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Abstract

A key objective dealing with 3D sandwich structures is to maximize the through-
thickness sti�ness, the strength of the core and the core to faces adhesion. The
Napcor technology was especially designed for improving such material properties
and is under investigation in this paper. In particular, the potential of the pro-
cess is characterized using a micromechanical modelling combined to a parametric
probabilistic model. An experimental analysis is further detailed and validates the
theoretical estimates of the core-related elastic properties. It is readily shown that
the technology is able to produce parts with signi�cantly improved mechanical prop-
erties. Finally, thanks to the probabilistic aspect of the modelling, the study allows
to establish a link between the randomness of the process and the uncertainties of
the �nal mechanical properties. Thus, the present approach can be used to optimize
the technology as well as to properly design structures.

Key words: A. Sandwich, B. Mechanical properties, C. Multiscale modeling, C.
Sandwich structures
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1 Introduction

1.1 General introduction

The high strength, high speci�c weight and durability of sandwich composites
make them highly attractive for aerospace, marine and ground transporta-
tion applications. Therefore, sandwich components have been successfully in-
troduced to several applications such as roof panels in train and bus struc-
tures, front cabins of high-speed locomotives, interior panels. . .Minimizing
the weight of a structure is becoming a common key design objective as it
allows many options such as higher speed, longer range, larger payloads, less
engine power and better operating economy. The sandwich material must be
light whilst remaining economically viable. Moreover, high shear strength and
modulus are also major considerations and the core should have good load
bearing capacity and su�cient compressive strength to withstand local inden-
tative loads. Finally, good thermal stability as well as good fatigue resistance
is usually required.

In order to increase the load capacity of the sandwich construction without
penalizing its lightness, it is then desirable to maximize the through-thickness
sti�ness and strength of the core. One strategy of achieving this is to add
through-thickness reinforcement to the core, with the ends of the reinforce-
ment material embedded in composite facings. The best option is to have a
continuous 3D reinforcement to increase the delamination strength and tough-
ness between facings and core. In recent years several investigators have con-
sidered a number of innovative designs to improve the strength of foam cores
such as 3D weaving [1], 3D Z-pins embedded in foam [14], stitch bonding [6]
[10] and hollow integrated core sandwich [5]. Usually these solutions lead to a
decrease of production rate and an increase of part cost. An alternative is the
patented Napcor technology which produces, in a continuous way, 3D tailored
sandwich structures while maintaining a production e�ciency [9].

The main objective of this study is to show the potential of such a manufac-
turing process by evaluating the resulting enhancement of some mechanical
properties. For this purpose, a micromechanical approach is �rst proposed
and integrates the anisotropy (due to the through-thickness reinforcements)
of the reinforced foam core. Predictions of this multiscale modelling are then
compared and discussed with respect to an experimental database which is
also brie�y described. Finally, in order to take into account the randomness of
both the elementary constituents and the manufacturing process, a parametric
probabilistic model is introduced.
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2 Napcor technology

The Napcor technology is a manufacturing process of 3D �brous structures
and 3D dry sandwich composites in which the facing fabrics and core are
integrated together in one construction. The sandwich construction is based
on needle punching (Fig. 1). The through-thickness reinforcement is obtained
from regular fabrics such as chopped strand mats or continuous �ber mats. A
multi-needle arrangement, set at a desired pattern and density, penetrates the
assembly of glass fabric layers and foam core on both sides (Fig. 2). During
this process, needles catch and pull glass strands from the facings and carry
them through the rigid foam, creating straight reinforcements perpendicular
to the skins (see Figs. (1) and (2)). A part of the yarn is kept inside the facings,
the rest being embedded within the foam core. Thus, note that the Napcor

technology basically di�ers from the stitching technology, where the �bers do
not come from the skin material. As the needles are withdrawn, �bers remain
inside the core. Then the sandwich panel assembly is advanced by a desired
spacing to produce the next set of vertical pile yarns.

Figure 1. Schematic illustration of the Napcortechnology

Figure 2. Schematic illustration of the 3D sandwich construction yielded by the
Napcor technology

Once the 3D sandwich preform is produced, it can be impregnated by a liquid
resin using of any composite molding technique. Closed-mold methods (Liquid
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Composite Molding) and continuous compression molding are found to be
appropriate. For those technologies, it has been noticed that the transverse
pile yarns are properly impregnated. In addition, they help to balance resin
�ow on both sides of the sandwich.

3 Micromechanical modelling

The reinforced foam core is made up of a linearly elastic matrix (the polyuretha-
ne foam) reinforced by unidirectional composites (UDs), as shown on �g-
ure 3. The matrix is considered as isotropic while the through-thickness re-

Figure 3. Modelling of the composite reinforced foam core.

inforcements are approximated as long circular transversely isotropic cylin-
ders. Hence, the overall mechanical response of the composite is transversely
isotropic.

4
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3.1 Base tensors for transversely isotropic materials

We �rst recall some notations of tensor algebra corresponding to transversally
isotropy. The basic idea was introduced by Walpole [15] and was recently
summarized in [3]. Any transversely isotropic fourth-order tensor A can be
expressed in terms of six basic fourth-order tensors de�ned as:

EL = n⊗ n⊗ n⊗ n

JT = 1
2
iT ⊗ iT

F = 1√
2
iT ⊗ n⊗ n

T F such as
(

T F
)

ijkl
= (F )klij

KT = IT − JT

KL = I− 1
3
i ⊗ i −KT −KE

(1)

where:

• the unit normal n de�nes the axis of transverse isotropy. In this study,
according to �gure (3), one has n = e3;

• iT and IT denote the second and fourth-order identity tensors in the trans-
verse plane and are respectively given by:

iT = i − n⊗ n

IT = I + n⊗ n⊗ n⊗ n− 2 [n⊗ i ⊗ n](sym)
(2)

where the superscript (sym) denotes the double symmetrization operator
de�ned as: (

A(sym)
)

ijkl
= (Aijkl + Ajikl + Aijlk + Ajilk) /4 (3)

i and I are the second and symmetric fourth-order identity tensors respec-
tively (iij = δij and 2Iijkl = δikδjl + δilδjk, where δij is the Kronecker delta);

• KE is de�ned as:

KE =
1

6
(2n⊗ n− iT )⊗ (2n⊗ n− iT ) (4)

Then, the decomposition

A = αEL + βJT + γF + γ′ T F + δKT + δ′KL (5)

can be written in the following symbolic form:

A =
{
a, δ, δ′

}
(6)
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where the matrix a is de�ned as (γ = γ′ when A is symmetric):

a =

 α γ

γ′ β

 (7)

Thus, the following basic tensorial operations take the simple forms:

A1 + A2 =
{
a

1
, δ1, δ

′
1

}
+

{
a

2
, δ2, δ

′
2

}
=

{
a

1
+ a

2
, δ1 + δ2, δ

′
1 + δ′2

}
A1 : A2 =

{
a

1
, δ1, δ

′
1

}
:
{
a

2
, δ2, δ

′
2

}
=

{
a

1
· a

2
, δ1δ2, δ

′
1δ
′
2

}
A−1 =

{
a, δ, δ′

}−1
=

{
a−1, 1/δ, 1/δ′

} (8)

When A corresponds to a fourth-order symmetric sti�ness tensor, the param-
eters involved in the decomposition (5) can be written in terms of the well
known engineering constants:

α = El + 4
(
νl

)2
K, β = 2K, γ = γ′ = 2

√
2νlK

δ = 2µt, δ′ = 2µl
(9)

where El, µl and νl are the longitudinal Young's modulus, shear modulus and
Poisson ratio respectively. µt and K are the transverse shear modulus and the
in-plane bulk modulus respectively. In this study, the longitudinal direction
(denoted by the superscript l) coincides with the through-thickness orientation
of the sandwich.

3.2 Micromechanical analysis

3.2.1 Principle

In order to assess the overall properties of the material, two successive homog-
enization procedures are carried out (the di�erent scales being assumed to be
well separated) as follows (see Fig. (3)):

• the �rst one, denoted by (H1), is performed at the scale of the unidirectional
composite and provides the estimate of the e�ective sti�ness tensor of the
UD, denoted by C̃;

• the second one, denoted by (H2), is carried out at the upper scale (the UDs
being then considered as the inhomogeneities) and allows us to estimate the

macroscopic sti�ness tensor
˜̃C of the composite reinforced foam core.

Note that (H1) is basically a speci�c case of (H2) and can be achieved substi-
tuting the corresponding properties (considering an isotropic matrix reinforced
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by aligned isotropic �bers) in the results that will be given for the second ho-
mogenization procedure. The aim of this section is to estimate the macroscopic
mechanical properties of the foam reinforced by the through-thickness UDs.
For this purpose, we consider the Mori-Tanaka estimate (i.e. the matrix is
considered as the reference medium and is subjected to its own stress, see
[2] [3] [7]), which allows to take into account the interactions between the in-
homogeneities. The choice of this homogenization scheme is justi�ed by the
�matrix-inclusion� morphology of the studied material. In general, the valid-
ity of this approach corresponds to a reinforcement volume fraction cH2 such
that cH2 < 20% (note that this validity range may be reduced or extended,
depending in particular on the contrast between the constituents as well as on
the required accuracy [3]). In the case of the two-phase composite considered

here, the overall sti�ness tensor
˜̃C is then given by:

˜̃CMT

= C1 + cH2

(
C̃− C1

)
: AMT

2 (10)

where
˜̃CMT

is the macroscopic sti�ness tensor estimated by means of the Mori-
Tanaka scheme, C1 and C̃ are the sti�ness tensors of the matrix and the inho-
mogeneity respectively. cH2 denotes the volume fraction of reinforcing material
and AMT

2 is the strain concentration tensor for the inhomogeneity, de�ned as:

AMT
2 =

[
I + P2

1 : ∆C
]−1

:
[
(1− cH2) I + cH2

[
I + P2

1 : ∆C
]−1

]−1

(11)

where ∆C = C̃ − C1 and P2
1 is the Hill tensor corresponding to the inho-

mogeneity 2 (that is, the through-thickness reinforcement) embedded in the
matrix 1. We further recall that:

P2
1 = P2

1|MT = SESH : [C1]
−1 (12)

where SESH is the Eshelby tensor of the inhomogeneity. It is readily seen from
Eq. (12) that the Hill tensor basically depends on both the geometry of the in-
homogeneity (via SESH) and the mechanical properties of the reference medium
(here, the matrix).

3.2.2 Determination of the macroscopic properties

In the case of the UDs (classically modelled as ellipsoidal inclusions with an
in�nite aspect ratio: w = L/d → ∞, where L and d are the length and the
diameter of the inclusion), oriented in the direction n, it can be shown that
the Hill tensor takes the form (see [3]):

P2
1 =

1

2 (K1 + µ1)
JT +

1

4µ1

K1 + 2µ1

K1 + µ1

KT +
1

4µ1

KL (13)
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where K1 and µ1 are the in-plane bulk modulus and shear modulus of the
matrix respectively. Taking into account Eq. (6), Eq. (13) is then rewritten
as:

P2
1 =


 0 0

0 1/2 (K1 + µ1)

 ,
1

4µ1

K1 + 2µ1

K1 + µ1

,
1

4µ1

 (14)

Furthermore, one has:

I =


 1 0

0 1

 , 1, 1

 (15)

Combining (6) and (9) yields the expression of the sti�ness tensor for the
transversely isotropic reinforcing material:

C̃ =


 Ẽl + 4

(
ν̃l

)2
K̃ 2

√
2ν̃lK̃

2
√

2ν̃lK̃ 2K̃

 , 2µ̃t, 2µ̃l

 (16)

where

K̃ =
1

2

ẼtẼl(
1− ν̃t

)
Ẽl − 2

(
ν̃l

)2
Ẽt

(17)

We recall that the elastic properties involved in the above decomposition are
obtained from the �rst homogenization (H1).
The sti�ness tensor of the isotropic matrix is easily obtained by substituting

Ẽl = Ẽt = E1, ν̃l = ν̃t = ν1 and µ̃l = µ̃t = µ1 into (16), that is:

C1 =


 E1 + 4 (ν1)

2 K1 2
√

2ν1K1

2
√

2ν1K1 2K1

 , 2µ1, 2µ1

 (18)

where

K1 = k1 +
µ1

3
(19)

and k1 is the three dimensional bulk modulus of the matrix.

Since the macroscopic response of the material is transversely isotropic, one
has:

˜̃C =


 ˜̃α ˜̃γ˜̃γ ˜̃

β

 ,
˜̃
δ,

˜̃
δ′

 (20)

The e�ective properties involved in the decomposition (20) can be easily esti-
mated by substituting Eqs. (14), (16), (18) and (20) into Eq. (10) and making
use of Eq. (8).
For instance, in the case of the overall transverse shear modulus (which is

8
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critical for such materials)
˜̃
µt, one has:

˜̃
µt = µ1 +

cH2

(
µ̃t − µ1

)
b1 b2

(21)

where

b1 = 1 + (k1 + 7µ1/3)
(
µ̃t − µ1

)
/ {2µ1 (k1 + 4µ1/3)}

b2 = 1− cH2 + cH2/
{
1 + (k1 + 7µ1/3)

(
µ̃t − µ1

)
/ {2µ1 (k1 + 4µ1/3)}

} (22)

It is readily seen that
˜̃
µt → µ1 when cH2 → 0 and

˜̃
µt → µ̃t when cH2 → 1.

Finally, note that under dilute conditions (i.e. cH2 → 0) and for an isotropic

reinforcing material (so that: µ̃t = µf , where µf is the shear modulus of the
reinforcing �ber), Eq. (21) reads:

˜̃
µt

µ1

|Dilute ≈ 1 +
cH2

µ1/(µf − µ1) + (k1 + 7µ1/3)/(2k1 + 8µ1/3)
(23)

which is exactly the result provided by Christensen (see [4], p. 89).

4 Experimental validation

4.1 Sandwich manufacturing

The sandwich preforms are made using the Napcor technology with a polyure-
thane foam core (density of 40 kg.m−3), two facings made of 1 ply of chopped
strand glass mat (areal weight of 450 g.m−2). The �nal panel is molded us-
ing continuous compression molding with unsaturated polyester resin. Three
di�erent types of needle pattern have been used to create di�erent pile yarns
(UDs) densities in the �nal sandwich structure (Tab. (1)).

4.2 Modelling data

In this section, we consider elementary constituents the properties of which
are listed in Tab. (2).

The �rst homogenization procedure (H1) is performed (with a �ber volume

9
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Sandwich panel # 1 2 3

Top view

   

Average total thickness (mm) 16.7 16.4 16.2

Average core thickness (mm) 14.5 14.3 14.3

Distance between UDs (mm) 15×15 8×8 4×4

Volume fraction of UDs wrt foam core cH2 1.2% 4.3% 9.4%

Table 1
Sandwich panels speci�cations

Constituents Elastic properties

Polyester resin E = 4 000 MPa, ν = 0.4

E-Glass �bers E = 73 000 MPa, ν = 0.22

Polyurethane foam E = 9.2 MPa, ν = 0
Table 2
Elastic properties of the elementary constituents.

fraction equal to the mean experimental value: cH1 = 4.1%) and provides
the overall elastic properties of the UD, listed in Tab. (3) (we recall that the
methodology described in the previous section is used for that purpose).

Overall properties of the UD

Ẽl = 6 834 MPa

µ̃t = 1 524 MPa

µ̃l = 1 538 MPa

K̃ = 14 900 Mpa

ν̃l = 0.39
Table 3
Overall properties of the unidirectional composite.

In order to accurately compare the estimates with experimental data, we fur-
ther introduce a correction index, denoted by r and de�ned as the mean value
of the ratio between the predictions and the experimental results for a given
elastic property T :

rT =
1

N

N∑
i=1

TEst.
i

TExp.
i

(24)

10
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where TEst.
i and TExp.

i are the i-th estimated and experimental values respec-
tively, N is the total number of observations of T (one observation basically
corresponds to one volume fraction in through-thickness reinforcements). The
i-th corrected estimate is then de�ned as:

TCorr.
i =

TEst.
i

rT

(25)

4.3 Results and discussion

Compression between parallel plates and three-point bending tests were per-
formed on a material-testing machine (Zwick) mounted with a 100kN-force
cell.

4.3.1 Case of the overall longitudinal (through-thickness) Young's modulus˜̃
El

The panels have been characterized in compression following the NF T 54-602
standard. Five samples were cut in each of the three panels. The compression
speed of the top compression platen was 1.6 mm.min−1. The compression mod-
uli were calculated from the experimental stress-strain curves. Fig. (4) shows
a comparison between the experimental data and the simulations (obtained
from Eqs. (9) and (20)). It is seen that:

• the evolution of the elastic property is quite well predicted;
• the magnitude of the modulus is well estimated, even by the non corrected
formulation.

The estimate of the overall longitudinal Young's modulus as a function of the
volume fractions in both the UDs and the foam core is illustrated in Fig. 5.
The �gure shows that:

• the overall modulus is highly sensitive to the volume fraction in through-
thickness reinforcements cH2 as well as to the volume fraction cH1 (within
the UDs);

• a signi�cant increase of the property can be obtained, even at a rather small
volume fraction cH2 (and especially, if cH1 can be increased by enhanced
carriage of �bers by needles).

11
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 Exp. data 
 

 
 

Effective longitudinal 
Young’s modulus, in MPa 

0

100

200

300

400

500

600

700

0,012 0,043 0,094

Theoretical estimate 

Corrected estimate 

Exp. data 

 cH2

Figure 4. Comparison between exp. data and micromechanical predictions. Case of

the overall longitudinal Young's modulus
˜̃
El.

4.3.2 Case of the overall transverse shear modulus
˜̃
µt

The panels have also been submitted to three-point bending test following the
NF T 54-606 standard. Since two span lengths were used (300 and 450 mm),
ten samples were cut in each panel. The cross-head speed was setup accord-
ingly to the standard to 0.8 mm.min−1. Fig. (6) shows a comparison between
the experimental data and the simulations. It is seen that:

• the evolution of the elastic property is well predicted;
• the magnitude of the overall shear modulus is also well estimated, with a
maximum relative error of 22% for the non corrected estimate and 4% for
the corrected result.

The estimate of the overall shear modulus as a function of the volume fractions
in both the UDs and the foam core is illustrated on Fig. (7). It is readily
observed that:

• the overall shear modulus is sensitive to the volume fraction of through-
thickness reinforcement cH2 ;

• the overall shear modulus is not sensitive to the volume fraction within
the UDs cH1 (the four curves are basically indistinguishable). In fact, a

12
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1/
~~ EEl

 cH1=30 % 

cH1=20 % 

cH1=10 % 

cH1=4 % 

cH2

Figure 5. Estimate of the overall longitudinal Young's modulus
˜̃
El for di�erent vol-

ume fractions cH1 within the UDs.

di�erential calculus on Eq. (21) shows that an increase of the shear modulus
of the UD does not imply a signi�cant increase of the overall shear modulus
(all other parameters being �xed otherwise). Also, note that an increase of
the volume fraction within the UD implies a rather small increase of the
shear modulus of the UD: in the case of a 20% increase (from 10% to 30%),
the shear modulus of the UD increases by 40% while the Young's modulus
increases by 130% approximately;

• once again, a signi�cant increase of the property can be obtained.

4.3.3 Remark 1

The fact that the prediction of the overall shear modulus seems to be more
accurate compared to the estimate of the e�ective Young's modulus may be
explained by noticing that:

• basically, the micromechanical modelling does not integrate the e�ect of the
skins, which may not be neglected in the case of a compression test;

• also, the estimate of the overall Young's modulus is highly sensitive to the
volume fraction within the UDs and thus, the di�erence between experi-
mental and simulated curves may be due to volume fraction �uctuations
(we recall that a mean value was considered in the model). This point will
be discussed in section (5).
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6
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Effective transverse 
shear modulus, in MPa 
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Figure 6. Comparison between exp. data and micromechanical predictions. Case of

the overall transverse shear modulus
˜̃
µt.

4.3.4 Remark 2

We note that for a given elastic property, and especially in the case of the
overall transverse shear modulus (which is critical for sandwich core materials),
the analysis carried out in this study (see sections (4.3.1) and (4.3.2)) shows
that the parameter rT is almost independent from the number of observations
N (for instance, in the case of the overall transverse shear modulus, the index
has a standard deviation less than 4%) and close to the unit. This means that:

• the variation of the elastic properties is correctly predicted ;
• only a few experimental measurements may be used for correcting the sim-
ulated results.
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1/
~~ µµ t

 

c =4 %
c =10 % 
c =20 % 
cH1=30 % 

H1
H1
H1

cH2

Figure 7. Estimate of the overall transverse shear modulus
˜̃
µt.

5 On the in�uence of �ber volume fraction in the through-thickness
reinforcements

5.1 Microstructural analysis

Several micrographic pictures have been realized on the UDs reinforcing the
foam core. Figure 8 shows that the needles carrying the �bers within the foam,
that will create the UDs during the resin injection, induces high discrepancies
from one UD to another. In particular, it can be seen that the �ber volume
fraction varies and that the UDs are basically resin-rich regions. Further ex-

 

 

 

 

Figure 8. Example of UD cross-section micrographies (glass �bers appear white and
resin appears grey)

perimental analysis of the �ber volume fraction within the through-thickness
reinforcement clearly shows the randomness of this quantity, mainly due to
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the randomness of the mat as well as to the manufacturing process itself. The
aim of this section is then to construct a suitable parametric probabilistic
model associated to such a random volume fraction, as well as to study, by
means of Monte-Carlo numerical simulations, the in�uence of this uncertainty
on the overall mechanical behavior (note that results will be provided only in
the case of the longitudinal Young's modulus, which is shown to be the most
sensitive parameter).

5.2 Construction of a parametric probabilistic model

Let c (θ) = cH1 (θ) be the random volume fraction under consideration (the
symbol θ denotes the randomness of the quantity and is dropped hereafter for
the sake of simplicity), de�ned on a probability space (A,F , P ). Its probabil-
ity distribution Pc, such as Pc (dc) = pc (c) dc, is then de�ned by a probability
density function pc (c) de�ned on R, with respect to the Lebesgue measure
dc. The construction of the probability density function is achieved using the
Maximum Entropy Principle (M.E.P.; see for instance [8] [12] [13] for a general
overview). We recall that such a construction is only based on the available
information and thus, no bias is introduced in the estimation of the probability
distribution. The mean and standard deviation, denoted by mc and σc respec-
tively, are determined from usual mathematical statistics and are estimated
from a set of 100 samples. For this purpose, the samples are classically burnt
and weighed twice, before and after the calcination. This yields two constraints
on the two �rst statistical moments, denoted by m1 and m2 respectively. We
further specify the support of the distribution, de�ned as:

S = Supp (c (θ)) = [0, 1] (26)

Thus, the available information can be summarized as follows:

• the support S of the distribution is known: c ∈ [0, 1] almost surely;
• the random variable c is of second order (that is E {c2} < +∞, where E
denotes the mathematical expectation);

• the two statistical moments m1 and m2 are known.

Finally, let us recall the normalization condition for the density function:∫
R

pc (x) dx = 1 (27)

Then, it can be shown that the probability density function, constructed using
the M.E.P., takes the form:

pc (x) = IS (x) exp
(
−λ0 − xλ1 − x2λ2

)
(28)
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where IS (x) is the indicator function (IS (x) = 1 if x ∈ S and IS (x) = 0
otherwise) and the Lagrange multipliers (λ0, λ1, λ2) ∈ R3 are such that they
minimize the strictly convex functional (λ0, λ1, λ2) → H (λ0, λ1, λ2) de�ned
as:

H (λ0, λ1, λ2) = λ0 + λ1m1 + λ2m2 +
∫

S
exp

(
−λ0 − xλ1 − x2λ2

)
dx (29)

Such an optimization problem can be solved by using usual techniques, such as
the Conjugate Gradient method. Figs. (9) and (10) show the plots of the prob-
ability density function and the cumulative distribution function respectively.

 
 
 

 

( )cpc  

c  

Figure 9. Probability density function of the random volume fraction.

5.3 Stochastic solver

Monte-Carlo numerical simulations [11] are used for assessing some statistical
properties of the overall mechanical response. The methodology is classical
and is summarized below:

• generate the random vector U , of length N and such as each component
U (k), k = 1..N , is uniformly distributed between 0 and 1;

• compute the random vector c corresponding to the volume fraction c by
using, for each component c(k), an inverse transform:

c(k) = F−1
c

(
U (k)

)
(30)
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( )cFc   
 
 

 
c  

Figure 10. Cumulative distribution function of the random volume fraction.

where Fc is the cumulative distribution function of the random volume
fraction;

• compute the vector
˜̃
E corresponding to the longitudinal Young's modulus

by using the micromechanical formulations;
• perform the statistical analysis.

The properties assessed by 100 000 Monte-Carlo simulations (the number of
simulations is controlled by the convergence of the �rst to the fourth order
statistical moments) are listed in table (4) (volume fraction in UDs within
the foam core: cH2 = 4.3 %). The convergence of the mean, standard devia-

Min: 180.9 MPa

Max: 763.4 MPa

Median: 290.6 MPa

1st Qu.: 236.4 MPa

3rd Qu.: 355.3 MPa

Mean: 303.2 MPa

CV: 27.6 %
Table 4
Properties of the random overall longitudinal Young's modulus.

tion, skewness and kurtosis coe�cients are illustrated in Figs. (11) and (12)
(note that the values are basically normalized by the converged results). As
expected, it is readily seen that the overall longitudinal Young's modulus is
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a. Mean b. Standard deviation

Figure 11. Convergence rates of the mean and standard deviation (abscissa ×103:
number of Monte-Carlo simulations).

a. Skewness coe�cient b. Kurtosis coe�cient

Figure 12. Convergence rates of the skewness and kurtosis coe�cients (abscissa×103:
number of Monte-Carlo simulations).

highly dispersed, with an inter-quartile deviation IQD = 59.45 MPa. It is
worth noticing that the stochastic overall longitudinal Young's modulus has

a �nite second moment (E
{ ˜̃
E

2}
< +∞) and is then, as expected, of second-

order. Figs. (13) and (14) show the plots of the probability density function
and the empirical cumulative distribution function of the overall longitudinal
Young's modulus respectively.

Remark: note that the random volume fraction may not be considered as ho-
mogeneous over the composite part and thus, may be modeled by considering
a random �eld (see [12]). However, such an analysis can only be performed
within a computational framework and is beyond the scope of this study. It
then becomes straightforward that the extreme values (say, out of the in-
terquartile range) obtained here are meaningless, as some kind of balancing
between strongly and weakly reinforced UDs may occur in reality.

19



ACCEPTED MANUSCRIPT 
 

 

( )Ep
E

~~
~~  

E
~~

 [MPa] 

Figure 13. Probability density function of the overall longitudinal Young's modulus.
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Figure 14. Empirical cumulative distribution function of the overall longitudinal
Young's modulus.

6 Conclusion

The Napcor technology is a patented process that strengthens transversally
foam core with �ber yarns taken from facings in sandwich assembly. In this
study, we investigate the potential of this technology by means of a microme-
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chanical analysis based on the Mori-Tanaka scheme. Comparisons between
predictions and experiments are discussed and basically show the e�ciency
of the micromechanical modelling which can also be generalized to other con-
�gurations (for instance, for other distributions and/or orientations of the
through-thickness reinforcements). The approach allows one to de�ne easily
both material and process parameters to tailor sandwich panel to speci�c core-
related mechanical requirements. Furthermore, the randomness of the volume
fraction within the through-thickness reinforcements is clearly shown and in-
tegrated using a parametric probabilistic model, Monte-Carlo numerical sim-
ulations being used as the stochastic solver. Such a modelling basically estab-
lishes a link between the randomness of the manufacturing process (here, the
Napcor technology) and the uncertainties of induced mechanical properties.
This information is of great help when designing and qualifying structures and
can also be used in order to optimize the process itself. Finally, it is shown
that such a technology can produce composite reinforced foam core with a
signi�cant improvement of the mechanical properties, and in particular the
longitudinal Young's modulus as well as the transverse shear modulus.
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