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A key objective dealing with 3D sandwich structures is to maximize the throughthickness stiness, the strength of the core and the core to faces adhesion. The Napco technology was especially designed for improving such material properties and is under investigation in this paper. In particular, the potential of the process is characterized using a micromechanical modelling combined to a parametric probabilistic model. An experimental analysis is further detailed and validates the theoretical estimates of the core-related elastic properties. It is readily shown that the technology is able to produce parts with signicantly improved mechanical properties. Finally, thanks to the probabilistic aspect of the modelling, the study allows to establish a link between the randomness of the process and the uncertainties of the nal mechanical properties. Thus, the present approach can be used to optimize the technology as well as to properly design structures.

1 Introduction

General introduction

The high strength, high specic weight and durability of sandwich composites make them highly attractive for aerospace, marine and ground transportation applications. Therefore, sandwich components have been successfully introduced to several applications such as roof panels in train and bus structures, front cabins of high-speed locomotives, interior panels. . . Minimizing the weight of a structure is becoming a common key design objective as it allows many options such as higher speed, longer range, larger payloads, less engine power and better operating economy. The sandwich material must be light whilst remaining economically viable. Moreover, high shear strength and modulus are also major considerations and the core should have good load bearing capacity and sucient compressive strength to withstand local indentative loads. Finally, good thermal stability as well as good fatigue resistance is usually required.

In order to increase the load capacity of the sandwich construction without penalizing its lightness, it is then desirable to maximize the through-thickness stiness and strength of the core. One strategy of achieving this is to add through-thickness reinforcement to the core, with the ends of the reinforcement material embedded in composite facings. The best option is to have a continuous 3D reinforcement to increase the delamination strength and toughness between facings and core. In recent years several investigators have considered a number of innovative designs to improve the strength of foam cores such as 3D weaving [START_REF] Bannister | The mechanical performance of 3D woven sandwich composites[END_REF], 3D Z-pins embedded in foam [START_REF] Vaidya | Processing and high strain rate impact response of multi-functional sandwich composites[END_REF], stitch bonding [START_REF] Lascoup | On the mechanical eect of stitch addition in sandwich panel[END_REF] [10] and hollow integrated core sandwich [START_REF] Hosur | Manufacturing and low-velocity impact characterization of hollow integrated core sandwich composites with hybrid face sheets[END_REF]. Usually these solutions lead to a decrease of production rate and an increase of part cost. An alternative is the patented Napco technology which produces, in a continuous way, 3D tailored sandwich structures while maintaining a production eciency [START_REF][END_REF].

The main objective of this study is to show the potential of such a manufacturing process by evaluating the resulting enhancement of some mechanical properties. For this purpose, a micromechanical approach is rst proposed and integrates the anisotropy (due to the through-thickness reinforcements) of the reinforced foam core. Predictions of this multiscale modelling are then compared and discussed with respect to an experimental database which is also briey described. Finally, in order to take into account the randomness of both the elementary constituents and the manufacturing process, a parametric probabilistic model is introduced.

The Napco technology is a manufacturing process of 3D brous structures and 3D dry sandwich composites in which the facing fabrics and core are integrated together in one construction. The sandwich construction is based on needle punching (Fig. 1). The through-thickness reinforcement is obtained from regular fabrics such as chopped strand mats or continuous ber mats. A multi-needle arrangement, set at a desired pattern and density, penetrates the assembly of glass fabric layers and foam core on both sides (Fig. 2). During this process, needles catch and pull glass strands from the facings and carry them through the rigid foam, creating straight reinforcements perpendicular to the skins (see Figs. Once the 3D sandwich preform is produced, it can be impregnated by a liquid resin using of any composite molding technique. Closed-mold methods (Liquid Composite Molding) and continuous compression molding are found to be appropriate. For those technologies, it has been noticed that the transverse pile yarns are properly impregnated. In addition, they help to balance resin ow on both sides of the sandwich.

Micromechanical modelling

The reinforced foam core is made up of a linearly elastic matrix (the polyurethane foam) reinforced by unidirectional composites (UDs), as shown on gure 3. The matrix is considered as isotropic while the through-thickness re-Figure 3. Modelling of the composite reinforced foam core.

inforcements are approximated as long circular transversely isotropic cylinders. Hence, the overall mechanical response of the composite is transversely isotropic.

Base tensors for transversely isotropic materials

We rst recall some notations of tensor algebra corresponding to transversally isotropy. The basic idea was introduced by Walpole [START_REF] Walpole | On the overall elastic moduli of composite materials[END_REF] and was recently summarized in [START_REF]Homogenization in Mechanics of Materials[END_REF]. Any transversely isotropic fourth-order tensor A can be expressed in terms of six basic fourth-order tensors dened as:

E L = n ⊗ n ⊗ n ⊗ n J T = 1 2 i T ⊗ i T F = 1 √ 2 i T ⊗ n ⊗ n T F such as T F ijkl = (F ) klij K T = I T -J T K L = I -1 3 i ⊗ i -K T -K E (1) 
where:

• the unit normal n denes the axis of transverse isotropy. In this study, according to gure (3), one has n = e 3 ; • i T and I T denote the second and fourth-order identity tensors in the transverse plane and are respectively given by: i T = i -n ⊗ n

I T = I + n ⊗ n ⊗ n ⊗ n -2 [n ⊗ i ⊗ n] (sym) (2)
where the superscript (sym) denotes the double symmetrization operator dened as:

A (sym) ijkl = (A ijkl + A jikl + A ijlk + A jilk ) /4 (3) 
i and I are the second and symmetric fourth-order identity tensors respectively (i ij = δ ij and 2I ijkl = δ ik δ jl + δ il δ jk , where δ ij is the Kronecker delta);

• K E is dened as:

K E = 1 6 (2n ⊗ n -i T ) ⊗ (2n ⊗ n -i T ) (4) 
Then, the decomposition

A = αE L + βJ T + γF + γ T F + δK T + δ K L (5) 
can be written in the following symbolic form:

A = a, δ, δ (6) 
where the matrix a is dened as (γ = γ when A is symmetric):

a =    α γ γ β    (7) 
Thus, the following basic tensorial operations take the simple forms:

A 1 + A 2 = a 1 , δ 1 , δ 1 + a 2 , δ 2 , δ 2 = a 1 + a 2 , δ 1 + δ 2 , δ 1 + δ 2 A 1 : A 2 = a 1 , δ 1 , δ 1 : a 2 , δ 2 , δ 2 = a 1 • a 2 , δ 1 δ 2 , δ 1 δ 2 A -1 = a, δ, δ -1 = a -1 , 1/δ, 1/δ (8) 
When A corresponds to a fourth-order symmetric stiness tensor, the parameters involved in the decomposition (5) can be written in terms of the well known engineering constants:

α = E l + 4 ν l 2 K, β = 2K, γ = γ = 2 √ 2ν l K δ = 2µ t , δ = 2µ l (9) 
where E l , µ l and ν l are the longitudinal Young's modulus, shear modulus and Poisson ratio respectively. µ t and K are the transverse shear modulus and the in-plane bulk modulus respectively. In this study, the longitudinal direction (denoted by the superscript l) coincides with the through-thickness orientation of the sandwich.

Micromechanical analysis

Principle

In order to assess the overall properties of the material, two successive homogenization procedures are carried out (the dierent scales being assumed to be well separated) as follows (see Fig. • the rst one, denoted by (H1), is performed at the scale of the unidirectional composite and provides the estimate of the eective stiness tensor of the UD, denoted by C; • the second one, denoted by (H2), is carried out at the upper scale (the UDs being then considered as the inhomogeneities) and allows us to estimate the macroscopic stiness tensor C of the composite reinforced foam core.

Note that (H1) is basically a specic case of (H2) and can be achieved substituting the corresponding properties (considering an isotropic matrix reinforced by aligned isotropic bers) in the results that will be given for the second homogenization procedure. The aim of this section is to estimate the macroscopic mechanical properties of the foam reinforced by the through-thickness UDs.

For this purpose, we consider the Mori-Tanaka estimate (i.e. the matrix is considered as the reference medium and is subjected to its own stress, see [START_REF] Benveniste | A new approach to the application of Mori-Tanaka's theory in composite materials[END_REF] [3] [START_REF] Mori | Average stress in matrix and average elastic energy of materials with mistting inclusions[END_REF]), which allows to take into account the interactions between the inhomogeneities. The choice of this homogenization scheme is justied by the matrix-inclusion morphology of the studied material. In general, the validity of this approach corresponds to a reinforcement volume fraction c H 2 such that c H 2 < 20% (note that this validity range may be reduced or extended, depending in particular on the contrast between the constituents as well as on the required accuracy [START_REF]Homogenization in Mechanics of Materials[END_REF]). In the case of the two-phase composite considered here, the overall stiness tensor C is then given by:

C MT = C 1 + c H 2 C -C 1 : A MT 2 ( 10 
)
where C

MT is the macroscopic stiness tensor estimated by means of the Mori-Tanaka scheme, C 1 and C are the stiness tensors of the matrix and the inhomogeneity respectively. c H 2 denotes the volume fraction of reinforcing material and A MT 2 is the strain concentration tensor for the inhomogeneity, dened as:

A MT 2 = I + P 2 1 : ∆C -1 : (1 -c H 2 ) I + c H 2 I + P 2 1 : ∆C -1 -1 (11) 
where ∆C = C -C 1 and P 2 1 is the Hill tensor corresponding to the inho- mogeneity 2 (that is, the through-thickness reinforcement) embedded in the matrix 1. We further recall that:

P 2 1 = P 2 1 | MT = S ESH : [C 1 ] -1 (12) 
where S ESH is the Eshelby tensor of the inhomogeneity. It is readily seen from Eq. ( 12) that the Hill tensor basically depends on both the geometry of the inhomogeneity (via S ESH ) and the mechanical properties of the reference medium (here, the matrix).

Determination of the macroscopic properties

In the case of the UDs (classically modelled as ellipsoidal inclusions with an innite aspect ratio: w = L/d → ∞, where L and d are the length and the diameter of the inclusion), oriented in the direction n, it can be shown that the Hill tensor takes the form (see [START_REF]Homogenization in Mechanics of Materials[END_REF]):

P 2 1 = 1 2 (K 1 + µ 1 ) J T + 1 4µ 1 K 1 + 2µ 1 K 1 + µ 1 K T + 1 4µ 1 K L (13) 
where K 1 and µ 1 are the in-plane bulk modulus and shear modulus of the matrix respectively. Taking into account Eq. ( 6), Eq. ( 13) is then rewritten as:

P 2 1 =         0 0 0 1/2 (K 1 + µ 1 )    , 1 4µ 1 K 1 + 2µ 1 K 1 + µ 1 , 1 4µ 1      (14) 
Furthermore, one has:

I =         1 0 0 1    , 1, 1      (15) 
Combining ( 6) and ( 9) yields the expression of the stiness tensor for the transversely isotropic reinforcing material:

C =         E l + 4 ν l 2 K 2 √ 2 ν l K 2 √ 2 ν l K 2 K    , 2 µ t , 2 µ l      (16) 
where

K = 1 2 E t E l 1 -ν t E l -2 ν l 2 E t (17) 
We recall that the elastic properties involved in the above decomposition are obtained from the rst homogenization (H1).

The stiness tensor of the isotropic matrix is easily obtained by substituting 16), that is:

E l = E t = E 1 , ν l = ν t = ν 1 and µ l = µ t = µ 1 into (
C 1 =         E 1 + 4 (ν 1 ) 2 K 1 2 √ 2ν 1 K 1 2 √ 2ν 1 K 1 2K 1    , 2µ 1 , 2µ 1      (18) 
where

K 1 = k 1 + µ 1 3 (19)
and k 1 is the three dimensional bulk modulus of the matrix.

Since the macroscopic response of the material is transversely isotropic, one has:

C =         α γ γ β    , δ, δ      (20) 
The eective properties involved in the decomposition (20) can be easily estimated by substituting Eqs. ( 14), ( 16), ( 18) and (20) into Eq. ( 10) and making use of Eq. ( 8).

For instance, in the case of the overall transverse shear modulus (which is critical for such materials) µ t , one has:

µ t = µ 1 + c H 2 µ t -µ 1 b 1 b 2 (21) 
where

b 1 = 1 + (k 1 + 7µ 1 /3) µ t -µ 1 / {2µ 1 (k 1 + 4µ 1 /3)} b 2 = 1 -c H 2 + c H 2 / 1 + (k 1 + 7µ 1 /3) µ t -µ 1 / {2µ 1 (k 1 + 4µ 1 /3)} (22) 
It is readily seen that µ t → µ 1 when c H 2 → 0 and µ t → µ t when c H 2 → 1.

Finally, note that under dilute conditions (i.e. c H 2 → 0) and for an isotropic reinforcing material (so that: µ t = µ f , where µ f is the shear modulus of the reinforcing ber), Eq. ( 21) reads:

µ t µ 1 | Dilute ≈ 1 + c H 2 µ 1 /(µ f -µ 1 ) + (k 1 + 7µ 1 /3)/(2k 1 + 8µ 1 /3) (23)
which is exactly the result provided by Christensen (see [START_REF] Christensen | Mechanics of Composite Materials[END_REF], p. 89). 

Modelling data

In this section, we consider elementary constituents the properties of which are listed in Tab. [START_REF] Benveniste | A new approach to the application of Mori-Tanaka's theory in composite materials[END_REF].

The rst homogenization procedure (H1) is performed (with a ber volume fraction equal to the mean experimental value: c H 1 = 4.1%) and provides the overall elastic properties of the UD, listed in Tab. (3) (we recall that the methodology described in the previous section is used for that purpose).

Overall properties of the UD

E l = 6 834 MPa µ t = 1 524 MPa µ l = 1 538 MPa K = 14 900 Mpa ν l = 0.39
Table 3 Overall properties of the unidirectional composite.

In order to accurately compare the estimates with experimental data, we further introduce a correction index, denoted by r and dened as the mean value of the ratio between the predictions and the experimental results for a given elastic property T :

r T = 1 N N i=1 T Est. i T Exp. i (24) 
where T Est. i and T Exp. i are the i-th estimated and experimental values respectively, N is the total number of observations of T (one observation basically corresponds to one volume fraction in through-thickness reinforcements). The i-th corrected estimate is then dened as:

T Corr. i = T Est. i r T (25) 

Results and discussion

Compression between parallel plates and three-point bending tests were performed on a material-testing machine (Zwick) mounted with a 100kN-force cell.

4.3.1

Case of the overall longitudinal (through-thickness) Young's modulus

E l

The panels have been characterized in compression following the NF T 54-602 standard. Five samples were cut in each of the three panels. The compression speed of the top compression platen was 1.6 mm.min -1 . The compression mod- uli were calculated from the experimental stress-strain curves. Fig. [START_REF] Christensen | Mechanics of Composite Materials[END_REF] shows a comparison between the experimental data and the simulations (obtained from Eqs. ( 9) and ( 20)). It is seen that:

• the evolution of the elastic property is quite well predicted;

• the magnitude of the modulus is well estimated, even by the non corrected formulation.

The estimate of the overall longitudinal Young's modulus as a function of the volume fractions in both the UDs and the foam core is illustrated in Fig. 5.

The gure shows that:

• the overall modulus is highly sensitive to the volume fraction in throughthickness reinforcements c H 2 as well as to the volume fraction c H 1 (within the UDs);

• a signicant increase of the property can be obtained, even at a rather small volume fraction c H 2 (and especially, if c H 1 can be increased by enhanced carriage of bers by needles). • the evolution of the elastic property is well predicted;

Exp. data

Effective longitudinal Young's modulus, in MPa

• the magnitude of the overall shear modulus is also well estimated, with a maximum relative error of 22% for the non corrected estimate and 4% for the corrected result.

The estimate of the overall shear modulus as a function of the volume fractions in both the UDs and the foam core is illustrated on Fig. [START_REF] Mori | Average stress in matrix and average elastic energy of materials with mistting inclusions[END_REF]. It is readily observed that:

• the overall shear modulus is sensitive to the volume fraction of throughthickness reinforcement c H 2 ; • the overall shear modulus is not sensitive to the volume fraction within the UDs c H 1 (the four curves are basically indistinguishable). In fact, a dierential calculus on Eq. ( 21) shows that an increase of the shear modulus of the UD does not imply a signicant increase of the overall shear modulus (all other parameters being xed otherwise). Also, note that an increase of the volume fraction within the UD implies a rather small increase of the shear modulus of the UD: in the case of a 20% increase (from 10% to 30%), the shear modulus of the UD increases by 40% while the Young's modulus increases by 130% approximately;

• once again, a signicant increase of the property can be obtained.

Remark 1

The fact that the prediction of the overall shear modulus seems to be more accurate compared to the estimate of the eective Young's modulus may be explained by noticing that:

• basically, the micromechanical modelling does not integrate the eect of the skins, which may not be neglected in the case of a compression test;

• also, the estimate of the overall Young's modulus is highly sensitive to the volume fraction within the UDs and thus, the dierence between experimental and simulated curves may be due to volume fraction uctuations (we recall that a mean value was considered in the model). This point will be discussed in section [START_REF] Hosur | Manufacturing and low-velocity impact characterization of hollow integrated core sandwich composites with hybrid face sheets[END_REF]. We note that for a given elastic property, and especially in the case of the overall transverse shear modulus (which is critical for sandwich core materials), the analysis carried out in this study (see sections (4.3.1) and (4.3.2)) shows that the parameter r T is almost independent from the number of observations N (for instance, in the case of the overall transverse shear modulus, the index has a standard deviation less than 4%) and close to the unit. This means that:

3,5 4 4,5 5 5,5 6 6,5 7 0 
• the variation of the elastic properties is correctly predicted ;

• only a few experimental measurements may be used for correcting the simulated results. 5 On the inuence of ber volume fraction in the through-thickness reinforcements

Microstructural analysis

Several micrographic pictures have been realized on the UDs reinforcing the foam core. Figure 8 shows that the needles carrying the bers within the foam, that will create the UDs during the resin injection, induces high discrepancies from one UD to another. In particular, it can be seen that the ber volume fraction varies and that the UDs are basically resin-rich regions. Further ex-Figure 8. Example of UD cross-section micrographies (glass bers appear white and resin appears grey) perimental analysis of the ber volume fraction within the through-thickness reinforcement clearly shows the randomness of this quantity, mainly due to the randomness of the mat as well as to the manufacturing process itself. The aim of this section is then to construct a suitable parametric probabilistic model associated to such a random volume fraction, as well as to study, by means of Monte-Carlo numerical simulations, the inuence of this uncertainty on the overall mechanical behavior (note that results will be provided only in the case of the longitudinal Young's modulus, which is shown to be the most sensitive parameter).

Construction of a parametric probabilistic model

Let c (θ) = c H 1 (θ) be the random volume fraction under consideration (the symbol θ denotes the randomness of the quantity and is dropped hereafter for the sake of simplicity), dened on a probability space (A, F, P ). Its probability distribution P c , such as P c (dc) = p c (c) dc, is then dened by a probability density function p c (c) dened on R, with respect to the Lebesgue measure dc. The construction of the probability density function is achieved using the Maximum Entropy Principle (M.E.P.; see for instance [8] [12] [13] for a general overview). We recall that such a construction is only based on the available information and thus, no bias is introduced in the estimation of the probability distribution. The mean and standard deviation, denoted by m c and σ c respectively, are determined from usual mathematical statistics and are estimated from a set of 100 samples. For this purpose, the samples are classically burnt and weighed twice, before and after the calcination. This yields two constraints on the two rst statistical moments, denoted by m 1 and m 2 respectively. We further specify the support of the distribution, dened as:

S = Supp (c (θ)) = [0, 1] (26) 
Thus, the available information can be summarized as follows:

• the support S of the distribution is known: c ∈ [0, 1] almost surely;

• the random variable c is of second order (that is E {c 2 } < +∞, where E denotes the mathematical expectation);

• the two statistical moments m 1 and m 2 are known.

Finally, let us recall the normalization condition for the density function:

R p c (x) dx = 1 (27) 
Then, it can be shown that the probability density function, constructed using the M.E.P., takes the form:

p c (x) = I S (x) exp -λ 0 -xλ 1 -x 2 λ 2 (28) 
where I S (x) is the indicator function (I S (x) = 1 if x ∈ S and I S (x) = 0 otherwise) and the Lagrange multipliers (λ 0 , λ 1 , λ 2 ) ∈ R 3 are such that they minimize the strictly convex functional (λ 0 , λ 1 , λ 2 ) → H (λ 0 , λ 1 , λ 2 ) dened as:

H (λ 0 , λ 1 , λ 2 ) = λ 0 + λ 1 m 1 + λ 2 m 2 + S exp -λ 0 -xλ 1 -x 2 λ 2 dx (29)
Such an optimization problem can be solved by using usual techniques, such as the Conjugate Gradient method. Figs. ( 9) and ( 10 

Stochastic solver

Monte-Carlo numerical simulations [START_REF] Rubinstein | Simulation and the Monte-Carlo Method[END_REF] are used for assessing some statistical properties of the overall mechanical response. The methodology is classical and is summarized below:

• generate the random vector U , of length N and such as each component U (k) , k = 1..N , is uniformly distributed between 0 and 1; • compute the random vector c corresponding to the volume fraction c by using, for each component c (k) , an inverse transform: Remark: note that the random volume fraction may not be considered as homogeneous over the composite part and thus, may be modeled by considering a random eld (see [START_REF] Schuëller | A State-of-the-Art Report on Computational Stochastic Mechanics[END_REF]). However, such an analysis can only be performed within a computational framework and is beyond the scope of this study. It then becomes straightforward that the extreme values (say, out of the interquartile range) obtained here are meaningless, as some kind of balancing between strongly and weakly reinforced UDs may occur in reality.

c (k) = F -1 c U (k) (30) 
( ) ( ) 

E p E ~ E ~ [MPa]
E F E ~ E ~[MPa]

Conclusion

The Napco technology is a patented process that strengthens transversally foam core with ber yarns taken from facings in sandwich assembly. In this study, we investigate the potential of this technology by means of a microme-chanical analysis based on the Mori-Tanaka scheme. Comparisons between predictions and experiments are discussed and basically show the eciency of the micromechanical modelling which can also be generalized to other congurations (for instance, for other distributions and/or orientations of the through-thickness reinforcements). The approach allows one to dene easily both material and process parameters to tailor sandwich panel to specic corerelated mechanical requirements. Furthermore, the randomness of the volume fraction within the through-thickness reinforcements is clearly shown and integrated using a parametric probabilistic model, Monte-Carlo numerical simulations being used as the stochastic solver. Such a modelling basically establishes a link between the randomness of the manufacturing process (here, the Napco technology) and the uncertainties of induced mechanical properties.

This information is of great help when designing and qualifying structures and can also be used in order to optimize the process itself. Finally, it is shown that such a technology can produce composite reinforced foam core with a signicant improvement of the mechanical properties, and in particular the longitudinal Young's modulus as well as the transverse shear modulus.
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 1 and (2)). A part of the yarn is kept inside the facings, the rest being embedded within the foam core. Thus, note that the Napco technology basically diers from the stitching technology, where the bers do not come from the skin material. As the needles are withdrawn, bers remain inside the core. Then the sandwich panel assembly is advanced by a desired spacing to produce the next set of vertical pile yarns.
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 12 Figure 1. Schematic illustration of the Napco technology

  [START_REF]Homogenization in Mechanics of Materials[END_REF]):

  sandwich preforms are made using the Napco technology with a polyurethane foam core (density of 40 kg.m -3 ), two facings made of 1 ply of chopped strand glass mat (areal weight of 450 g.m -2 ). The nal panel is molded us- ing continuous compression molding with unsaturated polyester resin. Three dierent types of needle pattern have been used to create dierent pile yarns (UDs) densities in the nal sandwich structure (Tab. (1)).
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 4 Figure 4. Comparison between exp. data and micromechanical predictions. Case of the overall longitudinal Young's modulus E l .
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 5 Figure 5. Estimate of the overall longitudinal Young's modulus E l for dierent volume fractions c H 1 within the UDs.
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 6 Figure 6. Comparison between exp. data and micromechanical predictions. Case of the overall transverse shear modulus µ t .
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 7 Figure 7. Estimate of the overall transverse shear modulus µ t .
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 9 Figure 9. Probability density function of the random volume fraction.
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 11122 Figure 11. Convergence rates of the mean and standard deviation (abscissa ×10 3 : number of Monte-Carlo simulations).
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 13 Figure 13. Probability density function of the overall longitudinal Young's modulus.

Figure 14 .

 14 Figure 14. Empirical cumulative distribution function of the overall longitudinal Young's modulus.

where F c is the cumulative distribution function of the random volume fraction;

• compute the vector E corresponding to the longitudinal Young's modulus by using the micromechanical formulations;

• perform the statistical analysis.

The properties assessed by 100 000 Monte-Carlo simulations (the number of simulations is controlled by the convergence of the rst to the fourth order statistical moments) are listed in table [START_REF] Christensen | Mechanics of Composite Materials[END_REF] tion, skewness and kurtosis coecients are illustrated in Figs. [START_REF] Rubinstein | Simulation and the Monte-Carlo Method[END_REF] and [START_REF] Schuëller | A State-of-the-Art Report on Computational Stochastic Mechanics[END_REF] (note that the values are basically normalized by the converged results). As expected, it is readily seen that the overall longitudinal Young's modulus is