Masanori Takezawa 
email: m.takezawa@uvt.nl
  
Michael E Price 
email: michael.price@brunel.ac.uk
  
Revisiting "The evolution of reciprocity in sizable groups": Continuous reciprocity in the repeated Nperson prisoner's dilemma

Keywords: evolution of cooperation, reciprocal altruism, reciprocity, collective action, assortative interaction

For many years in evolutionary science, the consensus view has been that while reciprocal altruism can evolve in dyadic interactions, it is unlikely to evolve in sizable groups. This view had been based on studies which have assumed cooperation to be discrete rather than continuous (i.e., individuals can either fully cooperate or else fully defect, but they cannot continuously vary their level of cooperation). In real world cooperation, however, cooperation is often continuous. In this paper, we re-examine the evolution of reciprocity in sizable groups by presenting a model of the n-person prisoner's dilemma that assumes continuous rather than discrete cooperation. This model shows that continuous reciprocity has a dramatically wider basin of attraction than discrete reciprocity, and that this basin's size increases with efficiency of cooperation (marginal per capita return). Further, we find that assortative interaction interacts synergistically with continuous reciprocity to a much greater extent than it does with discrete reciprocity. These results suggest that previous models may have underestimated reciprocity's adaptiveness in groups. However, we also find that the invasion of continuous reciprocators into a population of unconditional defectors becomes realistic only within a narrow parameter space in which the efficiency of cooperation is close to its maximum bound. Therefore our model suggests that continuous reciprocity can evolve in large groups more easily than discrete reciprocity only under unusual circumstances.

Introduction

Direct reciprocity has long been regarded as a plausible route for the evolution of cooperation in genetically unrelated dyads [START_REF] Axelrod | The evolution of cooperation[END_REF][START_REF] Trivers | The evolution of reciprocal altruism[END_REF], particularly in humans. However, human sociality extends far beyond dyadic cooperation, and is characterized by collective action [START_REF] Olson | The logic of collective action: Public goods and the theory of groups[END_REF], i.e., a large group of unrelated members involved in the joint production of a shared resource. Based on the pessimistic results of models of the evolution of reciprocity in large groups (Bender & Mookherjee, 1987;Boyd & Richerson, 1988;[START_REF] Joshi | Evolution of cooperation by reciprocation within structured demes[END_REF][START_REF] Taylor | Anarchy and cooperation[END_REF], the standard view in biology has for years been that reciprocity is unlikely to evolve in groups much larger than dyads (e.g. [START_REF] Boyd | The evolution of altruistic punishment[END_REF][START_REF] Fehr | Don't lose your reputation[END_REF][START_REF] Fehr | The nature of human altruism[END_REF][START_REF] Gächter | Reciprocity, culture and human cooperation: previous insights and a new cross-cultural experiment[END_REF][START_REF] Hagen | Game theory and human evolution: A critique of some recent interpretations of experimental games[END_REF][START_REF] Hauert | Volunteering as red queen mechanism for cooperation in public goods games[END_REF][START_REF] Henrich | Cultural group selection, coevolutionary processes and large-scale cooperation[END_REF][START_REF] Henrich | Cooperation, punishment, and the evolution of human institutions[END_REF][START_REF] Kurzban | Experiments investigating cooperative types in humans: A complement to evolutionary theory and simulations[END_REF][START_REF] Sigmund | A tale of two selves[END_REF][START_REF] Suzuki | Reputation and the evolution of cooperation in sizable groups[END_REF]. This view has led many theorists to suggest alternative routes for the evolution of group cooperation, for example genetic or cultural group selection [START_REF] Boyd | The evolution of altruistic punishment[END_REF][START_REF] Gintis | Strong reciprocity and human sociality[END_REF][START_REF] Henrich | Cultural group selection, coevolutionary processes and large-scale cooperation[END_REF][START_REF] Wilson | Reintroducing group selection to the human behavioral[END_REF], costly signalling [START_REF] Gintis | Costly signaling and cooperation[END_REF], opting out of a group [START_REF] Hauert | Via freedom to coercion: The emergence of costly punishment[END_REF], and indirect reciprocity [START_REF] Panchanathan | Indirect reciprocity can stabilize cooperation without the second-order free rider problem[END_REF].

Reciprocity in dyads is traditionally modelled as the tit-for-tat strategy [START_REF] Axelrod | The evolution of cooperation[END_REF] that continues cooperating as long as the partner cooperates, but stops cooperating if the partner did not cooperate in the previous round. Tit-for-tat is a discrete strategy that contributes either fully or not at all. Models of reciprocity in groups have defined reciprocity as a discrete strategy that continues cooperating as long as all other A c c e p t e d m a n u s c r i p t 3 group members cooperate, but stops cooperating if one or more co-members defect (Bender & Mookherjee, 1987;Boyd & Richerson, 1988;[START_REF] Joshi | Evolution of cooperation by reciprocation within structured demes[END_REF][START_REF] Taylor | Anarchy and cooperation[END_REF].

However, the evidence that people actually engage in a discrete all-or-nothing strategyalso called a trigger strategy -is weak [START_REF] Ostrom | Rules, games, and common-pool resources[END_REF][START_REF] Watabe | Choice of strategies in a social dilemma[END_REF][START_REF] Watabe | Choice of strategies in social dilemma supergames[END_REF]. Furthermore, many instances of real-world cooperation seem to be better modelled as continuous rather than discrete, because individuals continuously vary their degree of cooperation from full defection to full cooperation. Bshary & Bronstein (2004), for example, review real world examples of interspecific mutualism and find many instances of continuous cooperation. Continuous cooperation is also common in human groups: members tend to modulate their contribution levels in order to approximately match the mean co-member contribution [START_REF] Croson | Theories of commitment, altruism and reciprocity: evidence from linear public goods games[END_REF][START_REF] Croson | Reciprocity, matching and conditional cooperation in two public goods games[END_REF][START_REF] Fischbacher | Are people conditionally cooperative? Evidence from a public good experiment[END_REF][START_REF] Kurzban | Experiments investigating cooperative types in humans: A complement to evolutionary theory and simulations[END_REF][START_REF] Kurzban | Incremental commitment and reciprocity in a real time public goods game[END_REF].

The representation of reciprocity as a discrete strategy could be regarded as a trivial or inevitable simplification of a complex reality, of the kind that is often required in formal models. However, we found that replacing discrete reciprocity with continuous mean-matching reciprocity effected significant changes in model results. In Section 2 below, we first review a model of discrete reciprocity in the n-person prisoner's dilemma (Boyd & Richerson, 1988) that is widely cited as having shown the difficulty of the evolution of (discrete) reciprocity in large groups. We then compare this model with a new model that replaces discrete reciprocity with continuous reciprocity. We find that like discrete reciprocity, continuous reciprocity can be evolutionarily stable against an unconditional defection strategy, while unconditional defection can also be evolutionarily
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4 stable against both reciprocity strategies. The most important finding is that the basin of attraction for continuous reciprocity gets wider as cooperation gets more efficient, while the basin of attraction for discrete reciprocity remains quite small even when cooperation is extremely efficient. We also investigate the influence of assortative interaction and find it to have a strong synergic effect with continuous reciprocity but not with discrete reciprocity. These results hold even when an unconditional cooperation strategy exists in the population.

However, we find that the advantage of continuous reciprocity is strictly constrained by the efficiency of cooperation; the invasion of continuous reciprocity into a population of defectors becomes realistic only when cooperation is extremely efficient, i.e. when a contribution from a single individual produces a very large benefit for the entire group. Because conditions of such efficiency are probably relatively rare, this finding suggests that in a population divided up into large groups, continuous reciprocity could invade only under unusual circumstances. In Section 3, we demonstrate the robustness of continuous reciprocity in highly efficient public goods situations by extending the strategy space from one in which continuous reciprocators can only match the mean partner contribution to one in which they can contribute above or below this mean.

Discrete versus Continuous Reciprocity

Repeated n-person Prisoner's Dilemma Game
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To model the evolution of cooperation in sizable groups, we considered a large population subdivided into randomly-formed groups of size n which play repeated nperson prisoner's dilemma games. Every round, individual members decide whether to contribute c to their group, in order to create the benefit Bc which is divided equally among all n group members. B is assumed to be smaller than n, so a member's private return is always less than that member's contribution (Bc/n < c), and groups are thus public good-producing collective actions characterized by social dilemmas. The game is repeated with the probability w.

The evolution of discrete reciprocity

First, let us consider two classes of strategies: unconditional defector (D) and discrete reciprocator (T a ). D never contributes, while T a contributes fully (c = 1) in the first round and continues contributing fully as long as a or more group co-members also contribute fully. Let V(x|y) be the payoff to an individual with a strategy x in a group with y reciprocators (in this section, T a ). When D is common, the expected payoff to D is V(D|0) = 0 while the payoff to a rare T a is V(T a |1) = B/n -1 when a = n -1, and (B/n -1)

/ (1 -w) when a < n -1. In both cases, the payoff to T a is smaller than 0 and thus a rare = B (n -1) / n and this is smaller than the expected payoff to T n-1 when w is sufficiently large (Boyd & Richerson, 1988). Thus, T n-1 is an evolutionary stable strategy that prevents the intrusion of rare D when interactions are sufficiently iterated. In the following, we will consider only T n-1 (hereafter referred to simply as T).

It is proved that, when T is evolutionarily stable, there is a unique unstable internal equilibrium (Boyd & Richerson, 1988). However, the basin of attraction for a pure T equilibrium gets smaller quickly as group size increases. The proportion of T at an

internal equilibrium is p 1 B /n w(B 1) /(1 w) w w 1/ n
. Figure 1a illustrates how this proportion of T changes as a function of the efficiency of cooperation B/n (marginal per capita return) and w when group size is 100. i The upper two lines in Figure 1a show that T cannot increase its share in a population unless it already composes a large majority of that population; if the proportion of T falls below 85-90%, D increases its share.

The evolution of continuous reciprocity

We now replace the discrete strategy T with a simple continuous reciprocal strategy R.

Like T, R contributes fully in the first round. R then matches the average contribution made by the other n-1 players in the previous round. When D is common, the expected payoff to D is V(D|0) = 0. The expected payoff to rare R is V(R|1) = B/n -1 because R contributes fully only in the first round and contributes nothing from the second round.

As V(R|1) < V(D|0), D is evolutionarily stable. On the other hand, when R is common, it is proved that the expected payoff to R, V(R|n) = (B -1) / (1 -w), is larger than D's expected payoff, V(D|n -1), and R is evolutionarily stable when The basin of attraction for R is drastically larger than that for T, however. Figure 1a shows the minimum proportion of R and T that must exist in a population in order to prevent the intrusion of D (i.e., the proportion of R and T at an unstable internal equilibrium). In contrast to T, the proportion of R is generally small, especially when the efficiency of cooperation, B/n, is high. For instance, when n = 100 and B/n is 0.95 (so 1 unit of cooperation [c = 1] produces 95 units of benefit [B = 95]), R can proliferate even when its initial proportion is only 10% or less. This is markedly different from T, which must compose 85-95% of the population in order to evolve. We increased group size in increments of 100 from 100 to 500, and confirmed that this advantage of R over T holds across all these group sizes. Figure 1c shows how the basin of attraction for T and R changes in response to the size of benefit of cooperation (B) and group size (n); the basin of attraction for R changes almost linearly as benefit of cooperation approaches the maximum size (i.e., as B approaches n). For all three group sizes (n=20, 50 and 100), the proportion of R at internal equilibrium gets lower than 10% when the efficiency of cooperation (B/n) is larger than about 0.9 (i.e., B ≈ 18, 45 and 90 for n = 25, 50 and 100, respectively) which indicates that the invasion of R becomes realistic only in a narrow range of B that is close to B's maximum value. On the other hand, the basin of attraction for T is less sensitive to the size of B as group size increases.

Synergic effect between continuous reciprocity and assortative interaction
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In dyadic cooperation, a strong synergic effect between reciprocity and assortative interaction is known to exist [START_REF] Axelrod | The evolution of cooperation[END_REF]; rare reciprocators can invade a population of unconditional defectors much more easily if reciprocators can preferentially interact with other reciprocators and thus decrease the risk of being exploited by defectors. On the other hand, a model of discrete group reciprocity (Boyd & Richerson, 1988) found that assortative group formation does not facilitate the invasion of rare reciprocators very much.

Figure 2 shows the threshold number of interactions that must be exceeded in order for a rare reciprocator strategy, T or R, to invade a population of unconditional defectors given a specific group size and level of assortative interaction (r) (see Appendix B). The figure illustrates that both T and R can invade when group size is very small (n = 3 or 5) and when groups continue to interact for a very long time. The threshold value for number of interactions is slightly smaller for R than T, implying that R can more readily evolve, although this difference is minor. As group size gets larger, it quickly gets much tougher or even impossible for both T and R to invade (see also Boyd & Richerson, 1988).

We also investigated the synergic effect of reciprocity and assortative interaction by considering the size of the basin of attraction for reciprocators. We did find a strong synergic effect, but only for R: with assortative interaction, the basin of attraction for R remains large even when cooperation is relatively inefficient. Figure 1b shows the minimum proportion of discrete reciprocators, T, necessary for T to increase its share when assortative interaction is fairly low (r = 1/16) and very low (r = 1/64), and suggests
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that assortation does not help T very much: in both cases, T cannot prevent the invasion of D if its proportion in a population is smaller than around 85-95%. In contrast, a small degree of assortative interaction drastically decreases the value of efficiency of cooperation (B/n) that is necessary for R to evolve. When r = 1/16, a small proportion of R can proliferate even when cooperation is relatively inefficient (B/n = 0.13). Again, similar results are obtained even when group size is increased from 100 to 500, in increments of 100. Figure 1d shows how the basin of attraction for T and R changes in response to the size of benefit of cooperation (B) and the group size (n) when r = 1/16. As when there is no assortative interaction existing (i.e., Figure 1c), the basin of attraction for R changes almost linearly as B increases to its maximum value (i.e., n/{(n-1)r+1}; if B is larger than this point, even a rare unconditional cooperator can increase its share in the population of unconditional defectors).

Where does the synergic effect between assortative interaction and continuous reciprocity come from? First, T gains the benefits of mutual cooperation only when all of its co-members are also T; the introduction of just one D co-member induces the collapse of cooperation. The introduction of one or more D also results in the collapse of cooperation when D and R coexist in the same group. However, R gains some benefit from mutual cooperation because of its gradual decrease of cooperation. As the number of D co-members increases, R stops cooperating more quickly and thus minimizes the extent of its own exploitation. R is thus able to reduce cooperation when interacting with too many Ds, and to maintain a moderately high level of cooperation with fewer Ds. As a result, payoffs to D and R marginally increase as the number of reciprocators increases, with C and T, but only a small minority of this area when it coexists with C and R.

Again, similar results were obtained when group size was increased incrementally to 500.

Extending the strategy space to allow below-and above-mean continuous reciprocity
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We next investigated the stability of the continuous mean matching strategy against other variants of continuous reciprocity, such as those who give above or below the mean. Following [START_REF] Le | Evolutionary dynamics of the continuous iterated Prisoner's dilemma[END_REF], we modelled the strategy space of continuous reciprocal strategies using a parameter, ρ, which ranges from 0 to 2. When ρ = 1, it is identical with the R mean matching strategy. As ρ gets larger, a player gets more generous than R and contributes more than the mean contribution. When ρ = 2, it is identical with unconditional cooperation. As ρ gets smaller than 1 it gets less generous, and when ρ = 0 it is identical with unconditional defection. Contribution at the round t (≠ 1) is ρu t-1 when 0 ≤ ρ ≤ 1 and u t-1 + (ρ-1)(1-u t-1 ) when 1 < ρ ≤ 2 where u t-1 is the mean contribution made by the other players at round t-1. For simplicity, we assumed that all strategies other than D (ρ = 0) contribute fully in the first round. As we could not find a closed form expression of the payoffs, we conducted a numerical simulation by fixing a number of interactions instead of using a continuation probability of interactions.

Numerical analysis

We first assumed that the population consists of a single strategy, ρ k , and checked if a rare single strategy, ρ r , could invade this population. Figure 5 is the payoff map of various combinations of ρ k and ρ r that shows local dynamics of the system. This system has one non-cooperative attractor, ρ k = 0: when the common strategy ρ k is below the threshold value q, a more generous strategy (ρ r > ρ k ) cannot invade the population.

When the common strategy is more generous than this threshold line q but less generous than the mean matching strategy (i.e., q < ρ k < 1), a more generous strategy (ρ r > ρ k ) can invade the population. Remember that strategies 1 ≤ ρ k < q' are neutrally stable against population becomes too generous (ρ k > q'), any strategy that is less generous than the mean matching strategy (ρ k < 1) can invade the population. We found that the basin of attraction for ρ k = 0 is rather small as long as efficiency of cooperation remains high.

Agent-based simulations

We then conducted agent-based simulations to further investigate global dynamics of the system and the stability of cooperative states in a heterogeneous population where agents' strategy ρ can take any value ranging from 0 to 2. At the first generation, the entire population was occupied by ρ = 1. At the end of each generation, each individual produced a number of offspring that was proportional to the payoff that the individual received in that generation, and Gaussian error mutation ~N(0,SD) was added to each individual's strategy. Figure 6 shows the results of simulations of 5,000 agents that were randomly subdivided into 50 groups of 100 agents at the beginning of each generation and that played 20 rounds ( w = 0.95) of the repeated n-person prisoner's dilemma game for 5,000 generations under several mutation sizes (SD of Gaussian mutation: 0.002, 0.02, 0.05 and 0.07).

As the mutation size increased, the system fluctuated more frequently. In general, however, the system exhibited cooperative polymorphism: the average of ρ fluctuated between cooperative (ρ > 1) and less cooperative values (ρ 0.2~1) across generations but never arrived or stayed at a non-cooperative equilibrium (ρ = 0).
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Discussion

This model investigated reciprocity under rather specific conditions, where new groups were formed and dismissed in each generation, in the absence of errors of perception and implementation. We intentionally chose those settings so that our model would be directly comparable to a very influential study [START_REF] Boyd | The evolution of reciprocity in sizable groups[END_REF]) that is often cited for suggesting that (discrete) reciprocity is unlikely to have played a very important role in the evolution of group cooperation (e.g. [START_REF] Boyd | The evolution of altruistic punishment[END_REF][START_REF] Fehr | Don't lose your reputation[END_REF][START_REF] Fehr | The nature of human altruism[END_REF][START_REF] Gächter | Reciprocity, culture and human cooperation: previous insights and a new cross-cultural experiment[END_REF][START_REF] Hagen | Game theory and human evolution: A critique of some recent interpretations of experimental games[END_REF][START_REF] Hauert | Volunteering as red queen mechanism for cooperation in public goods games[END_REF][START_REF] Henrich | Cultural group selection, coevolutionary processes and large-scale cooperation[END_REF][START_REF] Henrich | Cooperation, punishment, and the evolution of human institutions[END_REF][START_REF] Kurzban | Experiments investigating cooperative types in humans: A complement to evolutionary theory and simulations[END_REF][START_REF] Sigmund | A tale of two selves[END_REF][START_REF] Suzuki | Reputation and the evolution of cooperation in sizable groups[END_REF]. Our results suggest that models which represent reciprocity as discrete rather than continuous may underestimate the adaptiveness of reciprocity in groups.

Although some real world group cooperation surely involves all-or-nothing discrete decisions, continuous cooperation has been observed in numerous species (Bshary & Bronstein, 2004). The disregard of reciprocity's role in the evolution of collective action is surprising, given that (continuous) reciprocity is the most commonlyobserved strategy pursued by subjects in n-person cooperation experiments [START_REF] Croson | Theories of commitment, altruism and reciprocity: evidence from linear public goods games[END_REF][START_REF] Croson | Reciprocity, matching and conditional cooperation in two public goods games[END_REF][START_REF] Fischbacher | Are people conditionally cooperative? Evidence from a public good experiment[END_REF][START_REF] Kurzban | Experiments investigating cooperative types in humans: A complement to evolutionary theory and simulations[END_REF][START_REF] Kurzban | Incremental commitment and reciprocity in a real time public goods game[END_REF]Yamagishi, 1986;Yamagisi & Sato, 1986). In this study, we pointed out the difference between the discrete reciprocity that has prevailed in past modelling efforts, and the continuous reciprocity that has been observed in these experiments. While the In the absence of assortative interaction, when the efficiency of cooperation (B/n) approached around 0.9 (i.e., B = 18, 45 and 90 for groups of 20, 50 and 100 individuals, respectively), the proportion of continuous reciprocators necessary for invading a population of defectors dropped to below 10% (Figure 1c). When groups were assortatively formed, the value of B required for continuous reciprocity to invade the population fell significantly (Figure 1d). For instance, when degree of assortative group formation was fairly weak (r = 1/16), the proportion of continuous reciprocators necessary for invading the population dropped below 10% when the values of B were around 8, 11, and 12.5 for groups of size 20, 50 and 100, respectively. In both cases with and without assortative interaction, invasion of continuous reciprocity seems to be realistic only in narrow range where the size of the benefit from cooperation comes close to its maximum bound. When the value of the benefit from cooperation was sufficiently large, continuous reciprocity was stable even in a heterogeneous population where strategy space was extended to allow for below-and above-mean reciprocity.

It is important to remember that the value of B indicates the extent to which one unit of contribution by one member benefits the member's entire group. For example, if B
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= 20, this means that when one member expends one unit of effort, it produces 20 units of public good for the group. Cooperation may under some extreme circumstances lead to extraordinarily efficient public good provisioning-for example, contributing to the discovery of a new food source during a time of starvation, or helping to build a higher wall in order to defend a village against a large-scale attack. Further, with some public goods, for example public buildings or roads, B tends to increase as n increases, because the total benefit produced often increases with the number of people who utilize the good.

However, it is not clear that such efficient public goods production would have been a

realistic aspect of the societies in which human adaptations for reciprocity evolved.

The model presented suggests that continuous reciprocity can evolve in large groups only under a narrow range of circumstances involving unusually high productive efficiency. In this sense, the puzzle of the evolution of large-scale cooperation still remains to be solved. On the other hand, the overall effects of replacing discrete with continuous reciprocity were significant. Future models of the evolution of cooperation should incorporate real-world behavioural regularities that are observed in the context of both cooperation and punishment (e.g., Carpenter 2007), while still keeping models as simple as possible. 
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i Throughout this paper, we manipulate the value of B/n as a model parameter instead of independently varying the values of B and n. B/n is frequently used as an index of efficiency of cooperation; in order for the game to be a public goods dilemma, its value needs to lie between 0 and c (= 1 in our model). Differences between the two reciprocal strategies were exhibited mainly when this index's value was close to its upper limit.

Note that the value of B, the amount of benefit produced from one unit of contribution, varies with the increase of the group size, n, even when the efficiency of cooperation index remains constant. population is evolutionarily stable, and an all-R or all-T population is neutrally stable, as C can receive the same payoff as R or T when D is absent from the population. In both 4a and 4b, the line QC separates two regions. Within DQC, the system evolves towards a non-cooperative equilibrium (point D). Within QCR or QCT, the system evolves towards a point on the line CR or CT (i.e., a mix of strategies C and R or T). On the line QR or QT, the system evolves towards an all-reciprocator equilibrium (point R or point T).

When R is present in the population (4a), the basin of attraction of cooperative strategies C and R is much larger than that of D; however when T is present (4b), the basin of attraction of cooperative strategies C and T is much smaller than that of D. For both 4a and 4b, the parameter values are n = 100, B/n = 0.13, w = 0.95, and r = 1/16. and maximum number of rounds = 10 ( w = 0.9). The parameters q and q' are strongly influenced by the efficiency of cooperation. For instance, when B/n is decreased to 0.65, q increases to 0.36~0.41 and q' decreases to 1.61. 

p(x) n 1 x n n r (1 r)p r r r p x (1 r)(1 p) (1 ) n 1 x .
In this equation, r is a parameter, ranging from zero to one, determining the degree of assortative interaction; groups are randomly formed when r = 0. Here, r plays the same role as Hamilton's kinship coefficient [START_REF] Hamilton | The genetical evolution of social behavior[END_REF] and even unconditional cooperation can evolve when {(n-1)r+1}B/n > c, which is called the inclusive fitness effect [START_REF] Hamilton | Innate social aptitudes of man: An approach from evolutionary genetics[END_REF]. When r > 0, of particular interest is the situation in which this equation does not hold, and unconditional cooperation can therefore not evolve.

We analyzed the influence of the assortative interactions in two different ways:

invasion analysis and basin of attraction analysis. First, we investigated a situation where an invading strategy is very rare. Assume that p is the proportion of a rare invading strategy in a population. As p approaches 0, the above mentioned probability p(x) where V(R| m x 1) is (x 1)B/n 1 when x < n-1 and (x 1)B /n 1 1 w when x = n-1.

Second, we investigated a situation in which the proportion p of an invading strategy takes any value other than zero. Figure 1b in the paper shows the results of this analysis.

C. When an unconditional cooperator (C) exists:

When the three strategies R, C and D coexist in a group, the contribution made by any R player in round i is z i v i 1 s v j 1 v i 1 s(1 v i 1 ) /(1 r) , where p(x,y) is the probability of finding x R and y = n-1-x C in a group given that the proportion of R and C in a population is p m and p k , respectively. In general, the probability that a focal player of a strategy s 1 will find himself in a group of j s 1 players, k s 2 players and n-x-1 s 3 players is p( j,k) j,k,n 1 j ! r (1 r) p 1 r j (1 r) p 2 (1 k (1 r)(1 p 1 p 2 ) ( ( 1)

n 1 j k
given that the proportion of s 1 and s 2 in a population are p 1 and p 2 and that the degree of assortative interaction is r. 

  T a cannot invade a population when D is common. When T a is common, the expectedpayoff to T a is V(T a |n) = (B -1) / (1 -w). The expected payoff to a rare D is V(D|n-1) = B(n 1) / n1 w when a < n -1. As V(T a |n) < V(D|n-1) when n > 2, T a cannot prevent the intrusion of D. On the other hand, when a = n -1, the expected payoff to D is V(D |n-1)

  1) / n and 1-w(n-2)/(n-1) is always smaller than 1, R can avoid an invasion of D in a narrower range of conditions than can T.

  to D and T mostly linearly increase. This non-linearity advantages R, especially when assortative interaction exists (see Figure3).2.5. The third strategy: unconditional cooperatorsSo far we have investigated interactions between only two strategies (D and either R or T) at one time. Do results change when a third strategy -unconditional cooperation (C) -is added? When D is completely absent, C receives the same benefit as T or R, and C can drift into the populations composed of reciprocators (T or R). However, C is easy prey to D, and after drifting onto a population, C may even help D to beat a reciprocal strategy. In order to examine the influence of unconditional cooperators, we extended the model by adding C and examined the evolutionary dynamics of the system. Appendix C discusses the payoffs and Figure 4 illustrates the dynamics of three strategies, C, D and either T (Figure 4a) or R (Figure 4b), when n = 100. In both figures, any points on the line QC are unstable internal equilibria and the area above the line QC (including the point C but excluding the point Q) is the basin of attraction for D. Any points on the line TC or RC other than the point C are neutrally stable fixed points, and the area below the line QC is the basin of attraction for a mixture of cooperative strategies. We found that D's basin of attraction composes a large majority of the triangular area when it coexists

  ρ r ≥ 1, as neither perception nor implementation error exists in the model and both the common and invading strategies receive the same fitness value. If a

  and continuous reciprocity may at first glance seem trivial, it affected model results significantly: compared to discrete reciprocity, the continuous mean matching strategy greatly enlarged the basin of attraction where reciprocity can evolve. However, this advantage of continuous reciprocity was heavily constrained by the size of the benefit from cooperation; the basin of attraction for continuous reciprocators increased almost linearly as the benefit from cooperation (B) increased.
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  1 r) n 1 x . When D is common in the population, the fitness of a rare invading R is obtained by recalculating W(R) in the section (i) after replacing p(x) with the new value derived in this section. As the average fitness of the common strategy D is equal to the baseline population fitness W 0 , R can invade the population when W(R) > W 0 . The threshold value of the number of interactions that must be exceeded by R in Figure 2 in the paper was derived by numerically solving this equation given that the other parameters were fixed. The threshold value for T was calculated in the same manner given that W (T) W 0 p(x) V(T | m x 1)

  s = k/(n-1), and m and k are the number of R and C players in the group, respectively. Thus, the average payoff to R in a group of m R and k C is

  average payoffs to C and D in the same group are V(C|m,k) = w i 1 B z i m /n Hence, the average payoffs to R, C, and D in a population are W (R) W 0 p(x, y) V (R | m x 1,k y)
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When there are m continuous reciprocators and n -m defectors in a group, the contribution made by any R in round i is z i = v i-1 where v = (m-1)/(n-1). Thus in this group, in round i the payoff to R is B z i m / n z i and the payoff to

strictly larger than V(D|n-1) when the following condition is satisfied:

The expected payoff to R in a group of m R players and n -m D players is V(R|m) =

w . Assuming random group formation, the average payoff to R at the population level is

, where W 0 is the baseline fitness, p(x) is the probability for a focal player to find himself 

, when n>m+k, and

w i , respectively. The average payoffs to the three