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Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature
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Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches

In biology and biotechnology related research fields, most investigated systems are dynamic, i.e., they change as a function of time and environmental conditions. These dynamic systems are described by kinetic models which typically consist of ordinary differential equations. Accurate and efficient parameter estimation is in many research areas a bottleneck for a reliable implementation of bio-related models. Traditionally, parameters of kinetic models that describe a system's behavior as a function of changing environmental conditions are estimated from a series of static experiments, i.e., at different constant levels of the studied environmental factor. Among the many disadvantages connected to this approach, one of the most important one is its experimental load.

Different approaches can be taken to minimize the number of experiments and/or increase the quality of the experimental data. (i ) The number of required experimental data can be reduced by limiting the environmental range under study. However, as a consequence, the region of validity of the constructed model is small and extrapolation outside the studied range is not guaranteed. (ii ) Instead of studying the system at single levels for one environmental factor at a time, more information can be collected in a full factorial design, in which all combinations of the selected discrete levels of the different explanatory variables are considered. The number of experi-
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ments can be further reduced by a well-thought selection of these levels that unravel the most information about the studied system (fractional factorial design). (iii ) Presuming model validity, the mathematical technique of optimal experiment design forms an excellent starting point for the selection of a small set of highly informative, dynamic experiments, resulting in unique and accurate parameter estimates. This approach also guarantees parameter estimates which are valid under dynamic, more realistic conditions.

In the field of predictive microbiology, mathematical models are developed that can describe the microbial evolution (growth, inactivation and survival) under time-varying environmental conditions with the ultimate goal to quantify and predict microbial dynamics in food products. Important environmental conditions influencing the microbial behavior are temperature, pH, water activity and the presence of preservatives. In the past, different types of models have been constructed to quantify the effect of these conditions on microbial growth and inactivation. Acknowledging the general validity of these model structures, implementation under varying environmental conditions for different microbial strains and different food products requires accurate and reliable specific parameters.

In this work, optimal experiment design for parameter estimation (OED/ In this paper, the global OED/PE optimization approach is compared to two other optimization strategies, i.e., (i ) a single approach in which the four parameters are estimated simultaneously from one optimal experiment, and

(ii ) a sequential approach where in sequential order, six optimal experiments are implemented which focus on two parameters, and (nominal) parameter estimates are updated intermediately. The impact of the optimal experiment design strategy on the accuracy of the identification of the microbial growth kinetics is evaluated.

In a first step, the three design strategies are evaluated based on a simulation study. Next, optimal experiments are implemented in a computer controlled bioreactor and CTMI model parameters are estimated from the resulting experimental data.

Materials and methods

Mathematical models

Cell density as a function of time is described by the growth model of Baranyi and Roberts [2]:

dn(t) dt = Q(t) Q(t) + 1 • μ max (T (t)) • [1 -exp(n(t) -n max )] dQ(t) dt = μ max (T (t)) • Q(t) (1) 
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μ max = μ opt • γ(T ) ( 2 ) 
with

γ(T ) = (T -T min ) 2 • (T -T max ) (T opt -T min ) • ((T opt -T min ) • (T -T opt ) -(T opt -T max ) • (T opt + T min -2T ))
This model encloses four parameters: the cardinal temperatures T min , T opt and T max [ • C] (the minimum, optimum and maximum temperature for growth, respectively) and μ opt [1/h] (the maximum specific growth rate at T opt ). At temperatures below T min or above T max , the maximum specific growth rate (μ max ) is set equal to zero.

Optimal experiment design for parameter estimation (OED/PE)

The unknown parameters to be estimated are the four parameters of the CTMI model: p = [T min T opt T max μ opt ] T . The OED/PE technique is implemented to maximize the information embedded in the output of the dynamic growth experiments, i.e., cell density as a function of time, by optimizing the dynamic temperature input. The information content of a dynamic experiment with continuous measurement of n(t) and duration t f can be quantified 

F = t f 0 ∂n(t) ∂p | p=p • T Q ∂n(t) ∂p | p=p • dt (3) 
with ∂n(t)/∂p the sensitivity matrix, and Q the errors on the output measurements. Here, Q is taken equal to the inverse of the measurement error variance, i.e., 3.27 × 10 -2 . The sensitivity functions are calculated by integrating (if n(t) sufficiently smooth)

d dt ∂n(t) ∂p i = ∂ ∂p i dn(t) dt = ∂μ max ∂p i • (1 -e (n(t)-nmax) ) -μ max • e (n(t)-nmax) • ∂n(t) ∂p i (4) 
with ∂μ max /∂p equal to

∂μ max ∂T min = μ opt • 2(T -T opt ) 2 (2T opt -T min -T max ) (T -T max )(T -T min ) 3 • γ(T ) 2 ∂μ max ∂T opt = μ opt • 2(T -T opt )(T max + 2T min -3T opt ) (T -T max )(T -T min ) 2 • γ(T ) 2 ∂μ max ∂T max = μ opt • 2(T -T opt ) 2 (T opt -T min ) (T -T max ) 2 (T -T min ) 2 • γ(T ) 2 ∂μ max ∂μ opt = γ(T ) (5) 
For nonlinear models, these sensitivity functions are determined by the unknown true parameters p and F is computed using nominal values p simultaneously estimated from all experimental data sets. In contrary to the sequential strategy, nominal values are not intermediately updated. This approach is here referred to as the global design strategy (GlOED/PE).

In the single and global design procedure, the four CTMI parameters are simultaneously estimated from all experimental data, i.e., in a single run. This is in contrast to the sequential approach where experimental implementation and parameter estimation are altered, i.e., CTMI parameters are updated intermediately.

In silico study

A first comparison of the optimization strategies and the selection of the most appropriate optimization strategy is based on simulated experiments.
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This simulation study consists of three steps.

(i ) D-optimal experiments are designed for the temperature profile as shown in Figure 1.

(ii ) The corresponding growth curves are simulated using the simplified growth model (i.e., without parameter Q(0)), combined with the CTMI model (Equation ( 2)), based on the parameters selected as the true parameters, i.e., p * . After integration and data sampling (every 30 min), an error is added to each data point mimicking the uncertainty and biological variability on experimental data. Hereto, a random value, taken from a normal distribution with zero mean and variance (s 2 n = 3.27×10 -2 ), is added to the simulated cell density data.

(iii ) Parameters of the growth model and the CTMI model are estimated from the experimental data via the minimization of the sum of squared errors.

Experimental validation

In a second step, the modes of OED/PE implementation are compared based on experimental data.

Microorganism

Escherichia coli K12 MG1655 (CGSC#6300), obtained from the E. coli Genetic Stock Center from Yale University, was stored at -80 

Cell count method

At regular time intervals, a sample was taken aseptically to determine the cell density via plate counting. Samples were serially diluted and the appropriate dilutions were plated on BHI agar (i.e., BHI supplemented with 6g/L technical agar nr 3., Oxoid) using a spiral plater (Eddy Jet, IUL Instruments s.a.). Plates were counted 18h after incubation at 37 • C. For each sample, two or three dilutions were plated and each cell count value shown is an average of all countable plates.

Mathematical implementation

Optimal experiments were calculated using a hybrid optimization algorithm, programmed in Fortran using standard routines from the NAG Library (Numerical Algorithms Group). Herein, the stochastic algorithm, i.e., the Integrated Controlled Random Search algorithm [START_REF] Banga | Stochastic dynamic optimization of batch and semicontinuous bioprocesses[END_REF] was combined with a deterministic algorithm, i.e., the E04UCF from the NAG library. In ICRS, random values were generated from a normal distribution with the pseudorandom generator G05FAF, combined with G05CCF to set the seed to a All optimal experiments are given in Table 1.

Next, fictitious growth curves were generated using an arbitrarily chosen set of true kinetic parameters (p * ) and models parameters were estimated simultaneously (Table 3).

For the SeOED/PE approach, the same nominal values were used to optimize the temperature profile for the first parameter combination. Next, this first growth curve was simulated using the selected true parameter values Final CTMI parameter estimates are compared in Table 3. Generally, parameter values derived via the sequential approach deviate more from the true parameters than the simultaneous strategy estimates. Both the single and global OED/PE approach render values very close to the chosen set of true parameters p * , and differentiating between the two methods is difficult.

As single OED/PE only requires the implementation of one experiment, this method seems most suitable. However, SiOED/PE estimates are characterized by a significant larger standard deviations. Furthermore, estimating the
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four parameters from one experiment makes the procedure rather sensitive for experimental errors.

Comparison based on experimental data

In The remaining combination, however, generates very unrealistic CTMI parameters. As such, accurate identification of the CTMI from two optimal experiments is not guaranteed.

A c c e p t e d m a n u s c r i p t

Single OED/PE

Analogously, CTMI parameters were estimated from one optimal experiment, designed for the simultaneous estimation of the four CTMI parameters (see Figure 3). The resulting parameter values and standard deviations are presented in Table 4. Estimates of T opt , T max and μ opt and associated standard deviations are very similar to the values extracted from the six GlOED/PE experiments. The estimated value for T min , however, is slightly higher. This possible overestimation of T min can be due to the limited information in the temperature zone beneath 30 • C. Information can only be obtained during the final part of the temperature change and the final constant phase. When estimating T min from the six optimal experiments, growth rates at moderate temperatures can be estimated from the six temperature changes and six constant phases at different temperature levels. Based on this abundant information, the inflection point of the CTMI can be determined more accurately.

The SiOED/PE experiment is similar to the optimal experiments (T max , μ opt ), (T max , T min ), (T max , T opt ) and (T opt , μ opt ) from the GlOED/PE design (see Table 4) with the largest difference in the final temperature (T 2 ) and the rate of temperature change (ΔT/Δt). The final temperature of the GlOED/PE experiments (T max , T min ), (T max , T opt ) and (T opt , μ opt ) is significantly higher than T 2 of the SiOED/PE experiment. The information embedded in the four GlOED/PE experiments with respect to the simultaneous estimation of the CTMI parameters is reflected in the value of the D-criterion (Table 5). The different (ΔT/Δt) and T 2 values reduce the determinant of the Fisher information matrix with approximately 30%.

A large variation exists between the T min , T opt , T max and μ opt estimates and most values differ significantly from the GlOED/PE values in Table 4.

The large uncertainty on the estimates is reflected in the large estimation errors. For parameter identifications from one experiment, T opt and μ opt are es- 

Conclusion

Optimal experiment design for parameter estimation is an efficient approach for accurate estimation of kinetic model parameters. When the model under study encloses multiple parameters, different optimization strategies can be applied. Here, three different optimization strategies are introduced. In the single OED/PE design strategy, all four CTMI parameters are estimated simultaneously from a one optimal experiment. For the sequential and global design strategies, the optimization problem is reformulated as a series of twoparameter estimation problems. In the sequential approach, two-parameter optimal experiments are designed and implemented sequentially and parameter estimates are updated intermediately. In the global OED/PE design, optimal experiments are calculated for all six two-parameter combinations and the four parameters are estimated simultaneously from these six experiments.

In a first step, the three optimization strategies were evaluated based on simulated experiments. This simulation study revealed that the sequential design results repeatedly in unrealistic CTMI parameters. CTMI parameter
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estimates obtained with the simultaneous strategies, i.e., single and global OED/PE, are similar and realistic.

Next, the GlOED/PE and SiOED/PE optimal experiments were implemented in a computer controlled bioreactor. Reliable and accurate CTMI parameter estimates were derived from the six GlOED/PE optimal experiments. Equally good parameter estimates were obtained when only four GlOED/PE optimal experiment were taken into account. Further reduction to two optimal experiments could not guarantee accurate CTMI identification. Accurate estimation of the four CTMI model parameters from the single optimal experiment, designed for the simultaneous estimation of the CTMI parameters, was not guaranteed. In the GlOED/PE design approach, each CTMI parameter is considered three times and as such, accurate information for each parameter can be extracted from several experiments. Information, however, is limited to one experiment in the SiOED/PE.
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 1 IntroductionMathematical models are the key-stone of optimal design, control and operation of bioprocesses. Next to the construction of a relevant model structure, in which the relation between the input and output variables is determined, the estimation of the model parameters is of great importance in the model building cycle. Accurate and efficient parameter estimation can be hindered by the properties of the model structure (e.g., parameter correlation and a small sensitivity of the model parameters) or by the quality and quantity of the experimental data.
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  ) is exploited for the identification of the Cardinal Temperature Model with Inflection (CTMI)[5]. This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters, i.e., T min , T opt , T max (the minimum, optimum and maximum growth temperature, respectively) and μ opt (the maximum specific growth rate at T opt ). As this kinetic model encloses multiple parameters, different OED/PE design strategies can be constructed. In our previous work, the four CTMI parameters for Escherichia coli K12 were accurately estimated using a global OED/PE strategy[7]. In this approach, the optimization problem was reduced to a series of twoby-two optimization problems. Starting from the four CTMI parameters, six parameters were constructed. For each parameter couple, the D-optimal experiment was designed, while the two other parameters were assumed known. Next, the six optimal experiments were performed in a computer controlled bioreactor and CTMI parameters were simultaneously estimated from the experimental data. Realistic CTMI parameters were obtained, and it was concluded that OED/PE implementation can improve the statistical quality of the kinetic model parameters.
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  by the Fisher information matrix (see e.g.,[8]):

A c c e p t e d m a n u s c r i p t different strategies are

  suggested.(ii ) In the sequential design strategy (SeOED/PE), the problem is reformulated as a series of two-parameter estimation problems. Taking the CTMI model with four parameters, the approach works as follows. A first design round focuses on the estimation of parameters p 1 and p 2 . An optimal experiment is determined while considering parameters p 3 and p 4 perfectly known (with F reduced to a (2×2)-matrix). After implementation of this optimal experiment, parameters p 1 and p 2 are estimated. The nominal parameter values are then updated and a new optimal design round is applied, e.g., aimed at the accurate estimation of parameters p 2 and p 3 . Other subsequent designs focus on the estimation of parameter combinations (p 1 , p 3 ), (p 1 , p 4 ), (p 2 , p 4 ) and (p 3 , p 4 ). At the end of the cycle six experiments are performed and each parameter is considered three times.(iii ) Instead of performing experiment design and parameter estimation for each parameter couple sequentially, an optimal experiment can be designed for each parameter combination, based on common nominal values. Next, all six optimal experiments are implemented and new parameter values are
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 3 s c r i p t non-repeatable initial value. The F03ABF routine was used to calculate the determinant of F. Ordinary differential equations were integrated with the D02EJF routine.Model parameter estimates and standard deviations were obtained via the minimization of the global sum of squared errors (SSE), using the lsqnonlin routine of the Optimization Toolbox of Matlab version 6.5 (The Mathworks Inc.). The Matlab routine ode23s was used for the integration of ordinary differential equations. For more information with respect to data processing, see[7]. Results and discussion3.1. Comparison based on in silico dataIn a first step, the three OED/PE strategies were compared in a simulation study. This in silico procedure was repeated for three different sets of true parameters (p * ).The three OED/PE design strategies are summarized as follows: (i ) all four CTMI parameters are estimated from a single optimal experiment (single OED/PE strategy), (ii ) the optimization problem is reduced to a series of two-parameter estimation problems and all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (iii ) two-parameter optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). The advantage of the sequential and global OED/PE strategies is that the error in one (or more) nominal values is not spread over all designs, i.e., if an initial parameter value is far from its true value, not all designs are corrupted. Moreover, the advantage of taking into account several experiments is that the variability of the system is included in the parameter uncertainty. For the two simultaneous approaches (SiOED/PE and GlOED/PE), optimal experiments were designed based on the same nominal values, i.e., p • = [11.33 40.85 46.54 2.397].
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 t p * ) and model parameters were subsequently estimated. These new model parameter estimates were used to update the nominal parameter vector as shown in Table2, i.e., the two parameters estimated in the previous optimal experiments were adapted prior to optimization of the next dynamic experiment. This intermediate adaptation of the nominal values affects the subsequent optimal experiments, i.e., values of T 1 , t s , (ΔT/Δt) and Δt differ. For SeOED/PE, the optimal experiments are given in Table2with the updated nominal values preceding the optimal experiment. For the three repetitions, the order of parameter couples optimized was chosen different.The different course of the dynamic temperature profiles can be explained by the sensitivity functions (∂n(t)/∂p i ) which determine the Fisher information matrix and hence the information content of the experiments. These sensitivity functions depend on the sensitivities of the maximum specific growth rate with respect to the CTMI parameters (∂μ max /∂p i ) which are shown in Figure2with respect to the nominal values for SiOED/PE and GlOED/PE, and the three subsequent sets of nominal values for the second SeOED/PE iteration (see Table2). Around the extrema of these functions, small variations in parameter values strongly influence the CTMI model output, i.e., μ max , and thus n(t). The selection of the temperatures in the optimal temperature profiles affects the information content. (i ) For T min , the most informative temperature region is located around the inflection point of the CTMI model. With respect to the (initial) nominal values, this region is situated between 20 • C and 25 • C. For most optimal experiments, this region is attained during the linear temperature change. (ii ) The estimation of T opt can be improved by including temperatures between 35 • C and 40 • C, and close to T max . These temperatures are either selected as initial temperature or crossed during temperature decrease. (iii ) Accurate estimation of T max requires optimal temperature profiles which include temperatures close to the expected T max , as an extreme maximum can be observed at T max . As a consequence, most experiments start at the upper temperature boundary. Previous experimental results identified the nominal T max value and/or the upper temperature boundary as a bottleneck in the OED/PE procedure. When T max• and/or T high are chosen too low, accurate estimation of T max is not guaranteed. (iv ) The sensitivity of μ max with respect to μ opt shows a clear extremum at T opt . Therefore, accurate estimation of μ opt highly depends on sampling at and around the optimal growth temperature. Except for the parameter combination (T min , T opt ), the optimal growth temperature is always enclosed in the linear temperature phase.For the subsequent designs in the SeOED/PE strategy, the largest changes in the sensitivity functions can be observed for T min , and to a lesser extent forTopt and T max . In the SeOED/PE iteration, the minimum temperature and thus also the informative region shift to lower values. As a consequence, most optimal temperature profiles attain the lower boundary, in contrast to the SiOED/PE and GlOED/PE optimal experiments. Although T max • values generally decrease during the SeOED/PE course, the initial temperature of most optimal experiments is equal to 45 • C as an identical T high value is used for all calculations. The closer the T max • comes to the assumed true T max , the longer the initial constant phase becomes. Due to the expected lower growth rate at 45 • C, more time/sampling is needed to obtain an accurate μ max (45 • C) estimate.
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  true values. Only when the maximum temperature is initially chosen lower than its true value, T max is significantly underestimated.Effect of reducing the number of experiments in the GlOED/PE approach Following the definition of the global OED/PE design, the implementation included all six parameter combinations. This way, all parameters and their informative temperature regions were considered three times. It is shown in[7] that this procedure results in reliable estimates with low uncertainties.Next, the effect of reducing the number of experiments on the parameter identification outcome was studied. When the amount of experiments is brought back to four and two experiments, each parameter is regarded twice and once, respectively. Given this precondition, three combinations of parameter couples could be selected for both cases. Subsequently derived CTMI parameters are listed in Table4for the combination of four and two optimal experiments. CTMI parameters estimated from the three combinations of four optimal experiments are similar to the parameter values derived from all six GlOED/PE optimal experiments. Uncertainty errors are slightly larger. The largest variability can be observed in the values of T min and T max . So, irrespective of the combination of parameter couples, the CTMI parameters can be identified accurately from four GlOED/PE optimal experiments. When the number of experiments is reduced to two, a larger difference can be observed between the CTMI parameter estimates. Two parameter couple combinations, i.e., the first and third combination, yield parameter values similar to the values derived from all six GlOED/PE optimal experiments.
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  during the temperature change. Possibly, growth rates are determined more accurately from the SiOED/PE experiment due to the slower growth rate. Most T min estimates deviate from the expected T min due to the limited knowledge of the temperature effect on the growth rate around ambient temperatures as explained above. The more accurate estimate of T max from the SiOED/PE optimal experiment can be explained as follows. While the constant phase at 45 • C in the GlOED/PE experiments is characterized by an adaptation phase (reflected in a small Q i (0) value), E. coli grows exponentially in the initial phase at 45 • C in the SiOED/PE experiment. Possibly, the more accurate estimate of T max pushes the other three CTMI parameter values towards more realistic values.
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Figure 1 :Figure 2 :

 12 Figure1: Representation of the parameterized temperature profile, which is characterized by four degrees of freedom: T 1 the initial temperature, t s the time at which the increase or decrease in temperature starts, (ΔT/Δt) the rate of temperature change, and Δt the duration of the temperature change. These four parameters define the final temperature T 2 . Temperature is bounded between T low and T high .

Figure 3 :

 3 Figure 3: SiOED/PE: global identification of the CTMI (experimental data (•), global identification curve (-) and temperature profile (--)). The confidence and prediction intervals are represented by (-•) and (--), respectively. Parameter estimates and standard deviations are listed in Table4.

  As the duration of the microbial lag phase, modeled via the parameter Q(t), is determined by the prior and actual experimental conditions, it can not be predicted accurately. Therefore, a reduced form of the model of Baranyi and Roberts, in which the variable Q(t) is omitted, was used to design the optimal experiments. As such, Equation 1 reduces to the logistic growth model that describes exponential growth followed by a stationary phase.

with n(t) [ln(CFU/ml)] the natural logarithm of the cell density at time t, n(0) the initial and n max the maximum value for n(t), Q(t) [-] the physiological state of the cells, and μ max [1/h] the maximum specific growth rate.

The temperature dependency of μ max is incorporated in Equation (

1

) by the Cardinal Temperature Model with Inflection (CTMI)

[5] 
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	The (initial) nominal parameters (p • ) for Escherichia coli were extracted
	from [3]: T min	• = 11.33 • C, T opt	• = 40.85 • C, T max	• = 46.54 • C, and μ opt	• =
	2.397 1/h. These values are assumed realistic as they are derived from a large
	set of static experiments. The initial and maximum cell density are taken
	equal to 7.000 and 22.55 ln(CFU/mL), respectively.	
	D-optimal experiments are designed by minimization of the joint confi-
	dence region on p via the maximization of the determinant of F. The time-
	varying temperature input T input (t) is parameterized using control vector
	parameterization approach. Four degrees of freedom characterize the tem-
	perature profile: T 1 [ • C] the initial temperature, t s [h] the time at which the
	increase or decrease in temperature starts, ΔT/Δt [ • C/h] the rate of temper-
	ature change and Δt [h] the duration of the temperature change (Figure 1).
	These four parameters define the final temperature T 2 . To guarantee prac-
	tical implementation of the dynamic experiments and model validity, two
	constraints are imposed on the temperature input (i ) the absolute maximum
	rate of temperature change was set at 5 • C/h, and (ii ) the dynamic tem-
	perature profiles are confined to [12 • C, 45 • C]. The duration of the designed
	experiments is fixed at 38h.			
	2.3. OED/PE design strategies: single, sequential and global parameter esti-
				• , an
	initial guess for the unknown model parameters obtained from literature or
	preliminary experiments. As a consequence, the optimality of the design is
	only locally valid, i.e., for parameters close to p • . When the nominal values
	differ significantly from the true parameters, convergence to the latter values
	is not guaranteed. OED/PE is therefore an iterative procedure in which op-
	timal experiment design and parameter estimation are alternated to improve
	the nominal values until convergence to the true parameters is obtained.

mation

For the estimation of the four CTMI parameters, three different OED/PE design strategies are constructed.

(i ) In the single design strategy (SiOED/PE), one optimal experiment is designed from which all model parameters are estimated simultaneously (with F a (4×4)-matrix). It is, however, questionable that a large set of parameters can be estimated accurately from a single simple experiment. To tackle this problem, the optimization problem can be reduced to a combination of optimization problems of lower complexity. For this simplified design, two

  Although in reality nominal values tend to differ from the true model parameters, this approach has a major advantage. By taking nominal values approximately equal to the true values (p • =p * ), the results of this in silico study are not or very little affected by the (incorrectness of the) nominal parameters p • . Moreover, a preceding in silico studied showed that, even when starting from less realistic nominal values, the GlOED/PE design approach is robust and parameter estimates will easily converge to the

	the second step, the two simultaneous OED/PE design strategies (SiOED/PE
	and GlOED/PE) were compared based on experimental data. Hereto, the op-
	timal temperature profiles were implemented in a computer controlled biore-
	actor. (For more details on the experimental procedure, see Van Derlinden
	et al. [7]).

3.2.1. Global OED/PE

Experimental data, parameter estimates and standard deviations for the GlOED/PE design strategy are copied from

[7]

. The global identification yields a good description of the six optimal experiments. The CTMI parameter estimates and corresponding standard deviations are repeated in Table

4

.

T min , T opt and T max estimates are characterized by a small estimation error, i.e., less than 3%. Values for T opt and T max correspond to values found in literature and obtained from prior static and dynamic experiments. Compared to literature, the minimum growth temperature seems slightly overestimated (see e.g.,

[4, 6]

). For figures and more information, see

[7]

.

Optimal experiments were calculated based on (initial) nominal values assumed close to the true parameters as they were derived from a large set of static experiments.

Table 1 :

 1 growth in food International Journal of Food Microbiology, 23: D-optimal temperature profiles for the GlOED/PE (top) and SiOED/PE (bottom) design strategies calculated based on the same nominal values, i.e., p • =[ 11.33 40.85 46.54 2.397]. The parametrization of the temperature profile is illustrated in Figure 1. Temperature is bounded within [15 • C, 45 • C]. The rate of temperature change is constrained between [-5 • C/h, 5 • C/h] and t f is fixed at 38h.

	277-294, 1994.
	[3] Bernaerts, K. and Van Derlinden, E. and Van Impe Estimation of
	cardinal temperature parameters from dynamic microbial growth ex-
	periments: a comparison of different approaches Proceeding of the 9th
	European conference Food Industry and Statistics, 2006, 201-208
	[4] Nauta, M. J. and Dufrenne, J. B. Variability in growth characteristics
	of different E. coli O157:H7 isolates, and its implications for predictive
	microbiology Quantitative Microbiology, 1:137-155, 1999.
	[5] Rosso, L. and Lobry, J. R. and Flandrois, J. P. An unexpected correla-
	tion between cardinal temperatures of microbial growth highlighted by
	a new model Journal of Theoretical Biology, 162:447-463, 1993.
	[6] Shaw, M. K. and Marr, A. G. and Ingraham, J. L. Determination
	of the minimal temperature for growth of Escherichia coli Journal of
	Bacteriology, 105:683-684, 1971.
	[7] Van Derlinden, E. and Bernaerts, K. and Van Impe, J. F. Accurate
	estimation of cardinal temperatures of Escherichia coli from optimal
	dynamic experiments International Journal of Food Microbiology, 128:
	89-100, 2008.
	[8] Walter, E. and Pronzato, L. Identification of Parametric Models from
	Experimental Data, Springer, Masson 1997

Table 2 :

 2 D-optimal temperature profiles for the SeOED/PE design strategy. Three arbitrarily chosen selection schemes of parameter couples for three sets of true parameters (p * ) are presented. For each parameter combination, the (updated) nominal values p • are preceding the optimal experiment. The parametrization of the temperature profile is illustrated in Figure1. Temperature is bounded within [15 • C, 45 • C]. The rate of temperature change is constrained between [-5 • C/h, 5 • C/h] and t f is fixed at 38h.

	μ opt )	45.00 3.835 -5.000 6.000 15.00 8.482×10 5
	(T max , T min ) 45.00 2.854 -5.000 5.812 15.94 1.117×10 5
	(T max , T opt )	45.00 2.938 -5.000 5.676 16.62 8.198×10 4
	(T min , μ opt )	40.85 1.780 -5.000 4.788 16.91 1.800×10 6
	(T min , T opt )	31.15 4.382 -2.388 5.978 16.87 7.674×10 4
	(T opt , μ opt )	45.00 2.801 -5.000 5.666 16.67 1.547×10 6
	(T max , T min , 45.00 2.514 -4.187 7.138 15.11 6.103×10 4
	T opt , μ opt )	

Table 3 :

 3 Parameter estimates and associated standard deviations from the simulation study for the comparison of the single, sequential and global OED/PE design strategies. Nominal values for the experiment design are 11.33 • C, 40.85 • C, 46.54 • C and 2.397 1/h.

		p *	SiOED/PE	SeOED/PE	GlOED/PE
	T min	8.000	8.073 (4.371×10 -1 )	6.163 (1.852×10 -1 )	7.822 (1.072×10 -1 )
	T opt	40.00	40.10 (5.288×10 -1 )	40.84 (1.241×10 -1 )	40.12 (7.278×10 -2 )
	T max	46.00	46.17 (4.112×10 -1 )	45.51 (3.278×10 -2 )	45.92 (3.549×10 -4 )
	μ opt	2.200	2.184 (7.795×10 -2 )	2.368 (2.305×10 -2 )	2.204 (1.110×10 -2 )
	T min	6.500	6.464 (4.385×10 -1 )	4.256 (5.445×10 -1 )	6.491 (1.146×10 -1 )
	T opt	39.80	40.00 (5.601×10 -1 )	42.04 (6.403×10 -2 )	40.09 (8.706×10 -2 )
	T max	45.70	45.78 (2.184×10 -1 )	45.19 (1.012×10 -4 )	45.55 (2.437×10 -5 )
	μ opt	2.000	2.007 (5.656×10 -2 )	2.173 (1.698×10 -2 )	2.051 (1.246×10 -2 )
	T min	10.00	10.08 (3.683×10 -1 )	9.828 (2.779×10 -1 )	9.889 (8.118×10 -2 )
	T opt	40.50	40.47 (5.744×10 -1 )	40.61 (1.123×10 -1 )	40.58 (1.576×10 -1 )
	T max	45.30	45.40 (1.635×10 -1 )	45.27 (1.063×10 -2 )	45.29 (3.415×10 -2 )
	μ opt	2.350	2.318 (9.301×10 -2 )	2.392 (7.863×10 -2 )	2.348 (2.823×10 -2 )

Table 4 :

 4 CTMI parameter estimates and corresponding standard deviations. For combinations of 4 optimal experiments (OEs), the following combinations are considered: (A) [(T max , μ opt ), (T max , T min ), (T min , T opt ), (T opt , μ opt )], (B) [(T max , μ opt ), (T max , T opt ), (T min , T opt ), (T min , μ opt )], and (C) [(T max , T min ), (T max , T opt ), (T min , μ opt ), (T opt , μ opt )]. For combinations of 2 optimal experiments (OEs), the following combinations are considered: (A) [(T max , μ opt ), (T min , T opt )], (B) [(T max , T min ), (T opt , μ opt )], and (C) [(T max , T opt ), (T min , μ opt )].

		SiOED/PE	GlOED/PE	
		1 OE	6 OEs	
	T min	9.801 (2.847×10 -1 ) 9.144 (2.251×10 -1 )	
	T opt	39.73 (2.460×10 -1 ) 39.58 (2.793×10 -1 )	
	T max	46.70 (3.749×10 -1 ) 46.71 (2.693×10 -1 )	
	μ opt	2.142 (4.660×10 -2 ) 2.094 (4.011×10 -2 )	
	M SE global	1.318×10 -2	7.082×10 -2	
	(n t , n p )	(56, 7)	(245, 17)	
		GlOED/PE	GlOED/PE	GlOED/PE
	4OEs	(A)	(B)	(C)
	T min	9.110 (2.483×10 -1 ) 8.834 (2.434×10 -1 ) 9.868 (3.507×10 -1 )
	T opt	39.40 (2.881×10 -1 ) 39.93 (3.423×10 -1 ) 39.00 (4.063×10 -1 )
	T max	47.32 (3.715×10 -1 ) 46.08 (3.077×10 -1 ) 47.05 (4.795×10 -1 )
	μ opt	2.000 (4.752×10 -2 ) 2.158 (5.698×10 -2 ) 2.091 (4.928×10 -2 )
	M SE global	6.427×10 -2	8.193×10 -2	6.223×10 -2
	(n t , n p )	(184,13)	(163,13)	(177, 13)
		GlOED/PE	GlOED/PE	GlOED/PE
	2 OEs	(A)	(B)	(C)
	T min	8.819 (2.631×10 -1 ) 11.49 (6.313×10 -1 ) 9.422 (5.013×10 -1 )
	T opt	39.43 (3.827×10 -1 ) 37.59 (4.634×10 -1 ) 39.70 (6.805×10 -1 )
	T max	47.21 (2.830×10 -5 ) 51.06 (1.981×10 0 )	46.04 (1.482×10 0 )
	μ opt	1.952 (5.001×10 -2 ) 1.826 (6.206×10 -2 ) 2.218 (8.649×10 -2 )
	M SE global	7.908×10 -2	4.250×10 -2	7.550×10 -2
	(n t , n p )	(85,9)	(99,9)	(78,9)

Table 5 :

 5 CTMI parameter estimates and corresponding standard deviations derived from single GlOED/PE optimal experiments (see Table1). The presented det(F)-values are calculated using a (4×4) Fisher information matrix (as defined in Equation3) with values for T 1 , t s , ΔT/Δt and Δt copied from

Table 1 .

 1 Experiment (T max , μ opt ) Experiment (T max , T min ) Experiment (T max , T opt ) Experiment (T opt , μ opt )

	T min	10.03	(1.079×10 0 )	9.294	(5.836×10 -1 )
	T opt	37.19	(9.490×10 -1 )	39.21	(4.690×10 -1 )
	T max	49.65	(2.864×10 0 )	48.03	(1.005×10 0 )
	μ opt	1.729	(1.246×10 -1 )	2.039	(7.152×10 -2 )
	det(F)	4.334×10 4		4.926×10 4	
	T min	10.24	(8.397×10 -1 )	12.83	(8.884×10 -1 )
	T opt	37.02	(1.005×10 0 )	35.11	(7.549×10 -1 )
	T max	46.55	(6.708×10 -1 )	50.00	(1.329×10 0 )
	μ opt	1.738	(7.752×10 -2 )	1.694	(7.571×10 -2 )
	det(F)	4.130×10 4		4.110×10 4	
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