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Abstract

In this work we propose to model chemotherapy taking into account the mutual inter-
action between tumour growth and the development of tumour vasculature. By adopting
a simple model for this interaction, and assuming that the efficacy of a drug can be
modulated by the vessel density, we study the constant continuous therapy, the periodic
bolus-based therapy, and combined therapy in which a chemoterapic drug is associated
with an anti-angiogenic agent. The model allows to represent the vessel-disrupting activ-
ity of some standard chemotherapic drugs, and shows, in the case of constant continuous
drug administration, the possibility of multiple stable equilibria. The multistability sug-
gests an explanation for some sudden losses of control observed during therapy, and for
the beneficial effect of vascular “pruning” exherted by anti-angiogenic agents in combined
therapy. Moreover, in case of periodic therapies in which the drug amount administered
per unit time is constant (“metronomic” delivery), the model predicts a response, as func-
tion of the bolus frequency, significantly influenced by the extent of the anti-angiogenic
activity of the chemotherapic drug and by the dependence of the drug efficacy on the
vessel density.

Keywords: Tumour, angiogenesis, chemotherapy, pruning, multistability.

1 Introduction

The use of chemotherapies in oncology has been one of the major steps forward in the so called
war against cancer (Peckham et al. 1995, Boyle et al. 2003). Chemotherapy has a clinical
role so important that in the common usage of many languages the word chemotherapy
nowadays uniquely denotes anti-tumour chemotherapy. A huge corpus of experimental and
clinical literature has been produced in the last 60 years, but chemotherapy also triggered the
production of a large amount of theoretical researches due to its apparently simple translation
into mathematical models (Skipper 1986, Wheldon 1988, Cojocaru and Agur 1992, Afenya
1996, Swierniak et al. 1996, Panetta 1997, Ledzewicz and Schättler 2006, Simeoni et al. 2004,
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Ribba et al. 2005). Quite interestingly, and unlike from other fields of biomedicine, here there
has been a limited but important interplay between theoretical and experimental-clinical
scientists (Goldie and Coldman 1979, Norton and Simon 1986, Panetta et al. 2008, Ubezio
and Cameron 2008).

Since their first applications, it has been plain that a number of serious side effects are
related to the use of cytotoxic chemicals to cure tumors, for the simple reason that these
agents, which never are perfectly selective, kill a more or less wide range of proliferating
cells. However, even when the amount of side effects was relatively limited, a number of
failures related to the emergence of resistance of tumour cells to the drug were noticed.
Progresses in molecular biology allowed to explain this phenomenon: tumour cells are strongly
characterized by a mutation rate significantly higher than that of healthy cells (Schimke
1984, Goldie 2001). Thus, the response of tumour cells to chemotherapy is characterized by
a considerable evolutionary ability to enhance the cell survival in an environment becoming
hostile. Moreover, small subpopulations of cells intrinsically unsensitive to the
treatment may be present ab initio in the tumour and, after some time, these
cells may become the dominant population leading to the failure of therapy.
Considerable research efforts have been and are devoted in finding means to overcome drug
resistance (Frame 2007).

Chemotherapy aims at targeting the main peculiar characteristic of tumour cells, i.e. their
proliferative derangement. However, tumour cells show a vast array of genetic and epigenetic
events, and of microscopic and macroscopic interactions with other cellular populations. As
a consequence, the study of these phenomena may open the way for the creation of new
therapies. J. Folkman (Folkman 1972, Folkman 1975) stressed in early seventies that during
the progression of tumours the development of a vascular network inside the tumour mass be-
comes necessary to support the tumour growth, and he named this process neo-angiogenesis.
The tumour angiogenesis is a very complex phenomenon, driven by pro-angiogenic factors
released by the tumour cells lacking a full level of nutrients. Interestingly enough, tumour
cells also release anti-angiogenic chemicals to modulate the growth of the vessel network. In
such a way, a solid tumour deploys a sophisticated strategy to control its own growth. How-
ever, Folkman did not only study the neo-angiogenesis. He also had the idea that controlling
the development of the tumoral vessel network could be a powerful way to control, in turn,
the neoplastic growth via the reduction of nutrients supply, and he termed this new kind
of therapy ’anti-angiogenic therapy’. Per se, this new way of controlling the tumor burden
appears intriguing. Moreover, it has another fascinating advantage respect to conventional
chemotherapy: endothelial cells forming blood vessels are far more genetically stable than
tumour cells, so that the anti-angiogenic agents should be less subject to resistance phenom-
ena.

It is worth noting that tumours differ from normal tissues also in density, topology and
functionality of their vessel network, which is characterized by a remarkable degree of intri-
cacy as well as by a variety of disfunctionalities. The neovessel network that brings nutrients
to the tumour also is the route to deliver chemotherapic drugs. As a consequence, the poor
functionality of the network itself may be expected to affect the efficacy of chemotherapy nega-
tively. Moreover, since in the angiogenesis process endothelial cells proliferate, chemotherapic
drugs have been found to exert an anti-angiogenic action (Browder et al. 2000). Summarizing
these observations, one may infer that:

• the theoretical characterization (e.g. by mathematical models) of chemotherapy must
take into account the existence of neovessels and their dynamics;
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• neovessels can be destroyed by chemotherapy;

• conversely, the excessive reduction of the vessel network by an anti-angiogenic agent
might be detrimental for chemotherapy.

However, it has been observed that an anti-angiogenic agent has not necessarily a detrimental
effect on the efficacy of a chemotherapic drug: on the contrary, better results have been
obtained by combined therapy (Browder et al. 2000, Klement et al. 2000, Siemann and Rojiani
2002). To explain these findings, R.K. Jain hypothesized that the preliminary delivering of
such an agent, by ’pruning’ the vessel network, may regularize it with beneficial consequences
for a succesive therapy with cytotoxic anti-tumour drugs (Jain 2001, Jain and Munn 2007).

A full description of all these phenomena to create a comprehensive model of chemother-
apy and of the combination of chemotherapy and anti-angiogenic therapy could require a
multi-scale approach. Instead, we aim at assessing whether a relevant part of the interplay
between a given chemotherapy, the neovessels and a possible anti-angiogenic therapy may
simply be explained by ecological interaction between the two involved cellular populations:
tumour celles and endothelial cells. Elementary models of this interaction, indeed, have been
proved able to reproduce the main features of tumour growth and of anti-angiogenic therapies
(Hahnfeldt et al. 1999, d’Onofrio et al. 2009a, Swierniak 2009).

The present paper is organized as follows: after a brief introduction of some basic con-
cepts (Section 2), we summarize in Section 3 recent results on modelling the growth of a
tumour and of its vasculature. In Section 4, we introduce our model of chemotherapy that
assumes the dependence of the drug efficacy on the vessel density, and includes the possible
vessel disrupting action of the chemotherapeutic drug. In Section 5, we study the effects of
a constant uninterrupted chemotherapy, by stressing a number of phenomena linked to the
possible multistability of the model. In the next Section 6, we study by simulations effects
arising in the case of periodic boli-based therapy. In Section 7, we estend our model by allow-
ing the co-presence of an anti-angiogenic therapy, and after studying the case of continuous
constant therapy, we focus on the role of vascular “pruning”. Final remarks conclude the
work.

2 Preliminary concepts

The most simple model of chemotherapy can be written by coupling an empirical law for the
unperturbed growth of the tumour, with a loss term depending on the drug concentration
according to the so called “log-kill” hypothesis (Skipper 1986). If the insurgence of the drug
resistance is disregarded, and a logistic law is assumed for the unperturbed growth, we can
write:

N ′ = α
(
1−

N(t)

N∞

)
N(t)− γc(t)N(t), (1)

where N(t) denotes the tumour size, N∞ the (fixed) carrying capacity of the logistic growth,
and α the proliferation rate constant. The coefficient γ represents the sensitivity of the cells
to the drug, and c(t) is the drug concentration in blood.

In case of c(t) = C constant, which is the case of a continuous constant infusion treatment,
it is easy to see from (1) that if

C >
α

γ
,
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N will tend to zero for any positive initial condition, i.e. asymptotic tumour eradication is
achieved. Conversely, if C < α/γ there will exist a positive equilibrium smaller than N∞,
precisely Ne = (1 − γC/α)N∞. Note that the eradication would not be possible, whatever
the magnitude of the drug concentration may be, if the growth law in (1) were assumed
Gompertzian (d’Onofrio 2005). This fact is due to the unboundedness of the relative growth
rate of the Gompertz law, N ′/N ∼ ln(N∞/N), for N going to zero. Such an unboundedness
clearly contradicts the physical basis of cell kinetics, since in any cell populations the relative
growth rate has a finite upper bound because the cell cycle duration has a finite lower bound.
This pathology was recognized by Wheldon (Wheldon 1988), who proposed the so-called
Gomp-exp growth law, in which the growth is exponential for N < N̄ , N̄ given, and for
N ≥ N̄ it obeys to the Gompertz law. In the following, therefore, we will consider only
tumour growth laws with bounded relative growth rate.

From the point of view of the cure, the really relevant measure of the tumour size is
the number of viable cells, whereas when measurements on solid tumours are performed,
usually the tumour volume is recorded. The two quantities have different dynamics (Bertuzzi
et al. 2003, Simeoni et al. 2004, Ubezio and Cameron 2008), since in the evolution of the
tumour volume the delay in the dead cells degradation and in the reabsorption of waste
fluids play an important role. In this paper, however, we will view for simplicity the number
of viable tumour cells and the tumour volume as proportional quantities, and identify the
tumour size with the tumour volume, V (t).

The appreciation of the role of angiogenesis in tumour development has led to the concept
of a varying carrying capacity, defined as the tumour size potentially sustainable by the
vascular network existing at a given time (Hahnfeldt et al. 1999). The carrying capacity
may be assumed proportional to the extent of the actual tumour vasculature (Hahnfeldt et
al. 1999). By introducing in Eq. (1) the variable carrying capacity, K(t), and by describing
its dynamics according to Hahnfeldt et al. (1999), we may obtain the model (see (d’Onofrio
2007, d’Onofrio et al. 2009b)):

V ′ = α
(
1−

V (t)

K(t)

)
V (t)− γc(t)V (t), (2)

K ′ = bV (t)− (dV (t)2/3 + μ)K(t), (3)

where b, d, and μ (with b > μ) are constants related to the stimulation, inibition and natural
loss of the vasculature respectively. In the case of a costant infusion therapy, the behaviour
predicted by model (2),(3) is not substantially different from that of model (1). It can be
easily derived that there exists a critical value for C above which there is eradication,

C >
α

γ

b− μ

b
,

and below which a positive equilibrium is established. Note that now the critical value of
the drug concentration depends also on the parameters characterizing the dynamics of the
vasculature. However, as we will see in the following, model (2),(3) can be a useful starting
point towards extensions aimed at describing the possible dependence of the efficacy of the
cytotoxic drug on the “quality” of the vascular network, the anti-angiogenic effect of some
chemotherapeutic drugs, and the synergy between vessel targeting and tumour-cell targeting
drugs.
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3 A family of models for the tumour growth

To describe the interplay between the tumour and its vasculature, we adopt a family of models
previously proposed (d’Onofrio and Gandolfi 2009), which includes as particular cases the
models in (Hahnfeldt et al. 1999, Sachs et al. 2001, d’Onofrio and Gandolfi 2004). In this
family of models, we assume that (i) the carrying capacity of the tumour vasculature is simply
proportional to the amount of vessels, and (ii) the specific growth rate of the tumour, V ′/V ,
and the specific “birth” rate of vessels depend on the ratio between the carrying capacity
and the tumour size. Since the ratio K/V may be interpreted as proportional to the tumour
vessel density, assumption (ii) agrees with the model proposed by Agur et al. (2004)(see also
(Forys et al. 2005)). Following Hahnfeldt et al. (1999), the growth of the neo-vasculature
will be antagonized by endogenous factors and we can write:

V ′ = V F (
K

V
) (4)

K ′ = K
(
β(
K

V
)− ψ(V )− μ

)
(5)

where:

• F ′(u) > 0, F (1) = 0, 0 < lim
u→+∞

F (u) < +∞, and 0 > lim
u→0+

F (u) ≥ −∞;

• β(+∞) = 0, β′(u) < 0 and lim
u→0+

β(u) = β0 ≤ +∞;

• ψ(0) = 0, ψ′(u) > 0 and lim
u→+∞

ψ(u) = +∞;

• β(1) > μ.

In Eq. (5), ψ(V ) represents the vessels loss due to the possible accumulation into the tumour
of an endogenous inhibitory factor secreted by the tumour cells, and μ represents the natural
loss of vessels.

The assumption that F (+∞) < +∞ is the only restriction we set on the family of models
proposed in (d’Onofrio and Gandolfi 2009), and it means that V ′/V will have a finite upper
bound. Thus the Gompertz law is not included in F . As an example of possible expressions
for F (u) we may consider the generalised-logistic:

F (u) = α(1− u−ν), ν > 0. (6)

We mention here that a generalised-logistic growth with ν = 2/3 can be predicted for spherical
tumours supplied by diffusible nutrients at the periphery (Bodnar and Forys 2007), assuming
the cell proliferation rate proportional to nutrient concentration and a uniform cell death.

The function β(u) includes power laws

β(u) = bu−δ, δ > 0, (7)

so that it may be limu→0+ β(u) = +∞, functions such as

β(u) = βM
1

1 + kun
, n ≥ 1,
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which have limu→0+ β(u) finite and correspond to Hill functions in the variable u−1, and
combinations of the above two expressions as:

β(u) = β1
1

1 + kun
+ β2

1

u
. (8)

The expression (7) with δ = 1 yields Kβ(K/V ) = bV , as proposed by Hahnfeldt et al. (1999),
whereas (8) yields

Kβ(
K

V
) = β1

[
1 + k(

K

V
)n
]
−1
K + β2V.

The above expression for the growth term of the tumour vasculature distinguishes the contri-
bution of the endothelial cell proliferation, which is assumed depending on the vessel density,
and the input of new endothelial cells due to their migration from the peritumoral regions
or to the influx of circulating endothelial progenitors (Rafii et al. 2002). The latter contribu-
tion is simply taken proportional to the tumour size. On the other hand, the prescribed
properties of the function β exclude those modifications of the Hahnfeldt’s model
proposed in (Ergun et al. 2003) and (d’Onofrio and Gandolfi 2004) that disregard
the role of the tumour mass in the proantiangiogenic activity.

Concerning the function ψ, we recall that ψ(V ) = dV 2/3 has been assumed in (Hahnfeldt
et al. 1999).

It is easy to see that model (4)-(5) admits a unique positive equilibrium Ve = Ke, and
it can be shown that this equilibrium is globally asymptotically stable in R

2
+ (d’Onofrio and

Gandolfi 2009).
As an example, Fig. 1 reports the tumour volume growth, predicted by the following

model

V ′ = α
(
1− (

V

K
)0.5

)
V, (9)

K ′ = bV − dV 2/3K, (10)

for different initial values of K. Note that the equation for K is that proposed in (Hahnfeldt
et al. 1999) with μ = 0. The growth curve of mouse xenografts is taken as reference for
this simulation. As the panels A and B show, different sets of parameters α and (b, d) can
give very similar growth curves. When the dynamics of the vasculature is fast ((b, d) high,
panel A), the system tends to reach quickly the K-nullcline, the evolution is thus scarcely
influenced by the initial value of K, and the growth velocity is mainly under the control of
the intrinsic proliferation rate α. Conversely, when the dynamics of the vasculature is rather
low ((b, d) low, panel B), this dynamics starts to be limiting and thus to have a comparable
growth velocity the proliferation rate of tumour cells must be higher, and the influence of the
K(0) value is increased. Panels C and D show the time course of the ratio ρ(t) = K(t)/V (t).
Since all the growths tend to an equilibrium state with Ve = Ke, ρ(t) always will tend to
1. In the case of higher α and lower (b, d) (Panel D), ρ goes to the unity more rapidly and
monotonically.

4 The chemotherapy model

To model the effect of a cytotoxic chemotherapeutic agent of concentration c(t), we have to
modify model (4)-(5) by adding a log-kill term in equation (4), as well as a term representing
the possible cytotoxic actions of the chemotherapeutic drug on endothelial cells.
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The killing efficacy of a blood-born agent on the tumour cells will depend on its actual
concentration at the cell site, and thus it will be influenced by the geometry of the vascular
network and by the extent of blood flow. The efficacy of a drug will be higher if vessels
are close each other and sufficiently regular to permit a fast blood flow; it will be lower if
vessels are distanced, or irregular and turtuous so to hamper the flow. To represent simply
these phenomena, we assume that the log-kill term to be added in Eq. (4) be dependent on
the vessel density, i.e. in our model on the ratio ρ = K/V , by writing it as γ(ρ)c(t)V (t).
We suppose γ(0) = 0, and γ increasing for ρ small. For larger values of the vessel density
we make two hypotheses: either γ(ρ) continues to increase tending to a saturation value, or
it starts to decrease after having reached a unique absolute maximum. According to these
assumptions we propose the following model

V ′ = V
(
F (
K

V
)− γ(

K

V
)c(t)

)
(11)

K ′ = K
(
β(
K

V
)− ψ(V )− μ− χc(t)

)
(12)

where:

• c(t) ≥ 0 is the blood concentration of the cytotoxic drug;

• χ ≥ 0. The case χ = 0 corresponds to chemoterapic agents having no vessel disrupting
effects;

• γ(ρ), with γ(0) = 0, is continuous and either increasing with γ(+∞) < +∞, or it exists
ρM > 0 such that at ρ = ρM the function γ has an absolute maximum and γ(+∞) ≥ 0.

We shall call γ(ρ) the efficacy curve of the drug.
A simple sufficient condition, although quite sharp, for the asymptotic eradication of the

tumour is stated in the following:

Proposition 4.1 Let us define

Co = supρ∈[1,+∞)
F (ρ)

γ(ρ)

If Co < +∞ and
mint∈[t0,+∞)c(t) > Co for some t0 ≥ 0, (13)

then
limt→+∞(V (t),K(t)) = (0, 0),

for any positive initial condition, i.e. global eradication of the tumor is achieved.

It is interesting to note that, as far as the role of γ(ρ) in the asymptotic behaviour is
concerned, only the values of this function for ρ > 1 matter.

5 Constant infusion therapy: eradication and equilibrium points

5.1 Eradication

In the case of c(t) = C, i.e. in the case of constant continuous infusion therapy, the previous
Proposition guarantees that if C > Co asymptotic eradication will occur. However, even if
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C < Co, with Co ≤ +∞, there may be tumour eradication. In such a case, the anti-angiogenic
effect of the drug as well as of the spontaneous loss of vessels play a necessary role.

If 0 < C < Co, by setting V ′ = 0, equilibrium values for the ratio ρ are determined by
solving the equation

F (ρ) = Cγ(ρ), (14)

which, since (13) does not hold, has n ≥ 1 solutions:

1 < ρ1(C) < ρ2(C) < · · · < ρn(C).

In the case of γ constant, obviously we would have n = 1. The corresponding equilibrium
values Vi(C) may be obtained by solving

ψ(V ) = β (ρi(C))− μ− χC, (15)

which, provided that
β (ρi(C))− μ− χC > 0,

has the unique positive solution:

Vi(C) = ψ−1 (β (ρi(C))− μ− χC)

Of course, this suggests that if there exists C∗ < Co such that

β (ρ1(C
∗))− μ− χC∗ = 0,

then there is no positive solution of (15), since β(ρ) is decreasing, and there is eradication.
This fact is rigorously shown in the following proposition:

Proposition 5.1 Let a positive C∗ < Co exist such that

β (ρ1(C
∗))− μ− χC∗ = 0. (16)

If
C ≥ C∗, (17)

then the tumour is globally eradicated.

We remark that an eradication threshold C∗ < Co can exist only if χ > 0 and/or μ > 0,
that is only if the chemotherapeutic drug exerts a vessel disrupting effect and/or a sponta-
neous loss of vessel is present. The converse is true if limC→Co ρ1(C)) = +∞. In this case,
in fact, if χ > 0 and/or μ > 0 a value C∗ < Co always exists, because β(ρ) tends to zero for
ρ increasing.

In the case of delivering of a purely chemotherapeutic agent, i.e. χ = 0, the eradication
condition becomes

β (ρ1(C))− μ ≤ 0, (18)

and then the possibility of eradication with doses smaller than Co relies on the spontaneous
loss of vessels. Since the rate of this loss is likely to be small (Hahnfeldt et al. 1999), it
appears unlikely that an eradication threshold significantly smaller than Co can exist in this
case. Of course, if μ = 0 and Co = +∞ the eradication would be impossible.

8
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5.2 Non eradication: multiple equilibria and their local stability

In the case in which the eradication condition (17) cannot be fulfilled, indicating with m ≤ n
the maximum index i such that

β (ρi(C))− μ− χC > 0

we have m ≥ 1 coexisting equilibria:

Ei = (Vi(C),Ki(C)), i = 1, . . . ,m,

with Ki = ρiVi.

Remark Note that the integer m is a function of C. In fact, in the case of nonmonotone
γ(ρ), for small C there is typically a single equilibrium with ρ slightly greater than 1, for large
C no or at most one equilibrium point is present (in this case the equation F (ρ) = γ(ρ)C
can have one solution but there may be no equilibria because the eradication condition may
be satisfied), whereas for intermediate C values there may be multiple equilibria.

From (13) we see that the tumour size at the equilibrium points under therapy, Vi(C),
i = 1, . . . ,m, will be smaller than the equilibrium tumour size in the absence of therapy also
if μ = χ = 0. We have in fact

β(1) − μ > β(ρi(C))− μ− χC,

and, since β(ρ) is decreasing, the above inequality is true also if μ = χ = 0. Whereas the
role of the chemoterapic action appears to be, in the framework of the present model, the
determination of a steady-state vessel density greater than 1 through the equation

F (ρ) = γ(ρ)C,

the eventual value of the tumour volume is prescribed by the vessel dynamics. The role of
the anti-angiogenic action of the drug is that of setting the tumour size to a value lower than
the value which would be set in the absence of any anti-angiogenic action.

It is interesting to note that the local stability of the co-existing equilibria depends on the
dynamics of V and on the shape of the function γ(u) through a nice geometrical property, as
shown in the following proposition:

Proposition 5.2 Let Ei = (Vi,Ki) be a critical point of (11)-(12). If

γ′(ρi) < F ′(ρi), (19)

then Ei is locally asymptotically stable, whereas if

γ′(ρi) > F ′(ρi), (20)

then Ei is unstable.

In case of unique equilibrium point (m = 1), it is easy matter to show that it must be
locally asymptotically stable. As far as its global stability is concerned, it holds the following:
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Proposition 5.3 Let E be a unique equilibrium point for (11)- (12). Denoting as ρM ≤ +∞
the value such that γ(ρ) is maximum. If

C < minρ∈(0,ρM )
F ′(ρ)− β′(ρ)

γ′(ρ)
(21)

then E is globally asymptotically stable.

Figure 2 illustrates the response to a constant continuous infusion therapy of model (11)-
(12) with F , β and ψ as in (9)-(10), and μ = 0. In the simulations we used the following
simple form for γ(ρ):

γ(ρ) = max
[
γ̄

4

9
ρ(3− ρ), 0

]
, (22)

so that γ attains its maximum, equal to γ̄, for ρ = 3/2. With such a choice for the efficacy
function of the drug, the treatment cannot be eradicative if the chemotherapic drug does not
exert also an anti-angiogenic effect. However, for each value of C, a unique equilibrium exists,
with a reduced tumour volume, and this equilibrium point can asymptotically be reached. In
the absence of any vessel disrupting effect (χ = 0, solid lines), the final volume is smaller in
the case of model 1, as expected because this model is characterized by a smaller value of the
proliferation rate α of tumour cells. The response pattern can be changed if the drug also
exert a vessel disrupting action (dashed lines): the final volumes are smaller, and the smaller
volume is predicted now by model 2, since the slow vessel dynamics which is characteristic
of such a model is impaired at a larger extent by the anti-angiogenic action. This simulation
show how the underlying vessel dynamics can affect the response to a chemotherapeutic
treatment of different tumours that appear very similar on the basis of their growth curves.
We note that this behaviour is not necessarily related to the non-monotonic shape of γ(ρ), it
can be achieved also for γ increasing or constant.

5.3 Bifurcations

In this section we shall deal with the analysis of bifurcations by taking as bifurcation param-
eter the drug concentration C. Preliminarly we note that, by applying the implicit function
theorem, it follows that:

dρi

dC
=

γ(ρi)

F ′(ρi)− γ′(ρi)C
.

As a consequence, it holds that if i is odd then ρ′i(C) > 0, else if i is even then ρ′i(C) < 0. This
implies that if m ≥ 3 then there is at least a hysteresis bifurcation (Hale and Kocak 1991).
In fact, let us consider for the sake of simplicity a Ĉ such that m(Ĉ) = 3. Note that this is
possible both in the case of non-monotone γ functions, and for γ increasing. We have:

ρ′1(Ĉ) > 0 , ρ′2(Ĉ) < 0 , ρ′3(Ĉ) > 0,

(see middle panel of figure 3). It follows that by increasing C there is a threshold value
C2 > Ĉ such that at C = C2 the equilibria E1 ad E2 will collide and only E3 will last (see
upper panel of figure 3 and figure 4), which implies that the asymptotic tumour size – which
is given by eq. (15) – may undergo a ’jump’ towards a far lower value. On the contrary, by
decreasing C one has that it exists a C1 < Ĉ < C2 such that at C = C1 E2 and E3 will
collide and only E1 will last (see lower panel of figure 3 and figure 4), with a possible jump
of tumour size towards a higher value.
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We note that the latter transition could occur even if C were constant and the efficacy
function γ(ρ) were multiplied by a parameter continuously decreasing. A time-varying, de-
creasing γ might be the result of the development of drug resistance, and thus we might
expect in such a case that the tumour control exerted by the chemotherapy can be abruptly
lost.

Figure 5 illustrates this phenomenon. Let us consider the model (11)-(12) with F , β and
ψ as in (9)-(10), μ = 0, and

γ(ρ, t) =
γ̄

1 +
(ρ−ρm

σ

)2 e−(t−t0)/τHeav(t− t0), c(t) = CHeav(t− t0),

where t0 is the time at which the treatment starts, and Heav(·) is the Heaviside function. In
the simulation, the tumour is treated from t = 15 day with a constant continuous infusion of
drug. Its volume starts moving towards the equilibrium value characterized by the higher ρ
value, and for a relatively long period tumour control is achieved with only a mild regrowth.
As the value of γ decreases, however, an abrupt transition occurs towards high values of
the tumour volume, when the root of γ(ρ, t)C = F (ρ) jumps to a low ρ value. The tumour
behaviour is qualitatively the same even in the presence of an anti-angiogenic effect of the
drug.

6 Periodic therapy

In this section we shall assess the effects of a therapy periodically delivered by means of
boluses. In the case of a chemotherapic agent with monoexponential pharmacokinetics, the
drug concentration profile in blood is asymptotically given by

c(t) = Dc
e−qMod(t,T )

1− e−qT
, (23)

where T is the period of the delivering, q is the clearance rate of the drug, and Dc is the
amount of drug delivered as bolus over the distribution volume. Such a profile of c(t) is
characterized by the following average value:

< c(t) >=
Dc

qT
. (24)

For purely anti-angiogenic therapies, experimental studies suggested that intensifying the
delivering frequency by maintaining the total administered dose per unit time constant, gives
a better response (Drixler et al. 2000, Kisker et al. 2001). Such kind of drug scheduling has
been called (with a slight abuse) metronomic, and the improving of the response with the
increase of the delivering frequency is termed “metronomic effect”. It has also been suggested
that metronomic schedulings might also improve the results of chemotherapies (Kerbel and
Kamen 2004, Orlando et al. 2006). However, Browder et al. (2000) showed that, at least in
some cases, the metronomic effect is not the strict rule and that there is a somewhat optimal
T for the reduction of the tumour volume. Thus, here, we aim at verifying whether our model
is able to reproduce these effects.

In our simulations we used, as for Fig 2, model (11)-(12) with F , β and ψ as in (9)-
(10), μ = 0, and γ(ρ) firstly given by (22). Moreover, since in metronomic therapy the dose
delivered per time unit is constant, we impose

Dc = qTM0, (25)
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so that:
< c(t) >= M0.

After setting α = ln 2/1.5 day−1, b = 4.64, d = 0.01, and γ̄M0 = 0.2, we simulated the model
response changing T and the extent of the anti-angiogenic action, i.e the value of χ. The
model, driven by a periodic c(t), produces an asymptotically periodic V (t) and we computed
the average tumour volume, Vm =< V (t) >, when this regimen is in practice reached. Note
that with the γ function given by (22), the continuous infusion therapy does not guarantee
the eradication of the tumor whatever be the value of the drug concentration.

Figure 6 shows how the average asymptotic tumour volume depends on T for different
values of χ, both in the case of constant γ, and in the case of drug efficacy changing with
ρ. In the case of γ constant, Vm is an increasing function of T for all the values of χ
tested, i.e. there is full metronomic effect (upper panel of figure 6). Quite different is the
behaviour in case of non-constant γ(ρ) (lower panel). For χ = 0, namely in the case of
delivering of an agent with pure chemotherapic action, the average volume Vm decreases
as T decreases, i.e. there is full metronomic effect. By setting χ to small values, Vm is
again increasing with T (not shown) and, of course, it sets to lower values because of the
synergy between the chemotherapic and the anti-angiogenic action. However, for χ/γ̄ = 0.5
or greater, Vm becomes non-monotone and it exists a Tmin such that the average volume has
a minimum. Thus our model was able to mimick the metronomic effect in the absence of anti-
angiogenic action of drug, but also the presence of a partial metronomic effect characterized
by an optimal delivering period, Tmin, when a significant anti-angiogenic effect is present.
However, the difference between the values of Vm for T = 1 and for T = Tmin results small.
Thus, for χ/γ̄ = 0.5 and for χ/γ̄ = 0.65 it would be more correct to say that there is a
more or less large (depending on χ) interval for T where Vm is approximately constant and
delivering with the highest frequencies is not advantageous. The effect of higher values of χ
is reported in Fig. 7. If for χ/γ̄ = 1 a (slight) anti-metronomic effect extends up to about
T = 9 days, for higher χ values the therapy tends to be more and more characterized by a
metronomic effect. It must be observed, however, that when χ/γ̄ attains the high values of 5
and 7 the drug is exherting mainly an anti-angiogenic, vessel disrupting action, and a better
efficacy of time-dense schedulings of pure anti-angiogenic drugs is indeed expected (d’Onofrio
et al. 2009a, d’Onofrio and Gandolfi 2009).

The effect of varying the period of a periodic therapy (keeping the average concentration
constant) can be subtly modulated by the shape of the function γ(ρ). Assuming the form

γ(ρ) = γ̄Min(1, ρ/A),

which has a monotone profile, Figure 8 shows how different behaviours can be achieved by
varying the value of A. The brisk change going from A = 3 to A = 3.5 corresponds, in
the constant continuous therapy, to a bifurcation due to the occurrence of three equilibrium
points.

Finally, we note that the metronomic effect appears to be related basically to the nonlinear
nature of the tumour growth law. A slight metronomic effect (not shown) was indeed found
using the model of Eq. (1). However, modelling the vessel dynamics and the dependence
of the drug cytotoxicity on the vessel density makes it possible to expand the variety of the
response patterns.
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7 Combined chemotherapy and anti-angiogenic therapy. Role

of vascular “pruning”

In this Section we will consider the case of a combined therapy in which a true anti-angiogenic
agent is administered together with a chemotherapeutic drug. The most general setting is
the following:

• a chemotherapeutic agent, with concentration c(t);

• an anti-angiogenic agent exerting vessel disruption, with concentration g(t);

• an anti-angiogenic agent, with concentration h(t), exerting (directly or indirectly) a
cytostatic action on the endothelial cells.

Of course, the same drug can exert both vessel disruption and inhibition of endothelial cell
proliferation, and in this case it shall be g(t) = h(t).

The model (11),(12) can be easily extended, obtaining

V ′ = V F (
K

V
)− γ(

K

V
)c(t)V, (26)

K ′ = K
(
θ (h(t)) β(

K

V
)− ψ(V )− μ− χc(t)− ηg(t)

)
, (27)

where θ(u) is a decreasing function such that 0 ≤ θ∞ < θ(u) ≤ 1. θ(u) = 1 corresponds
to the case of absence of cytostatic action on the endothelial cells. The coefficient η ≥ 0
represents the vessel disrupting efficacy of the anti-angiogenic agent.

As it easy to recognize, almost all the results of the previous sections can be translated
for the model (26),(27). We state the main results in the case of constant continuous admin-
istration of all the drugs, i.e when c(t) = C, g(t) = G, and h(t) = H.

If Co < +∞ and C > Co, asymptotic eradication of tumour is achieved thanks to Propo-
sition 4.1. If 0 < C < Co ≤ +∞, the equation

ψ(V ) = β (ρi(C)) θ(H)− μ− χC − ηG, (28)

where ρi(C) is a generic solution of Eq. (14), has the unique positive solution

Vi(C,G,H) = ψ−1 (β (ρ1(C)) θ(H)− μ− χC − ηG) , (29)

provided that
β (ρi(C)) θ(H)− μ− χC − ηG > 0.

(Vi,Ki), with Ki = ρiVi, is therefore an equilibrium point. Of course, this suggests that if it
exists a tratment (C,G,H) such that

β (ρ1(C)) θ(H)− μ− χC − ηG ≤ 0,

then there is no positive equilibria and there is asymptotic eradication. This property is
stated in the following proposition:

Proposition 7.1 If C < Co ≤ +∞ and

β (ρ1(C)) θ(H)− μ− χC − ηG ≤ 0, (30)

then the tumour is globally eradicated.
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In the case in which the eradication condition is not fulfilled, indicating with m ≤ n the
maximum index i such that

β (ρi(C)) θ(H)− μ− χC − ηG > 0,

we have m coexisting equilibria

E1 = (V1(C,G,H), ρ1(C)), . . . , Em = (Vm(C,G,H), ρm(C)),

whose local stability properties are established by Proposition (5.2). Note that the number
m itself will depend on C,G,H. As we have seen before, if a unique equilibrium point there
exists, it will be locally asymptotically stable. Concerning its global stability, it holds the
following:

Proposition 7.2 Let E be a unique equilibrium point for (26)-(27). Denoting as ρM ≤ +∞
the value such that γ(ρ) is maximum, if

C < min
ρ∈(0,ρM )

F ′(ρ)− β′(ρ)θ(H)

γ′(ρ)
, (31)

then E is globally asymptotically stable.

We note that in the case of a cytostatic anti-angiogenic agent and in the absence of any
vessel disrupting activity by both the drugs (θ(H) < 1 and χ = η = 0), the eradication
condition for C < Co becomes

θ(H)β (ρ1(C))− μ ≤ 0,

that is

H > θ−1

(
μ

β (ρ1(C))

)
. (32)

Thus, the tumour eradication might be difficult if μ is small, unless θ(H) has a quite rapid
decrease. Of course, if μ = 0 the eradication would be impossible. In the case of an anti-
angiogenic drug which is purely vessel disrupting (θ(H) = 1 and η > 0), the eradication
for C < Co is possible even if the chemotherapeutic drug does not impair the vasculature,
provided that:

G > G∗ =
β (ρ1(C))− μ

χ
.

As far as the asymptotic outcome of a constant infusion therapy is concerned, the ad-
ministration of an anti-angiogenic drug, therefore, always produces a synergistic effect. If
chemotherapy alone were not eradicative, the concomitant administration of an anti-angiogenic
drug could induce tumour eradication, or could set the asymptotic tumour size to a value
lower than the value reachable by using the chemotherapeutic drug alone.

Complex dynamics can arise, in the case in which multiple equilibria are present. In such a
case, as the following simulations will show, the asymptotic outcome of a constant continuous
infusion therapy can be dramatically altered if the administration of the chemoterapic drug
follows a preliminary transient vessel disrupting treatment. This behaviour matches, at least
qualitatively, experimental observations on the positive effect of preliminary anti-angiogenic
treatments on chemotherapy (Jain 2001). For these observations, the causal role of the
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vascular “pruning”, in order to obtain a “normalized” more efficient vascular network deprived
of turtous and immature vessels, has been hypothesized (Jain and Munn 2007).

The simulations of Figures 9 and 10 are performed assuming

γ(ρ) =
γ̄

1 +
(ρ−ρm

σ

)2 ,

and
c(t) = Heav(t− t2)C, g(t) = (Heav(t− t1)−Heav(t− t2))G,

where t1 and t2 are the times at which the anti-angiogenic treatment and, respectively, the
chemotherapic treatment start. Figure 9 show how a mild chemotherapic treatment, capable
if administered alone of only stopping the growth, become able, if proceeded by a transient
(although rather vigorous) anti-angiogenic treatment, of achieving a remarkable tumour re-
duction. As the phase-portraits illustrate, the vessel disruption, that means the reduction
of ρ, allows to exit from the basin of attraction of the equilibium point with large tumour
volume, and to enter the basin of the second locally stable equilibrium, characterized by a
smaller tumour volume. It may be interesting to note that this shift can be achieved also
by a very short anti-angiogenic treatment (pulse treatment), provided that its intensity be
sufficiently high (see Figure 10).

Finally, we want to observe that:

• If in the case of three roots ρ1 < ρ2 < ρ3, the root ρ3 corresponds to tumour eradication,
the preliminary anti-angiogenic treatment can allow to exit from the basin of attraction
of the equilibium point with larger tumour volume, and to reach eradication.

• The shift of the state of the system to a more favourable basin of attraction can be
achieved, in principle, also by a purely antiproliferative anti-angiogenic treatment (H >
0, G = 0).

8 Concluding remarks

Despite its inherent simplicity, our model appears able to explain a wide array of biomedi-
cally significant behaviours. Most traditional models of chemotherapy are characterized by
monostability, namely they suggest that the effect of delivering a chemotherapic drug is ei-
ther to eradicate the tumor or to drive the tumour into a unique equilibrium state, so that
varying slightly the delivering of the chemotherapic agent would in any case have the effect of
slightly moving the equilibrium value. Although allowing some nice biological inferences, this
appears an excessively simple scenario, largely different from the clinical reality where more
complex and puzzling phenomena are observed (see e.g. (Peckham et al. 1995)). Thanks
to the possibility of being multistable, our model may represent an improvement in the un-
derstanding of relevant biological phenomena and also, at least conceptually, in suggesting
therapeutic plans.

In particular, the multistability of our model may give a contribution in understanding
some cases of failures of therapy, in which the tumour suddenly restarts growing. These
occurrences might simply be explained as hysteresis bifurcations, driven by the gradual onset
of drug resistance, that cause jumps in V (t).

Moreover, we have shown how multistability and the beneficial effect of vascular “prun-
ing” by anti-angiogenic agents can be strictly interlinked. In fact, if the tumour under a

15



Acc
ep

te
d m

an
usc

rip
t 

given (constant continuous) chemotherapy admits two stable equilibria, it appears in prin-
ciple possible by the delivery of an anti-angiogenic treatment before the chemotherapy, to
move the state in the basin of attraction of the equilibrium with the smaller (or null) tu-
mour volume. In general (i.e also in the case of monostable behaviour), the model predicted
synergy between constant continuous chemotherapy and anti-angiogenic treatment, and we
were not able to find combinations in which the anti-angiogenic action was detrimental for
the chemotherapy. However, we cannot exclude a priori that particular cases may
exist where competition can arise. In fact, although the synergy between antian-
giogenic therapy and chemotherapy may appear as a trivial intrinsic feature of
our family of models, this property cannot strictly be considered as embedded
in our dynamical systems because they are not cooperative.

Furthermore, our model is able to describe how the effect of a periodic delivery of a cyto-
toxic drug can change by varying the time intervals between the administrations, keeping con-
stant the average drug concentration. Our simulations show indeed that the vessel-disrupting
action of some chemotherapic agents may imply the existence of an optimal delivery frequency
that minimize the average tumour volume. This is a result of some interest also when the
minimum is quite flat, since in such a case our simulations suggest that there is a quite large
range of inter-boli time intervals where there is no sensible metronomic effect, i.e. an ad-
vantage in increasing the bolus frequency. In addition, the behaviour under a periodic
therapy that keep constant the average drug concentration appears to be modulated, in a
rather complex way, by the dependence of the drug efficacy on the vessel density.

We stress that we have considered here only tumour growth laws with bounded
relative growth rate, so excluding the Gompertz law since its potentially un-
bounded relative growth rate is unphysical. An interesting property of models
of anti-angiogenesis therapy incorporating a Gompertzian tumour growth law,
namely the impossibility, in case of periodic therapy, of setting a sufficient con-
dition for the tumour eradication only in terms of the average value of the drug
concentration, is fully retained by models with generalised logistic growth law and
ν < 1, for which the function F (K/V ) is bounded (d’Onofrio et al. 2009a, d’Onofrio
and Gandolfi 2009). From a strict mathematical point of view, however, the re-
sults of this paper on the tumour eradication in the presence of vessel disrupting
activity and those on the location, local stability and bifurcation of multiple
equilibria continue to hold also in case of F unbounded.

The model assumes that the carrying capacity of the vasculature is simply proportional
to the vessel amount. A more realistic view might consider the carrying capacity dependent
on the vessel amount but also on the vessel density. The same volume of vessels can have,
in fact, a different capability of supplying oxygen and nutrients to the tumour cells because
of different vessel functionality. We intend to analyse the consequence of this hypothesis in
a future investigation. Preliminary results suggest that if the carrying capacity of vessels,
for a fixed tumour volume, is an increasing function of the vessel amount, the qualitative
behaviour of the present model should be substantially conserved.

Of course our model is oversimplified in many other important aspects. We must mention
the distinction between mature vessels and immature vessels, and the spatial heterogeneity
of the vessels network, with the consequent heterogeneity of the distribution of cells between
the proliferating and quiescent compartments. This last phenomenon could be significant
in the case of drugs characterized by a marked cycle-specificity. Moreover, the onset of
drug resistance is of paramount importance in all chemotherapies. To account for the above
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features, however, a far more complex modelling would be required.
As a final remark, we observe that in this initial work we focused on gen-

eral properties and so we framed our study in a general setting, showing that
non-trivial results - in particular the possible presence of multistability - are
substantially independent of the choice of specific functions. A comprehensive
analysis of the dependence of the tumour response on the specific functional form
of the rates F , β, γ and Ψ, might reveal finer details of the problem under study.
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10 Appendix: Proofs

Proposition 4.1

Proof Rewriting (11) as follows

V ′ = V γ(ρ)

(
F (ρ)

γ(ρ)
− c(t)

)
,

and taking into account that F (ρ) < 0 for ρ < 1 and F (ρ) > 0 for ρ > 1, if (13) holds we
have V ′ < 0 for any positive V . Thus it follows that

lim
t→+∞

V (t) = 0.

Thus the equation for K asymptotically becomes:

K ′ = −(μ+ χc(t))K

implying that also K(t)→ 0+. ♦

Proposition 5.1

Proof If (17) is satisfied, we have

β (ρ1(C))− μ− χC ≤ 0.

This means that in the set

A = {(V,K))|V > 0 and K > ρ1(C)V }

it is K ′ > 0, implying that either V (t) → 0+ and minlimt→+∞ρ(t) > ρ1, or that the orbit
enters in the set:

Ωo = {(V,K))|K > 0 and 0 < K < ρ1V } ,

which is positively invariant and where V ′ < 0, so that V (t) → 0+. ♦
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Proposition 5.2

Proof Preliminarly, for the sake of notation simplicity, let us define the following auxiliary
function

H(ρ) =
F (ρ)

γ(ρ)
.

Since it is
∂V ′

∂V

∣∣
Ei

= −ρiγ(ρi)H
′(ρi),

∂V ′

∂K

∣∣
Ei

= γ(ρi)H
′(ρi),

∂K ′

∂V

∣∣
Ei

= −
(
ρ2

iβ
′(ρi) +KiΨ

′(Vi)
)
,

∂K ′

∂K

∣∣
Ei

= ρiβ
′(ρi),

we get the following characteristic polynomial:

λ2 + ρi

(
γ(ρi)H

′(ρi)− β
′(ρi)

)
λ+KiΨ

′(Vi)γ(ρi)H
′(ρi).

Thus if H ′(ρi) < 0 then Ei is unstable, whereas if H ′(ρi) > 0 then Ei is locally asymtptically
stable (remember that β′ < 0). Finally, since

H ′(ρi) =
γ(ρi)F

′(ρi)− γ
′(ρi)F (ρi)

γ2(ρi)
=
F ′(ρi)− γ

′(ρi)

γ(ρi)
,

our claim immediately follows. ♦

Proposition 5.3

Proof From

div

(
1

V K

(
V ′,K ′

))
=

1

V 2

(
−F ′(ρ) + β′(ρ) + γ′(ρ)C

)
.

we have, from the Poincare’s tricothomy, that condition (21) implies the global asymptotic
stability of E. ♦
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Figure 1: Tumour volume (panels A and B), and ρ = K/V (panels C and D) vs. time,
according to the model of Eqs. (9)-(10). Panels A and C: α = ln 2/1.5 day−1, b = 4.64,
d = 0.01. Panels B and D: α = ln 2/0.9 day−1, b = 0.464, d = 0.001. In all panels:
V (0) = 200 mm3, ρ(0) = 2 (dashed), ρ(0) = 4 (solid), ρ(0) = 8 (dotted line).
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Figure 2: Tumour volume (panels A and B), and ρ = K/V (panels C and D) vs. time, before
and after a treatment with constant drug concentration starting at t = 30 days. Panels A
and C: α = ln 2/1.5 day−1, b = 4.64, d = 0.01, γ̄C = 0.2 day−1, χ = 0 (solid lines). Panels B
and D: α = ln 2/0.9 day−1, b = 0.464, d = 0.001, γ̄C = 0.2 day−1, χ/γ̄ = 0.65 (dashed lines).
In all panels: V (0) = 200 mm3, ρ(0) = 4.
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Figure 3: Upper panel, small C: a single equilibrium is present. Middle panel, intermediate
C: 3 equilibria are present. Lower panel, high C: only the equilibrium with greater ρ remains.
F (ρ) as in Eq. (9), with α = Ln(2)/1.5; γ(ρ) = γ̄/(1+((ρ−ρm)/σ)2) with ρm = 2, σ = 0.35.
γ̄C = 0.4 (upper panel), γ̄C = 0.2 (middle panel), γ̄C = 0.12 (lower panel).
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Figure 4: Bifurcation diagram. In red the central unstable equilibrium, in black the two
locally asymptotically stable equilibria. Functions F and γ as in Fig. 3.
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Figure 5: Tumour response to a constant continuous therapy, when Eq. (12) has
3 positive roots at the start of treatment, and drug efficacy decays with time (mim-
icking the rise of drug resistance). Model of Eqs. (9),(10), with γ(ρ, t)c(t) =
0.5Heav (t− 15)

(
1/(1 + ((ρ− 2)/0.35)2)

)
Exp (−0.01(t − 15)). Other parameters as in the

text.
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Figure 6: Periodic therapy. Average tumour volume Vm vs. the period T for different values
of χ. Upper panel: γ(ρ) constant; lower panel: γ(ρ) as in formula (22). In both panels: χ = 0
(solid line), χ/γ̄ = 0.5 (dashed line), χ/γ̄ = 0.65 (dotted line). Other parameters given in
the text.
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Figure 7: Periodic therapy. Average tumour volume Vm vs. the period T for different values
of χ. γ(ρ) as in formula (22). χ/γ̄ = 1 (solid line), χ/γ̄ = 5 (dashed line), χ/γ̄ = 7 (dotted
line). Other parameters as Fig. 6.
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Figure 8: Periodic therapy. Average tumour volume Vm vs. the period T . Pure chemotherapy
(χ = 0) with γ(ρ) = γ̄Min(1, ρ/A). A = 1 (solid line), A = 3 (dashed line), A = 3.25 (dotted
line), A = 3.5 (thick line). Other parameters as in Fig. 6.
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Figure 9: Combined treatment: tumour evolution in the (V,K) plane (panels A and B), and
tumour volume vs. time (panels C and D). At t = 30 days, the tumour is treated with a
vessel disrupting agent for 10 days (solid lines) or 30 days (small dashed lines). Thereafter,
the anti-angiogenic treatment ceases and the tumour is treated with a pure chemoterapic
drug. The effect of the chemotherapic drug alone, given at t = 30, is also shown (dashed
line). In panels A and B the equilibrium points are reported as large dots (the unstable
equilibrium is red). Model of Eqs. (9)-(10), with γ(ρ) = γ̄/(1 + ((ρ − ρm)/σ)2) and ρm = 2,
σ = 0.35. Panels A and C: α = ln 2/1.5 day−1, b = 4.64, d = 0.01, γ̄C = 0.2, η = 0,
ηG = 3 (solid), ηG = 2 (small dashed lines). Panels B and D: α = ln 2/0.9 day−1, b = 0.464,
d = 0.001, γ̄C = 0.3, η = 0, ηG = 0.45 (solid), ηG = 0.29 (small dashed lines).
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Figure 10: Combined treatment with pulsed anti-angiogenic treatment: tumour evolution
in the (V,K) plane (panels A and B), and tumour volume vs. time (panels C and D). At
t = 30 days, the tumour is treated with a high concentration of a vessel disrupting agent for
1 day. Thereafter, the tumour is treated with a pure chemoterapic drug. In panels A and
B the equilibrium points are reported as large dots (the unstable equilibrium is red). Model
of Eqs. (9)-(10), with γ(ρ) = γ̄/(1 + ((ρ − ρm)/σ)2) and ρm = 2, σ = 0.35. Panels A and
C: α = ln 2/1.5 day−1, b = 4.64, d = 0.01, γ̄C = 0.2, η = 0, ηG = 30. Panels B and D:
α = ln 2/0.9 day−1, b = 0.464, d = 0.001, γ̄C = 0.3, η = 0, ηG = 3.5.
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