategy in a population is p, 

p(x)
n 1
x
nn

r (1 r)prrr p x (1 r)(1 p)(1 ) n 1 x .  In this equation, r is a parameter, ranging 

from zero to one, determining the degree of assortative interaction; groups are randomly 

formed when r = 0.  Here, r plays the same role as Hamilton’s kinship coefficient 

(Hamilton, 1964) and even unconditional cooperation can evolve when {(n-1)r+1}B/n > 

c, which is called the inclusive fitness effect (Hamilton, 1975).  When r > 0, of particular 

interest is the situation in which this equation does not hold, and unconditional 

cooperation can therefore not evolve. 

 We analyzed the influence of the assortative interactions in two different ways: 

invasion analysis and basin of attraction analysis.  First, we investigated a situation where 

an invading strategy is very rare.  Assume that p is the proportion of a rare invading 

strategy in a population.  As p approaches 0, the above mentioned probability p(x) 
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approaches to and is approximated by 
n 1
x
nn

rx (1 r)n 1 x .  When D is common in the 

population, the fitness of a rare invading R is obtained by recalculating W(R) in the 

section (i) after replacing p(x) with the new value derived in this section.  As the average 

fitness of the common strategy D is equal to the baseline population fitness W0, R can 

invade the population when W(R) > W0.  The threshold value of the number of 

interactions that must be exceeded by R in Figure 2 in the paper was derived by 

numerically solving this equation given that the other parameters were fixed.  The 

threshold value for T was calculated in the same manner given that 

W (T) W0 p(x) V(T |m x 1)
x 0

n 1

p(x
n 1

 where V(R |m x 1) is (x 1)B/n 1 when x < n–1 

and 
(x 1)B /n 1

1 w
 when x = n–1. 

 Second, we investigated a situation in which the proportion p of an invading 

strategy takes any value other than zero.  Figure 1b in the paper shows the results of this 

analysis.  

 

C. When an unconditional cooperator (C) exists:  

When the three strategies R, C and D coexist in a group, the contribution made by 

any R player in round i is zi v i 1 s v j 1 v i 1 s(1 v i 1) /(1 r)
j 1

i 1
v

i 1
 where v = (m-1)/(n-

1), s = k/(n-1), and m and k are the number of R and C players in the group, respectively.  

Thus, the average payoff to R in a group of m R and k C is  
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V(R|m,k) = wii 1 B zi m /n
ii 1
w wii 1 B k /n

ii 1
w wii 1 zi

ii 1
w .  

Likewise, the average payoffs to C and D in the same group are  

V(C|m,k) = wi 1 B zi m /n
ii 1
w wi 1 B k /n

ii 1
w wi 1

ii 1
w , and  

V(D|m,k)= wi 1 B zi m /n
i 1
w wi 1 B k /n

i 1
w , respectively. Hence, the average 

payoffs to R, C, and D in a population are 

W (R) W0 p(x,y) V (R |m x 1,k y)
y 0

n 1 x

p(x
xx

x 0

n 1 nn 1n 1

, 

W (C) W0 p(x,y) V(C |m x,k y 1)
y 0

n 1 x

p(x
x

x 0

n n1 nn 1n n1

, and 

W (D) W0 p(x,y) V(D |m x,k y)
y 0

n 1 x

p(x
x

x 0

n n1 nn 1n n1

, 

where p(x,y) is the probability of finding x R and y = n−1−x C in a group given that the 

proportion of R and C in a population is pm and pk, respectively.  In general, the 

probability that a focal player of a strategy s1 will find himself in a group of j s1 players, k 

s2 players and n-x-1 s3 players is p( j,k)

j,k,n 1j ! r (1 r)p1r j (1 r)p2(1 k (1 r)(1 p1 p2)((1 ) n 1 j k
 given that the proportion of 

s1 and s2 in a population are p1 and p2 and that the degree of assortative interaction is r.   
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 When reciprocity is discrete (Tn-1), the average payoffs to Tn-1, C and D in a group 

of x Tn-1 and y C are 

V(Tn-1|m,k) = wi 1 B (m k)
n

1BB

i 1

wi , when n = m+k,  

V(Tn-1|m,k) = 
B (m k)

n
1 wi 1 B k

ni 2

wi , when n>m+k, 

V(C|m,k) = wi 1 B (m k)
n

1BB

i 1

wi , when n = m+k, 

V(C|m,k) = 
B (m k)

n
1 wi 1 B k

n
1BB

i 2

wi , when n>m+k, and 

V(D|m,k)=
B (m k)

n
wii 1 B k

nii 2

wi , respectively.  The average payoffs to the three 

strategies in a population are derived in the same manner as when reciprocity is 

continuous. 
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