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New degeneration of Fay's identity and

its application to integrable systems

C. Kalla∗

March 31, 2011

Abstract

In this paper we prove a new degenerated version of Fay's trisecant identity. The new identity is

applied to construct new algebro-geometric solutions of the multi-component nonlinear Schrödinger

equation. This approach also provides an independent derivation of known algebro-geometric so-

lutions to the Davey-Stewartson equations.
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1 Introduction

The well known trisecant identity discovered by Fay is a far-reaching generalization of the addition
theorem for elliptic theta functions (see [9]). This identity states that, for any points a, b, c, d on a
compact Riemann surface of genus g > 0, and for any z ∈ Cg, there exist constants c1, c2 and c3 such
that

c1 Θ

(
z +

∫ a

c

)
Θ

(
z +

∫ d

b

)
+ c2 Θ

(
z +

∫ a

b

)
Θ

(
z +

∫ d

c

)
= c3 Θ(z) Θ

(
z +

∫ a

c
+

∫ d

b

)
, (1.1)

where Θ is the multi-dimensional theta function (2.2); here and below we use the notation
∫ b
a for

the Abel map (2.5) between a and b. This identity plays an important role in various domains of
mathematics, as for example in the theory of Jacobian varieties [2], in conformal �eld theory [19], and
in operator theory [15]. Moreover, as it was realized by Mumford, theta-functional solutions of certain
integrable equations as Korteweg-de Vries (KdV), Kadomtsev-Petviashvili (KP), or Sine-Gordon (SG),
may be derived from Fay's trisecant identity and its degenerations (see [16]).

In the present paper we apply Mumford's approach to the Davey-Stewartson equations and the
multi-component nonlinear Schrödinger equation.

The �rst main result of this paper is a new degeneration of Fay's identity (1.1). This new identity
holds for two distinct points a, b on a compact Riemann surface of genus g > 0, and any z ∈ Cg:

D′a ln
Θ(z +

∫ b
a )

Θ(z)
+ D2

a ln
Θ(z +

∫ b
a )

Θ(z)
+
(
Da ln

Θ(z +
∫ b
a )

Θ(z)
−K1

)2
+ 2D2

a ln Θ(z) + K2 = 0, (1.2)

where K1 and K2 are scalars independent of z but dependent on the points a and b; here Da and
D′a denote operators of directional derivatives along the vectors Va and Wa (2.8). In particular, this
identity implies that the following function of the variables x and t

ψ(x, t) = A
Θ(Z− d +

∫ b
a )

Θ(Z− d)
exp {i (−K1 x+ K2 t)} , (1.3)

where Z = iVa x + iWa t and A ∈ C,d ∈ Cg are arbitrary constants, is a solution of the linear
Schrödinger equation

i
∂ψ

∂t
+
∂2ψ

∂x2
+ 2uψ = 0, (1.4)
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with the potential u(x, t) = D2
a ln Θ(Z). When this potential is related to the function ψ by u(x, t) =

ρ |ψ|2, with ρ = ±1, the function ψ (1.3) becomes a solution of the nonlinear Schrödinger equation
(NLS)

i
∂ψ

∂t
+
∂2ψ

∂x2
+ 2ρ |ψ|2 ψ = 0. (1.5)

This is the starting point of our construction of algebro-geometric solutions of the Davey-Stewartson
equations and the multi-component nonlinear Schrödinger equation. The nonlinear Schrödinger equa-
tion (1.5) is a famous nonlinear dispersive partial di�erential equation with many applications, e.g.
in hydrodynamics (deep water waves), plasma physics and nonlinear �ber optics. Integrability of this
equation was established by Zakharov and Shabat in [21]. Algebro-geometric solutions of (1.5) were
found by Its in [10]; the geometric theory of these solutions was developed by Previato [17].

There exist various ways to generalize the NLS equation. The �rst is to increase the number of
spatial dimensions to two. This leads to the Davey-Stewartson equations (DS),

iψt + ψxx − α2 ψyy + 2 (Φ + ρ |ψ|2)ψ = 0,

Φxx + α2 Φyy + 2ρ |ψ|2xx = 0, (1.6)

where α = i, 1 and ρ = ±1; ψ(x, y, t) and Φ(x, y, t) are functions of the real variables x, y and t,
the latter being real valued and the former being complex valued. In what follows, DS1ρ denotes the
Davey-Stewartson equation when α = i, and DS2ρ the Davey-Stewartson equation when α = 1. The
Davey-Stewartson equation (1.6) was introduced in [5] to describe the evolution of a three-dimensional
wave package on water of �nite depth. Complete integrability of the equation was shown in [1]. If
solutions ψ and Φ of (1.6) do not depend on the variable y the �rst equation in (1.6) reduces to the
NLS equation (1.5) under appropriate boundary conditions for the function Φ + ρ |ψ|2 in the limit
when x tends to in�nity.

Algebro-geometric solutions of the Davey-Stewartson equations (1.6) were previously obtained in
[13] using the formalism of Baker-Akhiezer functions. In both [13] and the present paper, solutions of
(1.6) are constructed from solutions of the complexi�ed system which, after the change of coordinates
ξ = 1

2(x− iαy) and η = 1
2(x+ iαy), with α = i, 1, reads

iψt +
1

2
(ψξξ + ψηη) + 2ϕψ = 0,

−iψ∗t +
1

2
(ψ∗ξξ + ψ∗ηη) + 2ϕψ∗ = 0, (1.7)

ϕξη +
1

2
((ψψ∗)ξξ + (ψψ∗)ηη) = 0,

where ϕ := Φ + ψψ∗. This system reduces to (1.6) under the reality condition:

ψ∗ = ρψ. (1.8)

The second main result of our paper is an independent derivation of the solutions [13] using the degen-
erated Fay identity (1.2). Algebro-geometric data associated to these solutions are {Rg, a, b, ka, kb},
where Rg is a compact Riemann surface of genus g > 0, a and b are two distinct points on Rg, and
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ka, kb are arbitrary local parameters near a and b. These solutions read

ψ(ξ, η, t) = A
Θ(Z− d +

∫ b
a )

Θ(Z− d)
exp

{
i
(
−G1 ξ −G2 η +G3

t
2

)}
,

ψ∗(ξ, η, t) = −κ1κ2 q2(a, b)

A

Θ(Z− d−
∫ b
a )

Θ(Z− d)
exp

{
i
(
G1 ξ +G2 η −G3

t
2

)}
,

ϕ(ξ, η, t) =
1

2
(ln Θ(Z− d))ξξ +

1

2
(ln Θ(Z− d))ηη +

1

4
h,

where the scalars Gi, q2(a, b) depend on the points a, b ∈ Rg, and κ1, κ2, A, h ∈ C, d ∈ Cg are
arbitrary constants; the g-dimensional vector Z is a linear function of the variables ξ, η and t. The
reality condition (1.8) imposes constraints on the associated algebro-geometric data. In particular, the
Riemann surface Rg has to be real. The approach used in [13] to study reality conditions (1.8) is based
on properties of Baker-Akhiezer functions. Our present approach based on identity (1.2) allows to
construct solutions of DS1ρ and DS2ρ corresponding to Riemann surfaces of more general topological
type than in [13].

Another way to generalize the NLS equation is to increase the number of dependent variables in
(1.5). This leads to the multi-component nonlinear Schrödinger equation

i
∂ψj
∂t

+
∂2ψj
∂x2

+ 2

(
n∑
k=1

sk|ψk|2
)
ψj = 0, j = 1, . . . , n, (1.9)

denoted by n-NLSs, where s = (s1, . . . , sn), sk = ±1. Here ψj(x, t) are complex valued functions of
the real variables x and t. The case n = 1 corresponds to the NLS equation. The integrability of
the two-component nonlinear Schrödinger equation (1.9) in the case s = (1, 1) was �rst established by
Manakov [14]; integrability for the multi-component case with any n ≥ 2 and sk = ±1 was established
in [18]. Algebro-geometric solutions of the two-component NLS equation with signature (1, 1) were
investigated in [8] using the Lax formalism and Baker-Akhiezer functions; these solutions are expressed
in terms of theta functions of special trigonal spectral curves.

The third main result of this paper is the construction of smooth algebro-geometric solutions of the
multi-component nonlinear Schrödinger equation (1.9) for arbitrary n ≥ 2, obtained by using (1.2).
We �rst �nd solutions to the complexi�ed system

i
∂ψj
∂t

+
∂2ψj
∂x2

+ 2

(
n∑
k=1

ψk ψ
∗
k

)
ψj = 0,

−i
∂ψ∗j
∂t

+
∂2ψ∗j
∂x2

+ 2

(
n∑
k=1

ψk ψ
∗
k

)
ψ∗j = 0, j = 1, . . . , n, (1.10)

where ψj(x, t) and ψ∗j (x, t) are complex valued functions of the real variables x and t. This system
reduces to the n-NLSs equation (1.9) under the reality conditions

ψ∗j = sj ψj , j = 1, . . . , n. (1.11)

Algebro-geometric data associated to the solutions of (1.10) are given by {Rg, f, za}, where Rg is a
compact Riemann surface of genus g > 0, f is a meromorphic function of degree n + 1 on Rg and
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za ∈ CP1 is a non critical value of the meromorphic function f such that f−1(za) = {a1, . . . , an+1}.
Then the solutions {ψj}nj=1 and

{
ψ∗j

}n
j=1

of system (1.10) read

ψj(x, t) = Aj
Θ(Z− d +

∫ aj
an+1

)

Θ(Z− d)
exp {i (−Ej x+ Fj t)} ,

ψ∗j (x, t) =
q2(an+1, aj)

Aj

Θ(Z− d−
∫ aj
an+1

)

Θ(Z− d)
exp {i (Ej x− Fj t)} ,

where the scalars Ej , Fj , q2(an+1, aj) depend on the points an+1, aj ∈ Rg, and Aj ∈ C, d ∈ Cg
are arbitrary constants; here the g-dimensional vector Z is a linear function of the variables x and
t. Imposing the reality conditions (1.11), we describe explicitly solutions for the focusing case s =
(1, . . . , 1) and the defocusing case s = (−1, . . . ,−1) associated to a real branched covering of the
Riemann sphere. In particular, our solutions of the focusing case are associated to a covering without
real branch points. Our general construction, being applied to the two-component case, gives solutions
with more parameters than in [8] for �xed genus of the spectral curve. Moreover, we provide smoothness
conditions for our solutions.

The paper is organized as follows: in section 2 we recall some facts about the theory of Riemann
surfaces, and derive a new degeneration of Fay's identity. With this degeneration, we give in Section
3 an independent derivation of smooth theta-functional solutions of the Davey Stewartson equations;
this approach also provides an explicit description of the constants appearing in the solutions in terms
of theta functions. In Section 4, we construct new smooth theta-functional solutions of the multi-
component NLS equation, and describe explicitely solutions of the focusing and defocusing cases.
We also discuss the reduction from n-NLS to (n-1)-NLS, stationary solutions of n-NLS, and the link
between solutions of n-NLS and solutions of the KP1 equation. Appendix A contains various facts
from the theory of real Riemann surfaces. Appendix B contains an auxiliary computation required in
the construction of algebro-geometric solutions of DS and n-NLS equations.

2 New degeneration of Fay's identity

In this section we recall some facts from the classical theory of Riemann surfaces [9] and derive a new
corollary of Fay's trisecant identity.

2.1 Theta functions

Let Rg be a compact Riemann surface of genus g > 0. Denote by (A1, . . . ,Ag,B1, . . . ,Bg) a canonical
homology basis, and by (ω1, . . . , ωg) the dual basis of holomorphic di�erentials normalized via∫

Ak

ωj = 2iπδjk, j, k = 1, . . . , g. (2.1)

The matrix B =
(∫
Bk ωj

)
of B-periods of the normalized holomorphic di�erentials {ωj}gj=1 is symmetric

and has a negative de�nite real part. The theta function with (half integer) characteristics δ = [δ′δ′′]
is de�ned by

Θ[δ](z|B) =
∑
m∈Zg

exp
{

1
2〈B(m + δ′),m + δ′〉+ 〈m + δ′, z + 2iπδ′′〉

}
; (2.2)
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here z ∈ Cg is the argument and δ′, δ′′ ∈
{

0, 1
2

}g
are the vectors of characteristics; 〈, 〉 denotes the scalar

product 〈u,v〉 =
∑

i ui vi for any u, v ∈ Cg. The theta function Θ[δ](z) is even if the characteristic
δ is even i.e, 4 〈δ′, δ′′〉 is even, and odd if the characteristic δ is odd i.e., 4 〈δ′, δ′′〉 is odd. An even
characteristic is called nonsingular if Θ[δ](0) 6= 0, and an odd characteristic is called nonsingular if the
gradient ∇Θ[δ](0) is non-zero. The theta function with characteristics is related to the theta function
with zero characteristics (denoted by Θ) as follows

Θ[δ](z) = Θ(z + 2iπδ′′ + Bδ′) exp
{

1
2〈Bδ′, δ′〉+ 〈z + 2iπδ′′, δ′〉

}
. (2.3)

Let Λ be the lattice Λ = {2iπN+BM, N,M ∈ Zg} generated by theA and B-periods of the normalized
holomorphic di�erentials {ωj}gj=1. The complex torus J = J(Rg) = Cg/Λ is called the Jacobian of the
Riemann surface Rg. The theta function with characteristics (2.2) has the following quasi-periodicity
property

Θ[δ](z + 2iπN + BM)

= Θ[δ](z) exp
{
−1

2〈BM,M〉 − 〈z,M〉+ 2iπ(〈δ′,N〉 − 〈δ′′,M〉)
}
. (2.4)

Denote by µ the Abel map µ : Rg 7−→ J de�ned by

µ(p) =

∫ p

p0

ω, (2.5)

for any p ∈ Rg, where p0 ∈ Rg is the base point of the application, and ω = (ω1, . . . , ωg) is the vector

of the normalized holomorphic di�erentials. In the whole paper we use the notation
∫ b
a = µ(b)− µ(a).

2.2 Fay's identity and previously known degenerations

Let us introduce the prime-form which is given by

E(a, b) =
Θ[δ](

∫ a
b )

hδ(a)hδ(b)
, (2.6)

a, b ∈ Rg; hδ(a) is a spinor de�ned by h2
δ(a) =

∑g
j=1

∂Θ[δ]
∂zj

(0)ωj(a), where δ = [δ′δ′′] is a non-singular

odd characteristic (the prime form is independent of the choice of the characteristic δ). Fay's trisecant
identity has the form

E(a, b)E(c, d)Θ

(
z +

∫ a

c

)
Θ

(
z +

∫ d

b

)
+ E(a, c)E(d, b) Θ

(
z +

∫ a

b

)
Θ

(
z +

∫ d

c

)
= E(a, d)E(c, b) Θ(z) Θ

(
z +

∫ a

c
+

∫ d

b

)
, (2.7)

where a, b, c, d ∈ Rg and all integration contours do not intersect cycles of the canonical homology
basis. Let us now discuss degenerations of identity (2.7).
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Let ka(p) denote a local parameter near a ∈ Rg, where p lies in a neighbourhood of a. Consider
the following expansion of the normalized holomorphic di�erentials ωj near a,

ωj(p) =

(
Va,j +Wa,j ka(p) + Ua,j

ka(p)
2

2!
+ . . .

)
dka(p), (2.8)

where Va,j , Wa,j , Ua,j ∈ C. Let us denote by Da the operator of directional derivative along the vector
Va = (Va,1, . . . , Va,g):

DaF (z) =

g∑
j=1

∂zjF (z)Va,j = 〈∇F (z),Va〉 , (2.9)

where F : Cg −→ C is an arbitrary function, and denote by D′a the operator of directional derivative
along the vector Wa = (Wa,1, . . . ,Wa,g):

D′aF (z) =

g∑
j=1

∂zjF (z)Wa,j = 〈∇F (z),Wa〉 .

Then for any z ∈ Cg and any distinct points a, b ∈ Rg, the following well-known degenerated version
of Fay's identity holds (see [16])

DaDb ln Θ(z) = q1(a, b) + q2(a, b)
Θ(z +

∫ b
a ) Θ(z +

∫ a
b )

Θ(z)2
, (2.10)

where the scalars q1(a, b) and q2(a, b) are given by

q1(a, b) = DaDb ln Θ[δ](

∫ b

a
), (2.11)

q2(a, b) =
Da Θ[δ](0)Db Θ[δ](0)

Θ[δ](
∫ b
a )2

, (2.12)

where δ is a non-singular odd characteristic. Notice that q1(a, b) and q2(a, b) depend on the choice of
local parameters ka and kb near a and b respectively.

2.3 New degeneration of Fay's identity

Algebro-geometric solutions of the Davey-Stewartson equations and the multi-component NLS equation
constructed in this paper are obtained by using the following new degenerated version of Fay's identity.

Theorem 2.1. Let a, b be distinct points on a compact Riemann surface Rg of genus g. Fix local

parameters ka and kb in a neighbourhood of a and b respectively. Denote by δ a non-singular odd

characteristic. Then for any z ∈ Cg,

D′a ln
Θ(z +

∫ b
a )

Θ(z)
+ D2

a ln
Θ(z +

∫ b
a )

Θ(z)
+
(
Da ln

Θ(z +
∫ b
a )

Θ(z)
−K1(a, b)

)2
+ 2D2

a ln Θ(z) + K2(a, b) = 0,

(2.13)
where the scalars K1(a, b) and K2(a, b) are given by

K1(a, b) =
1

2

D′a Θ[δ](0)

Da Θ[δ](0)
+ Da ln Θ[δ](

∫ b

a
) , (2.14)
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and

K2(a, b) = −D′a ln Θ(

∫ b

a
)− D2

a ln

(
Θ(

∫ b

a
)Θ(0)

)
−
(
Da ln Θ(

∫ b

a
)−K1(a, b)

)2
. (2.15)

Proof. We start from the following lemma

Lemma 2.1. Let b, c ∈ Rg be distinct points. Fix local parameters kb and kc in a neighbourhood of b
and c respectively. Then for any z ∈ Cg,

Dc

−D′b ln
Θ(z +

∫ b
c )

Θ(z)
+ D2

b ln
Θ(z +

∫ b
c )

Θ(z)
+

(
Db ln

Θ(z +
∫ b
c )

Θ(z)
+K1(b, c)

)2

+ 2D2
b ln Θ(z)

 = 0,

(2.16)

where the scalar K1(b, c) is de�ned in (2.14).

Proof of Lemma 2.1. Let us introduce the notations Θab = Θ(z+
∫ b
a ω) and Θ = Θ(z). Di�erentiating

(2.7) twice with respect to the local parameter kd(p), where p lies in a neighbourhood of d, and taking
the limit d→ b, we obtain

D′b ln Θ +D2
b ln Θ + (Db ln Θ)2 +

p3

p2
Db ln Θca −

p3

p2
Db ln Θ (2.17)

=
p1p3

p2
− 2Db ln ΘcaDb ln Θcb + 2Db ln ΘDb ln Θcb + 2 p1Db ln Θcb

−p4 − 2 p1Db ln Θca +D′b ln Θca +D2
b ln Θca + (Db ln Θca)

2,

where we took into account the relation

∂2
kd

Θ(z +

∫ d

b
)
∣∣
d=b

= D′bΘ(z) +D2
bΘ(z).

The quantities pj = pj(a, b, c), for j = 1, 2, 3, 4, are given by

p1(a, b, c) = −E(c, b)

E(a, b)
∂kx

E(a, x)

E(c, x)

∣∣∣
x=b

, p2(a, b, c) =
E(a, c)

E(a, b)
∂kx

E(x, b)

E(c, x)

∣∣∣
x=b

, (2.18)

p3(a, b, c) =
E(a, c)

E(a, b)
∂2
kx

E(x, b)

E(c, x)

∣∣∣
x=b

, p4(a, b, c) = −E(c, b)

E(a, b)
∂2
kx

E(a, x)

E(c, x)

∣∣∣
x=b

. (2.19)

Di�erentiating (2.17) with respect to the local parameter ka(p), where p lies in a neighbourhood of a,
and taking the limit a→ c, we get

DcD
′
b ln Θ + DcD

2
b ln Θ − 2DcDb ln ΘDb ln

Θcb

Θ
+ 2 q1Db ln

Θcb

Θ
− p3

p2
DcDb ln Θ + K = 0, (2.20)
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where the scalar K depends on the points b, c, but not on the vector z ∈ Cg. Here the scalars q1, p2

and p3 are de�ned in (2.11), (2.18), and (2.19) respectively. The change of variable z ↔ −z +
∫ c
b in

(2.20) leads to

DcD
′
b ln Θcb − DcD

2
b ln Θcb − 2DcDb ln ΘcbDb ln

Θcb

Θ
+ 2 q1Db ln

Θcb

Θ
− p3

p2
DcDb ln Θcb + K = 0.

(2.21)

Now (2.16) is obtained by substracting (2.20) and (2.21). �

To proof Theorem 2.1, make the change of variable z 7→ −z +
∫ c
b in (2.17) and add 2D2

b ln Θ to
each side of the equality to get

−D′b ln
Θcb

Θ
+D2

b ln
Θcb

Θ
+

(
Db ln

Θcb

Θ
+

1

2

p3

p2

)2

− 1

4

(
p3

p2

)2

− p1p3

p2
+ 2D2

b ln Θ

= −D′b ln
Θab

Θ
+D2

b ln
Θab

Θ
+

(
Db ln

Θab

Θ
+

1

2

(
p3

p2
+ 2p1

))2

− 1

4

(p3

p2
+ 2 p1

)2
− p4 + 2D2

b ln Θ.

By Lemma 2.1, the directional derivative of the left hand side of the previous equality along the vector
Vc equals zero. Hence for any distinct points a, b, c ∈ Rg, we get

Dc

[
−D′b ln

Θab

Θ
+D2

b ln
Θab

Θ
+

(
Db ln

Θab

Θ
+

1

2

(
p3

p2
+ 2p1

))2

+ 2D2
b ln Θ

]
= 0. (2.22)

Moreover, from (2.18), (2.19) and (2.6), it can be seen that the expression 1
2(p3p2 +2p1) does not depend

on the point c and equals K1(b, a) given by (2.14). Now let us introduce the following function of the
variable z ∈ Cg

f(b,a)(z) = −D′b ln
Θab

Θ
+D2

b ln
Θab

Θ
+
(
Db ln

Θab

Θ
+K1(b, a)

))2
+ 2D2

b ln Θ.

Then (2.22) can be rewritten as Dc f(b,a)(z) = 0 for any z ∈ Cg and for all c ∈ Rg, c 6= b (because
also Da f(b,a)(z) = 0 by Lemma 2.1). Due to the fact that on each Riemann surface Rg, there exists
a positive divisor d1 + ... + dg of degree g such that vectors ω(d1)

dkd1
, ...,

ω(dg)
dkdg

are linearly independent

(see [11], Lemma 5), the function f(b,a)(z) is constant with respect to z; we denote this constant by
−K2(b, a):

f(b,a)(z) = −K2(b, a) (2.23)

for any z ∈ Cg. Interchanging a and b, and changing the variable z↔ −z in (2.23) we get (2.13). The
expression (2.15) for the scalar K2(a, b) follows from (2.23) putting z = 0.

3 Algebro-geometric solutions of the Davey-Stewartson equations

Here we derive algebro-geometric solutions of the Davey-Stewartson equations (1.6) using the degen-
eration (2.13) of Fay's identity. Let us introduce the function φ := Φ + ρ|ψ|2, where ρ = ±1, and the
di�erential operators

D1 = ∂xx − α2∂yy, D2 = ∂xx + α2∂yy.
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Introduce also the characteristic coordinates

ξ =
1

2
(x− iαy), η =

1

2
(x+ iαy), α = i, 1.

In these coordinates the Davey Stewartson equations (1.6) become

iψt +D1ψ + 2φψ = 0,

D2φ+ ρD1|ψ|2 = 0, (3.1)

where the di�erential operators D1 and D2 are given by

D1 =
1

2
(∂2
ξ + ∂2

η), D2 = ∂ξ∂η.

In what follows, DS1ρ denotes the Davey-Stewartson equation when α = i (in this case ξ and η are
both real), and DS2ρ the Davey-Stewartson equation when α = 1 (in this case ξ and η are pairwise
conjugate).

3.1 Solutions of the complexi�ed Davey-Stewartson equations

To construct algebro-geometric solutions of (3.1), let us �rst introduce the complexi�ed Davey-Stewartson
equations

iψt +
1

2
(ψξξ + ψηη) + 2ϕψ = 0,

−iψ∗t +
1

2
(ψ∗ξξ + ψ∗ηη) + 2ϕψ∗ = 0, (3.2)

ϕξη +
1

2
((ψψ∗)ξξ + (ψψ∗)ηη) = 0,

where ϕ := Φ + ψψ∗. This system reduces to (3.1) under the reality condition:

ψ∗ = ρψ, (3.3)

which leads to ϕ = φ. Theta functional solutions of system (3.2) are given by

Theorem 3.1. Let Rg be a compact Riemann surface of genus g > 0, and let a, b ∈ Rg be distinct

points. Take arbitrary constants d ∈ Cg and A, κ1, κ2 ∈ C \ {0} , h ∈ C. Denote by ` a contour

connecting a and b which does not intersect cycles of the canonical homology basis. Then for any

ξ, η, t ∈ C, the following functions ψ, ψ∗ and ϕ are solutions of system (3.2)

ψ(ξ, η, t) = A
Θ(Z− d + r)

Θ(Z− d)
exp

{
i
(
−G1 ξ −G2 η +G3

t
2

)}
,

ψ∗(ξ, η, t) = −κ1κ2 q2(a, b)

A

Θ(Z− d− r)

Θ(Z− d)
exp

{
i
(
G1 ξ +G2 η −G3

t
2

)}
, (3.4)

ϕ(ξ, η, t) =
1

2
(ln Θ(Z− d))ξξ +

1

2
(ln Θ(Z− d))ηη +

1

4
h.

Here r =
∫
` ω, where ω is the vector of normalized holomorphic di�erentials, and

Z = i
(
κ1 Va ξ − κ2 Vb η + (κ2

1 Wa − κ2
2 Wb)

t
2

)
, (3.5)
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where the vectors Va, Vb and Wa, Wb were introduced in (2.8). The scalars G1, G2, G3 are given by

G1 = κ1K1(a, b), G2 = κ2K1(b, a), (3.6)

G3 = κ2
1K2(a, b) + κ2

2K2(b, a) + h, (3.7)

and scalars q2(a, b), K1(a, b), K2(a, b) are de�ned in (2.12), (2.14), (2.15) respectively.

Proof. Substitute functions (3.4) in the �rst equation of system (3.2) to get

κ2
1D
′
a ln

Θ(Z− d + r)

Θ(Z− d)
+ κ2

1D
2
a ln

Θ(Z− d + r)

Θ(Z− d)
+ 2κ2

1D
2
a ln Θ(Z− d) + G3 − h

+

(
κ1Da ln

Θ(Z− d + r)

Θ(Z− d)
−G1

)2

+

(
κ2Db ln

Θ(Z− d + r)

Θ(Z− d)
+G2

)2

−κ2
2D
′
b ln

Θ(Z− d + r)

Θ(Z− d)
+ κ2

2D
2
b ln

Θ(Z− d + r)

Θ(Z− d)
+ 2κ2

2D
2
b ln Θ(Z− d) = 0.

By (2.13), the last equality holds for any z ∈ Cg, and in particular for z = Z− d. In the same way, it
can be checked that functions (3.4) satisfy the second equation of system (3.2). Moreover, from (2.10)
we get

(ψψ∗)ξξ = κ3
1 κ2D

3
aDb ln Θ(Z− d), (ψψ∗)ηη = κ1 κ

3
2DaD

3
b ln Θ(Z− d).

Therefore, taking into account that

ϕξη = −1

2

(
κ3

1 κ2D
3
aDb ln Θ(Z− d) + κ1 κ

3
2DaD

3
b ln Θ(Z− d)

)
,

the functions (3.4) satisfy the last equation of system (3.2).

The solutions (3.4) depend on the Riemann surface Rg, the points a, b ∈ Rg, the vector d ∈ Cg, the
constants κ1, κ2 ∈ C\{0}, h ∈ C, and the local parameters ka and kb near a and b. The transformation
of the local parameters given by

ka −→ β ka + µ1 k
2
a +O

(
k3
a

)
,

kb −→ β kb + µ2 k
2
b +O

(
k3
b

)
, (3.8)

where β, µ1, µ2 are arbitrary complex numbers (β 6= 0), leads to a di�erent family of solutions of the
complexi�ed system (3.2). These new solutions are obtained via the following transformations:

ψ(ξ, η, t) −→ ψ
(
β ξ + βλ1 t, β η + βλ2 t, β

2 t
)

exp
{
−i
(
λ1 ξ + λ2 η +

(
λ2

1 + λ2
2 − α

)
t
2

)}
, (3.9)

ψ∗(ξ, η, t) −→ β2 ψ∗
(
β ξ + βλ1 t, β η + βλ2 t, β

2 t
)

exp
{

i
(
λ1 ξ + λ2 η +

(
λ2

1 + λ2
2 − α

)
t
2

)}
,

φ(ξ, η, t) −→ β2 φ
(
β ξ + βλ1 t, β η + βλ2 t, β

2 t
)

+
α

4
, (3.10)

where λi = κi µi β
−1 and α = h(1− β2).
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3.2 Reality condition and solutions of the DS1ρ equation

Let us consider the DS1ρ equation

iψt +
1

2
(∂2
ξ + ∂2

η)ψ + 2φψ = 0,

∂ξ∂η φ+ ρ
1

2
(∂2
ξ + ∂2

η)|ψ|2 = 0, (3.11)

where ρ = ±1. Here ξ, η, t are real variables. Algebro-geometric solutions of (3.11) are constructed
from solutions ψ, ψ∗ (3.4) of the complexi�ed system, under the reality condition ψ∗ = ρψ.

Let Rg be a real compact Riemann surface with an anti-holomorphic involution τ . Denote by
Rg(R) the set of �xed points of the involution τ (see Appendix A.1). Let us choose the homology basis
satisfying (A.2). Then the solutions of (3.11) are given by

Theorem 3.2. Let a, b ∈ Rg(R) be distinct points with local parameters satisfying ka(τp) = ka(p) for

any p lying in a neighbourhood of a, and kb(τp) = kb(p) for any p lying in a neighbourhood of b. Denote
by {A,B, `} the standard generators of the relative homology group H1(Rg, {a, b}) (see Appendix A.2).
Let dR ∈ Rg, T ∈ Zg, and de�ne d = dR+ iπ

2 (diag(H)−2T). Morover, take θ, h,∈ R, κ̃1, κ2 ∈ R\{0}
and put

κ1 = −ρ κ̃2
1 κ2 q2(a, b) exp

{
1
2 〈BM,M〉+ 〈r + d,M〉

}
, (3.12)

where M ∈ Zg is de�ned in (A.13). Then the following functions ψ and φ are solutions of the DS1ρ

equation

ψ(ξ, η, t) = |A| eiθ Θ(Z− d + r)

Θ(Z− d)
exp

{
i
(
−G1 ξ −G2 η +G3

t
2

)}
, (3.13)

φ(ξ, η, t) =
1

2
(ln Θ(Z− d))ξξ +

1

2
(ln Θ(Z− d))ηη +

1

4
h, (3.14)

where |A| = |κ̃1 κ2 q2(a, b)| exp {〈dR,M〉} . Here r =
∫
` ω, and the vector Z is de�ned in (3.5). Scalars

q2(a, b), G1, G2 and G3 are de�ned in (2.12), (3.6) and (3.7) respectively.

The case where Va + Vb = 0 and κ1 = κ2 is treated at the end of this section. It corresponds to
solutions of the nonlinear Schrödinger equation.

Proof. Let us check that under the conditions of the theorem, the functions ψ and ψ∗ (3.4) satisfy the
reality conditions (3.3). First of all, invariance with respect to the anti-involution τ of the points a
and b implies the reality of vector (3.5):

Z = Z. (3.15)

In fact, using the expansion (2.8) of the normalized holomorphic di�erentials ωj near a we get

τ∗ωj(a)(p) = (Va,j +Wa,j ka(p) + . . .) dka(p),

for any point p lying in a neighbourhood of a. Then by (A.3), the vectors Va and Wa appearing in
expression (3.5) satisfy

Va = −Va, Wa = −Wa. (3.16)
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The same holds for the vectors Vb and Wb, which leads to (3.15). Moreover, from (A.3) and (A.13)
we get

r = −r− 2iπN− BM, (3.17)

where N, M ∈ Zg are de�ned in (A.13) and satisfy

2N + HM = 0. (3.18)

From (2.13), it is straightforward to see that the scalars K1(a, b) and K2(a, b) de�ned by (2.14) and
(2.15) satisfy

K1(a, b) = K1(a, b)− 〈Va,M〉 , K2(a, b) = K2(a, b) + 〈Wa,M〉 , (3.19)

which implies

G1 = G1 − κ1 〈Va,M〉 , G2 = G2 − κ2 〈Vb,M〉 , G3 = G3 + κ2
1 〈Wa,M〉+ κ2

2 〈Wb,M〉 .

Therefore, the reality condition (3.3) together with (3.4) leads to

|A|2 = −ρ κ1κ2 q2(a, b)
Θ(Z− d− r) Θ(Z− d + iπ diag(H))

Θ(Z− d− r + iπ diag(H)) Θ(Z− d)

× exp
{

1
2 〈BM,M〉+

〈
r + d− iπdiag(H),M

〉}
, (3.20)

taking into account the action (A.5) of the complex conjugation on the theta function, and the quasi-
periodicity (2.4) of the theta function. Let us choose a vector d ∈ Cg such that

d ≡ d− iπ diag(H) mod (2iπZg + BZg),

which is, since d− d is purely imaginary, equivalent to d = d− iπ diag(H) + 2iπT, for some T ∈ Zg.
Here we used the action (A.4) of the complex conjugation on the matrix of B-periods B, and the fact
that B has a negative de�nite real part. Hence, the vector d can be written as

d = dR +
iπ

2
(diag(H)− 2T), (3.21)

for some dR ∈ Rg and T ∈ Zg. Therefore, all theta functions in (3.20) cancel out and (3.20) becomes

|A|2 = −ρ κ1κ2 q2(a, b) exp
{

1
2 〈BM,M〉+ 〈r + d,M〉

}
. (3.22)

The reality of the right hand side of equality (3.22) can be deduced from formula (B.11) for the
argument of q2(a, b). Moreover, it is straightforward to see from (3.21) and (3.18) that exp{〈d,M〉} is
also real. Since κ1, κ2 are arbitrary real constants, we can choose κ1 as in (3.12), which leads to

|A|2 =
(
κ̃1 κ2 q2(a, b) exp

{
1
2 〈BM,M〉+ 〈r + d,M〉

})2
= |κ̃1 κ2 q2(a, b)|2 exp {2 〈dR,M〉} .

Functions ψ and φ given in (3.13) and (3.14) describe a family of algebro-geometric solutions of
(3.11) depending on: a real Riemann surface (Rg, τ), two distinct points a, b ∈ Rg(R), local parameters
ka, kb which satisfy ka(τp) = ka(p) and kb(τp) = kb(p), and arbitrary constants dR ∈ Rg, T ∈ Zg,

13



θ, h,∈ R, κ̃1, κ2 ∈ R \ {0}. Note that by periodicity properties of the theta function, without loss
of generality, the vector T can be chosen in the set {0, 1}g. The case where the Riemann surface is
dividing and T = 0 is of special importance, because the related solutions are smooth, as explained in
the next proposition.

Since the theta function is entire, singularities of the functions ψ and φ can appear only at the
zeros of their denominator. Following Vinnikov's result [20] we obtain

Proposition 3.1. Solutions (3.13) and (3.14) are smooth if the curve Rg is dividing and d ∈ Rg.
Assume that solutions (3.13) and (3.14) are smooth for any vector d lying in a component Tv (A.25)

of the Jacobian, then the curve is dividing and d ∈ Rg.

Proof. By (3.15) and (3.21), the vector Z − d belongs to the set S1 introduced in (A.23). Hence by
Proposition A.3, the solutions are smooth if the curve is dividing (in this case diag(H)=0), and if the
argument Z − d of the theta function in the denominator is real, which by (3.15) leads to the choice
d ∈ Rg (and then T = 0 in Theorem 3.2).

The following assertions were proved in [20]: let Rg(R) 6= ∅; if Rg is non dividing, then Tv∩(Θ) 6= ∅
for all v, where (Θ) denotes the set of zeros of the theta function; if Rg is dividing, then Tv ∩ Θ 6= ∅
if and only if v 6= 0. It follows that if solutions are smooth for any vector d lying in a component Tv
(A.25) of the Jacobian, then the curve is dividing and v = 0. Hence d ∈ T0 where T0 = Rg.

3.3 Reality condition and solutions of the DS2ρ equation

Let us consider the DS2ρ equation

iψt +
1

2
(∂2
ξ + ∂2

η)ψ + 2φψ = 0,

∂ξ∂η φ+ ρ
1

2
(∂2
ξ + ∂2

η)|ψ|2 = 0, (3.23)

where ρ = ±1. Here t is a real variable and variables ξ, η satisfy ξ = η. Analogously to the case where
ξ and η are real variables (see Section 3.2), algebro-geometric solutions of (3.23) are constructed from
solutions ψ, ψ∗ (3.4) of the complexi�ed system by imposing the reality condition ψ∗ = ρψ.

Let Rg be a real compact Riemann surface with an anti-holomorphic involution τ . Let us choose
the homology basis satisfying (A.2). Then the solutions of (3.23) are given by

Theorem 3.3. Let a, b ∈ Rg be distinct points such that τa = b, with local parameters satisfying

kb(τp) = ka(p) for any point p lying in a neighbourhood of a. Denote by {A,B, `} the standard

generators of the relative homology group H1(Rg, {a, b}) (see Appendix A.2). Let T, L ∈ Zg satisfy

2T + HL = diag(H), (3.24)

and de�ne d = 1
2Re(B)L + idI , for some dI ∈ Rg. Moreover, take θ, h ∈ R and κ1, κ2 ∈ C \ {0} such

that κ1 = κ2. Let us consider the following functions ψ and φ:

ψ(ξ, η, t) = |A| eiθ Θ(Z− d + r)

Θ(Z− d)
exp

{
i
(
−G1 ξ −G2 η +G3

t
2

)}
, (3.25)

φ(ξ, η, t) =
1

2
(ln Θ(Z− d))ξξ +

1

2
(ln Θ(Z− d))ηη +

1

4
h, (3.26)
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where |A| = |κ1| |q2(a, b)|1/2 exp
{
−1

2 〈Re(r),L〉
}
. Then,

1. if ` intersects the set of real ovals of Rg only once, and if this intersection is transversal, functions

ψ and φ are solutions of DS2ρ whith ρ = eiπ〈N,L〉,

2. if ` does not cross any real oval, functions ψ and φ are solutions of DS2ρ whith ρ = −eiπ〈N,L〉.

Here r =
∫
` ω, the vector Z is de�ned in (3.5) and vector N ∈ Zg is de�ned in (A.6). Scalars

q2(a, b), G1, G2 and G3 are de�ned in (2.12), (3.6) and (3.7) respectively.

Proof. Analogously to the proof of Theorem 3.2, let us check that under the conditions of the theorem,
the functions ψ∗ and ψ (3.2) satisfy the reality condition (3.3). First of all, due to the fact that points
a and b are interchanged by τ , the vector Z (3.5) satis�es

Z = −Z. (3.27)

In fact, using the expansion (2.8) of the normalized holomorphic di�erentials ωj near a we get

τ∗ωj(a)(p) = (Vb,j +Wb,j ka(p) + . . .) dka(p),

for any point p lying in a neighbourhood of a. Then by (A.3) the vectors Va, Vb and Wa, Wb

appearing in the vector Z satisfy

Va = −Vb, Wa = −Wb, (3.28)

which leads to (3.27). From (A.3) and (A.6) we get

r = r− 2iπN, (3.29)

where N ∈ Zg is de�ned in (A.6). By Proposition B.3, the scalar q2(a, b) is real. From (2.13), it is
straightforward to see that the scalars K1(a, b) and K2(a, b), de�ned in (2.14) and (2.15), satisfy

K1(a, b) = K1(b, a), K2(a, b) = K2(b, a),

which leads to G1 = G2 and G3 ∈ R. Therefore, the reality condition (3.3) together with (3.4) leads
to

|A|2 = −ρ |κ1|2 q2(a, b)
Θ(Z− d− r) Θ(Z + d + iπ diag(H))

Θ(Z + d− r + iπ diag(H)) Θ(Z− d)
, (3.30)

taking into account (A.5). Let us choose a vector d ∈ Cg such that

d = −d− iπ diag(H) + 2iπT + BL,

for some vector T, L ∈ Zg. The reality of the vector d + d together with (A.4) imply

d =
1

2
Re(B)L + idI (3.31)

for some dI ∈ Rg, where 2T + HL = diag(H). With this choice of vector d, (3.30) becomes

|A|2 = −ρ |κ1|2 q2(a, b) e−〈r,L〉. (3.32)

Moreover, from (3.29) we deduce that equality (3.32) holds only if

ρ = −sign(q2(a, b)) e−iπ〈N,L〉.

The sign of q2(a, b) in the case where τa = b is given in Proposition B2, which completes the proof.
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Corollary 3.1. From Theorem 3.3 we deduce that

1. if Rg is dividing and each component of L is even, functions (3.25) and (3.26) are solutions of

DS2+,

2. if Rg does not have real ovals and each component of L is even, functions (3.25) and (3.26) are

solutions of DS2−.

Remark 3.1. To construct solutions associated to non-dividing Riemann surfaces, we �rst observe
from (3.24) that all components of the vector L cannot be even, since for non dividing Riemann surfaces
the vector diag(H) contains odd coe�cients (see Appendix A.1). In this case, the vector N has to be
computed to determine the sign ρ = −eiπ〈N,L〉 in the reality condition. This vector N is de�ned by
the action of τ on the relative homology group H1(Rg, {a, b}) (see (A.6)). It follows that we do not
have a general expression for this vector.

To ensure the smoothness of solutions (3.25) and (3.26) for all complex conjugate ξ, η, and t ∈ R,
the function Θ(Z − d) of the variables ξ, η, t must not vanish. Following the work by Dubrovin
and Natanzon [6] on smoothness of algebro-geometric solutions of the Kadomtsev Petviashvili (KP1)
equation in the case where Rg admits real ovals we get

Proposition 3.2. Functions (3.25) and (3.26) are smooth solutions of DS2+ if the curve is an M-

curve and d ∈ iRg. Assume that the curve admits real ovals and functions (3.25), (3.26) are smooth

solutions of DS2ρ for any vector d lying in a component T̃v (A.27) of the Jacobian, then the curve is

an M-curve, d ∈ iRg and ρ = +1.

Proof. By (3.27) and (3.31) the vector Z − d belongs to the set S2 introduced in (A.24). Hence by
Proposition A.4, the solutions are smooth if the curve is an M-curve and Z − d ∈ iRg which implies
d ∈ iRg by (3.27) (and therefore L = T = 0).

Remark 3.2. Smoothness of solutions of the DS2− equation was investigated in [13]. It is proved
that solutions are smooth if and only if the associated Riemann surface does not have real ovals, and if
there are no pseudo-real functions of degree g− 1 on it (i.e. functions which satisfy f(τp) = −f(p)−1).

3.4 Reduction of the DS1ρ equation to the NLS equation

Solutions of the nonlinear Schrödinger equation (1.5) can be derived from solutions of the Davey
Stewartson equations, when the associated Riemann surface is hyperelliptic.

Proposition 3.3. Let Rg be a hyperelliptic curve of genus g which admits an anti-holomorphic involu-

tion τ . Denote by σ the hyperelliptic involution de�ned on Rg. Let a, b ∈ Rg(R) with local parameters

satisfying ka(τp) = ka(p) for p near a, and kb(τp) = kb(p) for p near b. Moreover, assume that σa = b
and ka(p) = kb(σp). Then, taking κ1 = κ2 = 1, the function ψ in (3.13) is a solution of the equation

iψt + ψξξ + 2
(
ρ |ψ|2 + q1(a, b) + 1

4h
)
ψ = 0,

which can be transformed to the NLSρ equation

i ψ̃t + ψ̃ξξ + 2 ρ |ψ̃|2 ψ̃ = 0,
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by the substitution

ψ̃(ξ, t) = ψ(ξ, t) exp
{
−2i

(
q1(a, b) + 1

4h
)
t
}
.

If all branch points of Rg are real, ψ̃ is a smooth solution of NLS−. If they are all pairwise conjugate,

ψ̃ is a smooth solution of NLS+.

Proof. If a, b ∈ Rg are such that σa = b and the local parameters satisfy ka(p) = kb(σp), one has

Va + Vb = 0, Wa + Wb = 0. (3.33)

To verify (3.33), we use the action σAk = −Ak of the involution σ on the A-cycles of the homology
basis. Hence by (2.1) we have

2iπδjk =

∫
σAk

σ∗ωj = −
∫
Ak

σ∗ωj .

It follows that the holomorphic di�erential −σ∗ωj satis�es the normalization condition (2.1), which
implies, by virtue of uniqueness of the normalized holomorphic di�erentials,

σ∗ωj = −ωj .

Using (2.8) we obtain

σ∗ωj(a)(p) = (Vb,j +Wb,j kb(σp) + . . .) dkb(σp)

= (Vb,j +Wb,j ka(p) + . . .) dka(p),

which implies Va + Vb = 0 and Wa + Wb = 0.
Therefore, when the Riemann surface associated to solutions of DS1ρ is hyperelliptic, assuming that

a and b satisfy σa = b, and κ1 = κ2 = 1, by (3.33) and (2.10), under the reality condition ψ∗ = ρψ,
the function φ in (3.14) satis�es

φ(ξ, η, t) = ρ |ψ|2 + q1(a, b) +
1

4
h.

Hence the function ψ (3.13) becomes a solution of the equation

iψt + ψξξ + 2
(
ρ |ψ|2 + q1(a, b) + 1

4h
)
ψ = 0,

with ρ = ±1, depending on the reality of the branch points as explained in Section 4.

Solutions of the NLS equation obtained in this way coincide with those in [3].

4 Algebro-geometric solutions of the multi-component NLS equation

In this section, we present another application of the degenerated Fay identity (2.13), which leads to
new theta-functional solutions of the multi-component nonlinear Schrödinger equation (n-NLSs)

i
∂ψj
∂t

+
∂2ψj
∂x2

+ 2

(
n∑
k=1

sk|ψk|2
)
ψj = 0, j = 1, . . . , n, (4.1)

where s = (s1, . . . , sn), si = ±1. Here ψj(x, t) are complex valued functions of the real variables x and
t.
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4.1 Solutions of the complexi�ed n-NLS equation

Consider �rst the complexi�ed version of the n-NLSs equation, which is a system of 2n equations of

2n dependent variables
{
ψj , ψ

∗
j

}n
j=1

i
∂ψj
∂t

+
∂2ψj
∂x2

+ 2

(
n∑
k=1

ψk ψ
∗
k

)
ψj = 0,

−i
∂ψ∗j
∂t

+
∂2ψ∗j
∂x2

+ 2

(
n∑
k=1

ψk ψ
∗
k

)
ψ∗j = 0, j = 1, . . . , n, (4.2)

where ψj(x, t) and ψ∗j (x, t) are complex valued functions of the real variables x and t. This system
reduces to the n-NLSs equation (4.1) under the reality conditions

ψ∗j = sj ψj , j = 1, . . . , n. (4.3)

Theta functional solutions of the system (4.2) are given by

Theorem 4.1. Let Rg be a compact Riemann surface of genus g > 0 and let f be a meromorphic

function of degree n + 1 on Rg. Let za ∈ C be a non critical value of f , and consider the �ber

f−1(za) = {a1, . . . , an+1} over za. Choose the local parameters kaj near aj as kaj (p) = f(p)− za, for
any point p ∈ Rg lying in a neighbourhood of aj. Let d ∈ Cg and Aj 6= 0 be arbitrary constants. Then

the following functions {ψj}nj=1 and
{
ψ∗j

}n
j=1

are solutions of the system (4.2)

ψj(x, t) = Aj
Θ(Z− d + rj)

Θ(Z− d)
exp {i(−Ej x+ Fj t)} ,

ψ∗j (x, t) =
q2(an+1, aj)

Aj

Θ(Z− d− rj)

Θ(Z− d)
exp {i(Ej x− Fj t)} . (4.4)

Here rj =
∫ aj
an+1

ω, where ω is the vector of normalized holomorphic di�erentials, and

Z = iVan+1 x+ iWan+1 t. (4.5)

The vectors Van+1 and Wan+1 are de�ned in (2.8), and the scalars Ej , Fj are given by

Ej = K1(an+1, aj), Fj = K2(an+1, aj)− 2
n∑
k=1

q1(an+1, ak). (4.6)

The scalars q2(an+1, aj), K1(an+1, aj), K2(an+1, aj) and q1(an+1, ak) are de�ned in (2.12), (2.14),

(2.15) and (2.11) respectively.

Proof. We start with the following technical lemma.

Lemma 4.1. Let Rg be a compact Riemann surface of genus g > 0 and let a1, . . . , an+1 be distinct

points on Rg. Then the vectors Vaj for j = 1, . . . , n+1 are linearly dependent if and only if there exists

a meromorphic function f of degree n+ 1 on Rg, and za ∈ CP1 such that f−1(za) = {a1, . . . , an+1}.
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Proof of Lemma 4.1. Assume that there exist α1, . . . , αn+1 ∈ C∗ such that
∑n+1

k=1 αkVak = 0. The left
hand side of this equality equals the vector of B-periods (see e.g. [4]) of the normalized di�erential of

the second kind Ω =
∑n+1

k=1 αk Ω
(2)
ak . Hence all periods of the di�erential Ω vanish, which implies that

the Abelian integral p 7−→
∫ p
p0

Ω is a meromorphic function of degree n+ 1 on Rg having simple poles
at a1, . . . , an+1.

Conversely, assume that there exists a meromorphic function f of degree n+ 1 on Rg, and za ∈ C
such that f−1(za) = {a1, . . . , an+1} (the case za = ∞ can be treated in the same way). The function
h(p) = (f(p)−za)−1 is a meromorphic function of degree n+1 onRg having simple poles at a1, . . . , an+1

only. Therefore all periods of the di�erential dh vanish. Let p0 ∈ Rg satisfy h(p0) = 0. Using Riemann's
bilinear identity [4] we get ∫

∂Fg

ωj

∫ p

p0

dh =

∫
∂Fg

ωjh(p) = 0,

where Fg denotes the simply connected domain with the boundary ∂Fg =
∑g

j=1(Aj +A−1
j +Bj +B−1

j ).
By Cauchy's theorem, taking local parameters kaj near aj such that kaj (p) = f(p)−za for any point p ∈
Rg lying in a neighbourhood of aj , we deduce that

∑n+1
k=1 Vak = 0. �

To prove Theorem 4.1, substitute the functions (4.4) into the �rst equation of (4.2) to get

D′an+1
ln

Θ(z + r1)

Θ(z)
+D2

an+1
ln

Θ(z + r1)

Θ(z)
+

(
Dan+1 ln

Θ(z + r1)

Θ(z)
− E1

)2

+F1 − 2
n∑
k=1

q2(an+1, ak)
Θ(z + rk)Θ(z− rk)

Θ(z)2
= 0. (4.7)

It can be shown that equation (4.7) holds as follows: in (2.13), let us choose a = an+1 and b = a1 to
obtain

D′an+1
ln

Θ(z + r1)

Θ(z)
+D2

an+1
ln

Θ(z + r1)

Θ(z)
+

(
Dan+1 ln

Θ(z + r1)

Θ(z)
−K1

)2

+K2 + 2D2
an+1

ln Θ(z) = 0,

(4.8)
for any z ∈ Cg, and in particular for z = Z − d; here we used the notation Ki = Ki(an+1, a1) for
i = 1, 2. By Lemma 4.1 the sum

∑n+1
k=1 Vak equals zero, which implies

n+1∑
k=1

Dak = 0.

Substituting Dan+1 instead of −∑n
k=1Dak in (4.8) and using (2.10) we obtain (4.7), where

E1 = K1, F1 = K2 − 2

n∑
k=1

q1(an+1, ak).

In the same way, it can be proved that the functions in (4.13) satisfy the 2n− 1 other equations of the
system (4.2).

The solutions (4.4) of the complexi�ed sytem (4.2) depend on the Riemann surface Rg, the mero-
morphic function f of degree n+ 1, a non critical value za ∈ C of f , and arbitrary constants d ∈ Cg,
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Aj 6= 0. The transformation of the local parameters given by

kaj −→ β kaj + µk2
aj +O

(
k3
aj

)
, (4.9)

where β, µ are arbitrary complex numbers (β 6= 0), leads to a di�erent family of solutions of the
complexi�ed system (4.2). These new solutions are obtained via the following transformations:

ψj(x, t) −→ ψj
(
β x+ 2βλ t, β2 t

)
exp

{
−i
(
λx+ λ2 t

)}
,

ψ∗j (x, t) −→ β2 ψ∗j
(
β x+ 2βλ t, β2 t

)
exp

{
i
(
λx+ λ2 t

)}
, (4.10)

where λ = µβ−1.

4.2 Reality conditions

Algebro-geometric solutions of the n-NLSs equation (4.1) are constructed from solutions (4.4) of the
complexi�ed system by imposing the reality conditions ψ∗j = sj ψj (4.3).

Let Rg be a real compact Riemann surface with an anti-holomorphic involution τ . Let us choose
the homology basis satisfying (A.2). A meromorphic function f on Rg is called real if f(τp) = f(p)
for any p ∈ Rg.

In the next proposition we derive theta-functional solutions of (4.1). The signs sj appearing in the
reality conditions (4.3) are expressed in terms of certain intersection indices on Rg. These intersection
indices are de�ned as follows: let f be a real meromorphic function of degree n+ 1 on Rg. Let za ∈ R
be a non critical value of f , and assume that the �ber f−1(za) = {a1, . . . , an+1} over za belongs to
the set Rg(R). Let ãn+1, ãj ∈ Rg(R) lie in a neighbourhood of an+1 and aj respectively such that
f(ãn+1) = f(ãj). Denote by ˜̀

j an oriented contour connecting ãn+1 and ãj , and having the following
decomposition in H1(Rg \ {an+1, aj}) (see Appendix A.2.2)

τ ˜̀
j = ˜̀

j +ANj + BMj + αj Saj , (4.11)

for some αj ∈ Z, where vectors Nj ,Mj ∈ Zg are the same as in (A.13). Then

αj = (τ ˜̀
j − ˜̀

j) ◦ `j , (4.12)

between the closed contour τ ˜̀
j − ˜̀

j and the contour `j ; this intersection is computed in the relative
homology group H1(Rg, {an+1, aj}).

Theta functional solutions of (4.1) are given by

Proposition 4.1. Let f be a real meromorphic function of degree n + 1 on Rg. Let za ∈ R be a

non critical value of f , and assume that the �ber f−1(za) = {a1, . . . , an+1} over za belongs to the set

Rg(R). Choose the local parameters kaj near aj as kaj (p) = f(p) − za, for any point p ∈ Rg lying

in a neighbourhood of aj. Denote by {A,B, `j} the standard generators of the relative homology group

H1(Rg, {an+1, aj}) (see Appendix A.2.2). Let dR ∈ Rg, T ∈ Zg, and de�ne d = dR+ iπ
2 (diag(H)−2T).

Morover, take θ ∈ R. Then the following functions {ψj}nj=1 are solutions of n-NLSs (4.1)

ψj(x, t) = |Aj | eiθ Θ(Z− d + rj)

Θ(Z− d)
exp {i(−Ej x+ Fj t)} , (4.13)
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where Z = iVan+1 x+ iWan+1 t, and

|Aj | = |q2(an+1, aj)|1/2 exp
{

1
2 〈dR,Mj〉

}
. (4.14)

Here rj =
∫
`j
ω, the vectors Van+1 ,Wan+1 are de�ned in (2.8), and the vector Mj ∈ Zg is de�ned

by the action of τ on the relative homology group H1

(
R(n+1)
g , {an+1, aj}

)
(see (A.13)). The scalars

q2(an+1, aj) and Ej , Fj are introduced in (2.12) and (4.6) respectively. The signs s1, . . . , sn are given

by

sj = exp {iπ(1 + αj) + iπ 〈T,Mj〉} , (4.15)

where the intersection indices αj ∈ Z are de�ned in (4.12).

Proof. The proof follows the lines of Section 3.2, where similar statements were proven for the DS1ρ

equation. First of all, invariance with respect to the anti-involution τ of the point an+1 implies the
reality of the vector Z = iVan+1 x+ iWan+1 t. Moreover, from (A.3) and (A.13) we get

rj = −rj − 2iπNj − BMj . (4.16)

where Nj , Mj ∈ Zg are de�ned in (A.13) and satisfy

2Nj + HMj = 0. (4.17)

For j = 1, . . . , n, the action of the complex conjugation on the scalars K1(an+1, aj) and K2(an+1, aj)
is given by (3.19), and one can directy see from (2.10) that q1(an+1, aj) is real. Hence we get

Ej = Ej −
〈
Van+1 ,Mj

〉
, Fj = Fj +

〈
Wan+1 ,Mj

〉
. (4.18)

Under the assumptions of the theorem and by (B.11), the argument of q2(an+1, aj) is given by

arg(q2(an+1, aj)) = π
(
1 + αj + 1

2 〈HMj ,Mj〉
)
− 1

2i
(〈BMj ,Mj〉+ 2 〈rj ,Mj〉) . (4.19)

Therefore, the reality conditions (4.3) together with (4.4) lead to

|Aj |2 = sj |q2(an+1, aj)|
Θ(Z− d− rj) Θ(Z− d + iπ diag(H))

Θ(Z− d− rj + iπ diag(H)) Θ(Z− d)

× exp
{

iπ
(
1 + αj + 1

2 〈HMj ,Mj〉
)

+
〈
d− iπdiag(H),Mj

〉}
, (4.20)

if one takes into account (A.5) and (2.4). Let us choose a vector d ∈ Cg such that

d ≡ d− iπ diag(H) (mod (2iπZg + BZg)) .

Since d− d is purely imaginary we have

d = d− iπ diag(H) + 2iπT, (4.21)

for some T ∈ Zg, where we have used (A.4) and the fact that B has a non-degenerate real part. It
follows that the vector d can be written as

d = dR +
iπ

2
(diag(H)− 2T), (4.22)
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for some dR ∈ Rg and T ∈ Zg. Therefore, (4.20) becomes

|Aj |2 = sj |q2(an+1, aj)| exp
{

iπ(1 + αj) + iπ
2 〈HMj ,Mj〉+ 〈d,Mj〉

}
, (4.23)

which by (4.22) leads to (4.14). Moreover we deduce from (4.22) and (4.23) that

sj = exp
{

iπ(1 + αj) + iπ
2 〈HMj + diag(H),Mj〉 − iπ 〈T,Mj〉

}
.

From (4.17) and the de�nition of the matrix H (see Appendix A.1), it can be deduced that the quantity
1
2 〈HMj + diag(H),Mj〉 is even in each case, which yields (4.15).

Functions ψj given in (4.13) describe a family of algebro-geometric solutions of (4.1) depending
on: a real Riemann surface (Rg, τ), a real meromorphic function f on Rg of degree n + 1, a non
critical value za ∈ R of f such that the �ber over za belongs to the set Rg(R), and arbitrary constants
dR ∈ Rg, T ∈ Zg, θ ∈ R. Note that the periodicity properties of the theta function imply without
loss of generality that the vector T can be chosen in the set {0, 1}g. The case where the Riemann
surface Rg is dividing and T = 0 is of special importance, because the related solutions are smooth,
as explained in Proposition 3.1. In this case, the sign sj (4.15) is given by sj = exp{iπ(1 + αj)}.

4.3 Solutions of n-NLS+ and n-NLS−

Here, we consider the two most physically signi�cant situations: the completely focusing multi-
component system n-NLS+ (which corresponds to s = (1, . . . , 1)), and the completely defocusing
system n-NLS− (which corresponds to s = (−1, . . . ,−1)).

Starting from a pair (Rg, f), where Rg is a Riemann surface of genus g, and where f is a meromor-
phic function of degree n+1 onRg, which has n+1 simple poles, we construct an n+1-sheeted branched
covering of CP1, which we denote by Rg,n+1. The rami�cation points of the covering correspond to
critical points of f ; we assume that all of them are simple.

For any point a ∈ Rg,n+1 which is not a critical point or a pole of the meromorphic function f , we
use the local parameter ka(p) = f(p)− f(a), for any point p in a neighbourhood of a.

According to [7], by an appropriate choice of the set of generators {γj}2g+2n
j=1 of the fundamental

group π1(CP1 \ {z1, . . . , z2g+2n}, z0) of the base, which satisfy γ1 . . . γ2g+2n = id, the covering Rg,n+1

can be represented as follows: consider the hyperelliptic covering of genus g and attach to it n − 1
spheres as shown in Figure 1. More precisely, the generators γj can be chosen in such way that the
loop γj encircles only the point zj ; the corresponding elements σj ∈ Sn+1 (where Sn+1 denotes the
symmetric group of order n+ 1) of the monodromy group of the covering are given by

σj =(n+ 1, n), j = 1, . . . , 2g + 2,

σ2g+2+2k+1 = σ2g+2+2k+2 =(n− k, n− k − 1), k = 0, . . . , n− 2.

We denote by x1, . . . , x2g+2n ∈ Rg,n+1 the critical points of the meromorphic function f , and by
zj = f(xj) ∈ C the critical values. Assume that the branch points {zj}2g+2n

j=1 are real or pairwise
conjugate, and order them as follows:

Re(z1) ≤ . . . ≤ Re(z2g+2n).

Let us introduce an anti-holomorphic involution τ on Rg,n+1, which acts as the complex conjugation
on each sheet.
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. . .

x1 x2 x3 x4 x2g+1

x2g+2n

x2g+2

x2g+3 x2g+4

x2g+2n−1

a1

a2

an+1

an

an−1

.... . .

1

2

n− 1

n

n+ 1

Figure 1: Hurwitz diagram of the covering Rg,n+1.

4.3.1 Solutions of n-NLS+.

Here we construct solutions of the n-NLS+ system

i
∂ψj
∂t

+
∂2ψj
∂x2

+ 2

(
n∑
k=1

|ψk|2
)
ψj = 0, j = 1, . . . , n. (4.24)

Let us �rst describe the covering and the homology basis used in the construction of the solutions.
Assume that all branch points of the covering Rg,n+1 are pairwise conjugate. Denote this covering

by R+
g,n+1, refering to the focusing system (4.24). The covering R+

g,n+1 admits two real ovals if the
genus g is odd, and only one if g is even. Each of them consists of a closed contour on the covering
having a real projection into the base. It is straightforward to see that the covering R+

g,n+1 is dividing
(see Appendix A.1): two points which have respectively a positive and a negative imaginary projection
onto C, cannot be connected by a contour which does not cross a real oval. Hence the set of �xed
points of the anti-holomorphic involution τ separates the covering into two connected components.

Now let us choose the canonical homology basis such that all basic cycles belong to sheets n + 1
and n, and such that the anti-holomorphic involution τ acts on them as in (A.2). By the previous
topological description of R+

g,n+1, the matrix H involved in (A.2) looks as:

H =



0 1
1 0

. . .
0 1
1 0

0


if g is odd,

H =


0 1
1 0

. . .
0 1
1 0

 if g is even.

The canonical homology basis is described explicitely in Figure 2 for odd genus, and in Figure 3 for
even genus.
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A1

A2

B1
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z1

z2

z3

z4

. . .

Ag

Bg

>

>
<Bg−1

Ag−1

<

z2g+2

z2g+1

z2g

z2g−1

z2g−2

z2g−3

z5

z6

<

>

Ag−2

Bg−2

<

>

>

<

>
>

Figure 2: Homology basis on the covering R+
g,n+1 when the genus g is odd. The solid line indicates the

sheet n+ 1, and the dashed line sheet n.

<

<

>

>

A1

A2

B1

B2
z1

z2

z3

z4

. . .

Ag

Bg

>

>
<

Bg−1

Ag−1

<

z2g+2

z2g+1

z2g

z2g−1

z2g−2

z2g−3

<

>

>

<

>
>

Figure 3: Homology basis on the covering R+
g,n+1 when the genus g is even. The solid line indicates

the sheet n+ 1, and the dashed line sheet n.
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As proved in the following theorem, among all coverings having a monodromy group described in
Figure 1, only the covering R+

g,n+1 leads to algebro-geometric solutions of the focusing system (4.24).

Theorem 4.2. Consider the covering R+
g,n+1 and the canonical homology basis discussed above. Fix

za ∈ R such that za > Re(zj) for j = 1, . . . , 2g + 2n. Consider the �ber f−1(za) = {a1, . . . , an+1} over
za, where aj ∈ R+

g,n+1(R) belongs to sheet j (each of the aj is invariant under the involution τ). Let

d ∈ Rg and θ ∈ R. Then the following functions {ψj}nj=1 are smooth solutions of n-NLS+:

ψj(x, t) = |Aj | eiθ Θ(Z− d + rj)

Θ(Z− d)
exp {i(−Ej x+ Fj t)} , (4.25)

where Z = iVan+1 x + iWan+1 t. Here rj =
∫ aj
an+1

ω, the vectors Van+1 , Wan+1 are de�ned in (2.8),

and the vector Mj ∈ Zg is de�ned in (A.13), according to the action of τ on the relative homology

group H1

(
R+
g,n+1, {an+1, aj}

)
. The scalars |Aj | and Ej , Fj are given by (4.14) and (4.6) respectively.

Proof. Let us check that the conditions of the theorem imply that functions ψj in (4.13) are solutions of
n-NLSs for s = (1, . . . , 1). Since the matrix H associated to the covering R+

g,n+1 satis�es diag(H) = 0,
and d ∈ Rg (i.e. T = 0), the quantities {sj}nj=1 (4.15) become

sj = exp {iπ(1 + αj)} . (4.26)

Let us �rst compute the intersection index αn. Let ãn+1, ãn ∈ R+
g,n+1(R) lie in a neighbourhood of

an+1 and an respectively such that f(ãn+1) = f(ãn) = zã. Denote by ˜̀
n an oriented contour connecting

ãn+1 and ãn. Then the intersection index αn between the closed contour τ ˜̀
n − ˜̀

n and the contour `n
satis�es (see Figure 4)

z1

z2

z3

z4

. . .

>

<
<

z2g+2

z2g+1

z2g

z2g−1

z2g−2

z2g−3

>

za

z2g+3

z2g+4 z2g+2n

z2g+2n−1

zã
. . .

>

<

`n

τ ˜̀n − ˜̀
n

Figure 4: The closed contour τ ˜̀
n − ˜̀

n ∈ H1

(
R+
g,n+1 \ {an+1, an}

)
is homologous to a closed contour

which encircles the vertical cut [z2g+1, z2g+2], then αn = (τ ˜̀
n − ˜̀

n) ◦ `n = 1.
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αn = (τ ˜̀
n − ˜̀

n) ◦ `n ≡ 1 (mod 2), (4.27)

which leads to sn = 1. Intersection indices αj for j = 1, . . . , n− 1 can be computed in the same way.
Therefore

α1 ≡ α2 ≡ . . . ≡ αn ≡ 1 (mod 2),

which implies sj = 1. By Proposition 3.1, smoothness of the solutions is ensured by the reality of the
vector Z− d and the fact that the curve is dividing.

Functions ψj given in (4.25) describe a family of smooth algebro-geometric solutions of the focusing
multi-component NLS equation depending on g + n complex parameters: z2k−1 ∈ C \ R for k =
1, . . . , g + n; and g + 2 real parameters: za, θ ∈ R, and d ∈ Rg.

4.3.2 Solutions of n-NLS−.

Now let us construct solutions of the system n-NLS−

i
∂ψj
∂t

+
∂2ψj
∂x2

− 2

(
n∑
k=1

|ψk|2
)
ψj = 0, j = 1, . . . , n. (4.28)

As for the focusing case, let us �rst describe the covering and the homology basis used in our construc-
tion of the solutions of (4.28).

Assume that the branch points zk of the covering Rg,n+1 are real for k = 1, . . . , g + 2, and that
the branch points zk, zk+1 are pairwise conjugate for k = 2g + 3, . . . , 2g + 2n. Denote by R−g,n+1 this
covering, refering to the defocusing system (4.28). It is straightforward to see that such a covering is
an M-curve (see Appendix A.1), that is it admits a maximal number of real ovals g+ 1 with respect to
the anti-holomorphic involution τ . On the other hand, it can be directly seen that R−g,n+1 is dividing:
two points which lie on the sheet n + 1 and have respectively a positive and a negative imaginary
projection onto C cannot be connected by a contour which does not cross a real oval.

Now let us choose the canonical homology basis such that all basic cycles belong to sheets n + 1
and n, and which satis�es (A.2). Since the covering R−g,n+1 is an M-curve, the matrix H involved in
(A.2) satis�es H = 0. Such a canonical homology basis is shown in Figure 5.

B1 A1< <

>

>

z1 z2 z3 z4 z2g+1 z2g+2

Ag

Bg

. . .

Figure 5: Homology basis on the covering R−g,n+1. The solid line indicates the sheet n + 1, and the

dashed line sheet n.

In the following theorem, we construct algebro-geometric solutions of the defocusing system (4.28)
associated to the covering R−g,n+1.
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Theorem 4.3. Consider the covering R−g,n+1 and the canonical homology basis discussed above. Fix

za ∈ R \ {z1, . . . , z2g+2} such that za > Re(zj) for j = 1, . . . , 2g + 2n. Consider the �ber f−1(za) =
{a1, . . . , an+1} over za, where aj ∈ R−g,n+1(R) belongs to sheet j (each of the aj is invariant under the
involution τ). Let d ∈ Rg and θ ∈ R. Then the functions {ψj}nj=1 in (4.25) are smooth solutions of

n-NLS−.

Proof. Analogously to the focusing case, one has to check that all sj = −1. Since all branch points zk
are real for k = 1, . . . , 2g + 2, the intersection index αn between the closed contour τ ˜̀

n − ˜̀
n and the

contour `n satis�es (see Figure 6)

αn = (τ ˜̀
n − ˜̀

n) ◦ `n ≡ 0 (mod 2), (4.29)

which leads to sn = −1. Intersection indices αj for j = 1, . . . , n− 1 can be computed in the same way,
and we get

α1 ≡ α2 ≡ . . . ≡ αn ≡ 0 (mod 2),

which implies sj = −1. Smoothness of the solutions is ensured by the reality of the vector Z− d and
the fact that the curve is dividing.

z1 z2 zaz2g+1 z2g+2

z2g+3

z2g+4 z2g+2n

z2g+2n−1

. . . . . .
zã

<
`n

<

τ ˜̀n − ˜̀
n

>

Figure 6: The closed contour τ ˜̀
n − ˜̀

n ∈ H1

(
R−g,n+1 \ {an+1, an}

)
is homologous to zero, then αn =

(τ ˜̀
n − ˜̀

n) ◦ `n = 0.

Solutions ψj construced here describe a family of smooth algebro-geometric solutions of the defo-
cusing multi-component NLS equation depending on n − 1 complex parameters: z2g+2+2k−1 ∈ R for
k = 1, . . . , n− 1; and 3g + 4 real parameters: zk ∈ R for k = 1, . . . , 2g + 2, za, θ ∈ R, and d ∈ Rg.

Remark 4.1. Smooth solutions of n-NLSs for a vector s with mixed signs can be constructed in the
same way.

4.4 Stationary solutions of n-NLS

It is well-known that the algebro-geometric solutions (4.13) on an elliptic surface describe travelling

waves, i.e., the modulus of the corresponding solutions depends only on x− ct, where c is a constant.
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Due to the Galilei invariance of the multi-component NLS equation (see (4.10)), the invariance under
transformations of the form

ψj(x, t) −→ ψj(x+ 2λ t, t) exp
{
−i
(
λx+ λ2 t

)}
,

where λ = −1
2 Wan+1 (Van+1)−1, leads to stationary solutions (t-independent) in the transformed coor-

dinates.
For arbitrary genus of the spectral curve, stationary solutions of the multi-component NLS equation

are obtained from solutions (4.13) under the vanishing condition

Wan+1 = 0. (4.30)

This condition is equivalent to the existence of a meromorphic function h of order two on Rg, such
that the point an+1 is a critical point of h (this can be proved analogously to Lemma 4.1).

Therefore, stationary solutions of the multi-component NLS can be constructed from the algebro-
geometric data (Rg, f, h, za), where:
• Rg is a real Riemann surface of genus g, and f is a real meromorphic function of order n+ 1 on Rg,
• za ∈ CP1 is a non critical value of f such that f−1(za) = {a1, . . . , an+1},
• h is a real meromorphic function of order two on Rg, and an+1 is a critical point of h,
• for j = 1, . . . , n, local parameters kaj near aj are chosen to be kaj (p) = h(p) − h(aj) for any point
p lying in a neighbourhood of aj , and kan+1(p) = (h(p) − h(an+1))1/2 for any point p lying in a
neighbourhood of an+1.

With this choice of local parameters, we get f(p) − za = βj kaj (p) + µj kaj (p)
2 + O

(
kaj (p)

3
)
, for

any point p ∈ Rg which lies in a neighbourhood of aj , where βj , µj ∈ R. Hence solutions (4.13) can
be rewritten using this choice of local parameters and then are expressed by the use of the scalars βj
and µj .

Moreover, choosing an+1 as a critical point of h, we get (4.30). In this case, the modulus of solutions
(4.13) do not depend on the variable t.

4.5 Reduction of n-NLS to (n-1)-NLS

It is natural to ask if starting from solutions of n-NLS we can obtain solutions of (n-1)-NLS for n > 2.
Such a reduction is possible if one of the functions ψj solutions of n-NLS vanishes identically.

Let R+
g,n+1 be the (n + 1)-sheeted covering introduced in Section 4.3.1; to obtain solutions of (n-

1)-NLS+ from solutions of n-NLS+, we consider the following degeneration of the covering R+
g,n+1: let

the branch points z2g+2n and z2g+2n−1 coalesce, in such way that the �rst sheet gets disconnected from
the other sheets (see Figure 1); denote by R+

g,n the covering obtained in this limit.
Then the normalized holomorphic di�erentials on R+

g,n+1 tend to normalized holomorphic di�er-
entials on R+

g,n; on the �rst sheet, all holomorphic di�erentials tend to zero. Therefore, in this limit,
each component of the vector Va1 tends to 0.

Hence by (2.12) and (4.14), the function ψ1 tends to zero as z2g+2n and z2g+2n−1 coalesce. Functions
{ψj}nj=2 obtained in this limit are solutions of (n-1)-NLS+ associated to the covering R+

g,n.
A similar degeneration produces a solution of (n-1)-NLS− from a solution of n-NLS−.

Remark 4.2. Repeating this degeneration n − 3 times, we rediscover (see [10]) algebro-geometric
solutions of the focusing (resp. defocusing) non-linear Schrödinger equation (1.5) associated to an
hyperelliptic curve with pairwise conjugate branch points (resp. real branch points).
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4.6 Relationship between solutions of KP1 and solutions of n-NLS

Historically, the Korteweg-de Vries equation (KdV) and its generalization to two spatial variables, the
Kadomtsev-Petviashvili equations (KP), were the most important examples of applications of methods
of algebraic geometry in the 1970's (see e.g. [3]). Moreover, the KP equation is the �rst example of
a system with two space variables for which it has been possible to completely solve the problem of
reality of algebro-geometric solutions.

Here we show that starting from our solutions of the multi-component NLS equation and its com-
plexi�cation, we can construct a subclass of complex and real solutions of the Kadomtsev-Petviashvili
equation (KP1)

3

4
uyy =

(
ut −

1

4
(6uux − uxxx)

)
x

. (4.31)

Let Rg be an arbitrary Riemann surface with marked point a, and let ka be an arbitrary local
parameter near a. De�ne vectors Va, Wa, Ua as in (2.8) and let d ∈ Cg. Then, according to
Krichever's theorem [12], the function

u(x, y, t) = 2D2
a log Θ(iVa x+ iWa y + iUa t+ d) + 2 c (4.32)

is a solution of KP1; here the constant c is de�ned by the expansion near a of the normalized mero-
morphic di�erential Ω

(2)
a (p) having a pole of order two at a only: Ω

(2)
a (p) = (ka(p))

−2 + c ka(p) + ...,
where p lies in a neighbourhood of a.

Let us check that if the local parameter ka is de�ned by the meromorphic function f as ka(p) =
f(p) − f(a), then formula (4.32) naturally arises from our construction of solutions of the n-NLSs

system. Namely, identify a with an+1. Then, due to the fact that
∑n+1

j=1 Vaj = 0 (see Lemma 4.1), the
solution (4.32) of KP1 can be rewritten as

u(x, y, t) = −2

n∑
j=1

Dan+1Daj log Θ(z) + 2 c,

where z = iVan+1 x+ iWan+1 y + iUan+1 t+ d. Using corollary (2.10) of Fay's identity, we get

u(x, y, t) = −2
n∑
j=1

(
q1(an+1, aj) + q2(an+1, aj)

Θ(z + rj) Θ(z− rj)

Θ(z)2

)
+ 2 c. (4.33)

Now let us consider solutions ψj , ψ∗j (4.4) of the complexi�ed multi-component NLS equation, and
make the change of variables (x, t) → (x, y) and d → −iUan+1 t + d. Then by (4.33), the complex-
valued solutions u (4.32) of KP1 and solutions ψj , ψ∗j (4.4) of the complexi�ed n-NLS system are
related by

u(x, y, t) = γ − 2
n∑
j=1

ψj(x, y, t)ψ
∗
j (x, y, t), (4.34)

where

γ = −2

n∑
j=1

q1(an+1, aj) + 2 c.

If we impose the reality conditions (4.3), we obtain real solutions (4.32) of KP1 from our solutions
(4.25) of n-NLSs equation

u(x, y, t) = γ − 2

n∑
j=1

sj |ψj(x, y, t)|2. (4.35)
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Due to the fact that in our construction of solutions of the multi-component NLS equation, the
local parameters are de�ned by the meromorphic function f , complex solutions (4.34) and real solutions
(4.35) of KP1 obtained in this way form only a subclass of Krichever's solutions.

I thank C. Klein, who interested me in the subject, and D. Korotkin for carefully reading the
manuscript and providing valuable hints. I am grateful to B. Dubrovin and V. Shramchenko for useful
discussions. This work has been supported in part by the project FroM-PDE funded by the European
Research Council through the Advanced Investigator Grant Scheme, the Conseil Régional de Bourgogne
via a FABER grant and the ANR via the program ANR-09-BLAN-0117-01.

A Real Riemann surfaces

In this section, we recall some facts from the theory of real compact Riemann surfaces. Following [20],
we introduce a symplectic basis of cycles on Rg and study reality properties of various objects on the
Riemann surface Rg associated to this basis.

A.1 Action of τ on the homology group H1(Rg)

A Riemann surface Rg is called real if it admits an anti-holomorphic involution τ : Rg → Rg, τ2 = 1.
The connected components of the set of �xed points of the anti-involution τ are called real ovals of
τ . We denote by Rg(R) the set of �xed points. Assume that Rg(R) consists of k real ovals, with
0 ≤ k ≤ g + 1. The curves with the maximal number of real ovals, k = g + 1, are called M-curves.

The complement Rg \ Rg(R) has either one or two connected components. The curve Rg is called
a dividing curve (or that Rg divides) if Rg \Rg(R) has two components, and Rg is called non-dividing

if Rg \ Rg(R) is connected (notice that an M-curve is always a dividing curve).

Example A.1. Consider the hyperelliptic Riemann surface of genus g de�ned by the equation

µ2 =

2g+1∏
k=1

(λ− λk), (A.1)

where the branch points λk ∈ R are ordered such that λ1 < . . . < λ2g+1. On such a Riemann sur-

face, we can de�ne two anti-holomorphic involutions τ1 and τ2, given respectively by τ1(λ, µ) = (λ, µ)
and τ2(λ, µ) = (λ,−µ). Projections of real ovals of τ1 on the λ-plane coincide with the intervals

[λ1, λ2], . . . , [λ2g+1,+∞], and projections of real ovals of τ2 on the λ-plane coincide with the intervals

[−∞, λ1], . . . , [λ2g, λ2g+1]. Hence the curve (A.1) is an M-curve with respect to both anti-involutions

τ1 and τ2.

Denote by {A,B} the set of generators of the homology group H1(Rg), where A = (A1, . . . ,Ag)T
and B = (B1, . . . ,Bg)T . According to Proposition 2.2 in [20], there exists a canonical homology basis
such that (

τA
τB

)
=

(
Ig 0
H −Ig

)(
A
B

)
, (A.2)
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where Ig is the g × g unit matrix, and H is a g × g matrix de�ned as follows

1) if Rg(R) 6= ∅,

H =



0 1
1 0

. . .
0 1
1 0

0
. . .

0


if Rg(R) is dividing,

H =



1
. . .

1
0

. . .
0


if Rg(R) is non-dividing,

(rank(H) = g + 1− k in both cases).

2) if Rg(R) = ∅, (i.e. the curve does not have real ovals), then

H =


0 1
1 0

. . .
0 1
1 0

 or H =



0 1
1 0

. . .
0 1
1 0

0


,

(rank(H) = g if g is even, rank(H) = g − 1 if g is odd).

Let us choose the homology basis satisfying (A.2), and study the action of τ on the normalized
holomorphic di�erentials, and the action of the complex conjugation on the theta function with zero
characteristics.

By (A.2) the A-cycles of the homology basis are invariant under τ . Due to normalization condition
(2.1) this leads to the following action of τ on the normalized holomorphic di�erentials

τ∗ωj = −ωj . (A.3)

Using (A.2) and (A.3) we get the following reality property for the matrix B of B-periods
B = B− 2iπH. (A.4)

By Proposition 2.3 in [20], for any z ∈ Cg, relation (A.4) implies

Θ(z) = κΘ(z− iπ diag(H)), (A.5)

where diag(H) denotes the vector of the diagonal elements of the matrix H, and κ is a root of unity
which depends on matrix H (knowledge of the exact value of κ is not needed for our purpose).
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A.2 Action of τ on H1(Rg \ {a, b}) and H1(Rg, {a, b})
Here, we study the action of τ on the homology group H1(Rg\{a, b}) of the punctured Riemann surface
Rg \ {a, b}, and the action of τ on its dual relative homology group H1(Rg, {a, b}). We consider the
case where τa = b, and the case where τa = a, τb = b.

Denote by {A,B, `} the generators of the relative homology group H1(Rg, {a, b}), where ` is a
contour between a and b which does not intersect the canonical homology basis {A,B}, and denote
by {A,B,Sb} the generators of the homology group H1(Rg \ {a, b}), where Sb is a positively oriented
small contour around b such that Sb ◦ ` = 1.

A.2.1 Case τa = b

Proposition A.1. Let us choose the canonical homology basis in H1(Rg) satisfying (A.2), and assume

that τa = b. Then

1. the action of τ on the generators {A,B, `} of the relative homology group H1(Rg, {a, b}) is given
by  τA

τB
τ`

 =

 Ig 0 0
H −Ig 0
N 0 −1

 AB
`

 , (A.6)

for some N ∈ Zg,

2. the action of τ on the generators {A,B,Sb} of the homology group H1(Rg \ {a, b}) is given by τA
τB
τSb

 =

 Ig 0 0
H −Ig N
0 0 1

 AB
Sb

 , (A.7)

where vector N ∈ Zg is the same as in (A.6).

Proof. The action of τ on A and B-cycles in (A.6) coincides with the one (A.2) in H1(Rg). From (A.2),
one sees that any contour in H1(Rg) which is invariant under τ is a combination of A-cycles only. In
particular, the closed contour τ`+ ` ∈ H1(Rg) can be written as

τ`+ ` = NA, (A.8)

for some N ∈ Zg. This proves (A.6).

Now let us prove (A.7). By (A.2), the cycles τA admit the following decomposition in H1(Rg \
{a, b}):

τA = A+ nSb, (A.9)

for some n ∈ Zg. Since τ changes the orientation of Rg, all intersection indices change their sign under
the action of τ . We get from (A.9)

0 = A ◦ `
= −τA ◦ τ`
= −(A+ nSb) ◦ τ`
= −(A+ nSb) ◦ (−`+ NA), (A.10)
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where N ∈ Zg is de�ned by (A.6). The last intersection index in (A.10) equals n, which implies
τA = A. According to (A.2), the action of τ on B-cycles in H1(Rg \ {a, b}) is given by

τB = −B + HA+ mSb, (A.11)

for some m ∈ Zg. Then

0 = B ◦ `
= −τB ◦ τ`
= −(−B + HA+ mSb) ◦ τ`
= −(−B + HA+ mSb) ◦ (−`+ NA), (A.12)

where N is de�ned by (A.6). The last intersection index in (A.12) equals m −N, which gives τB =
−B + HA + NSb. Finally, to prove that τSb = Sb, we use the relation Sa + Sb = 0, where Sa is a
positively oriented small contour around a, and the relation τSb = −Sa.

A.2.2 Case τa = a and τb = b

Proposition A.2. Let us choose the canonical homology basis in H1(Rg) satisfying (A.2), and assume

that τa = a and τb = b. Then

1. the action of τ on the generators {A,B, `} of the relative homology group H1(Rg, {a, b}) is given
by  τA

τB
τ`

 =

 Ig 0 0
H −Ig 0
N M 1

 AB
`

 , (A.13)

where N, M ∈ Zg are related by

2N + HM = 0, (A.14)

2. the action of τ on the generators {A,B,Sb} of the homology group H1(Rg \ {a, b}) is given by τA
τB
τSb

 =

 Ig 0 −M
H −Ig N
0 0 −1

 AB
Sb

 , (A.15)

where vectors N, M ∈ Zg are the same as in (A.13).

Proof. The action of τ on A and B-cycles in (A.13) coincides with the one (A.2) in H1(Rg). From
(A.2), one sees that each contour C ∈ H1(Rg) which satis�es τC = −C, can be represented by

C = ÑA+ M̃B, (A.16)

where Ñ, M̃ ∈ Zg are related by 2 Ñ+HM̃ = 0. In particular, the closed contour τ`−` ∈ H1(Rg, {a, b})
can be written as

τ`− ` = NA+ MB, (A.17)

where N, M ∈ Zg are related by 2N + HM = 0. This proves (A.13).
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Now let us prove (A.15). By (A.2), the cycles τA admit the following decomposition in H1(Rg \
{a, b})

τA = A+ nSb, (A.18)

for some n ∈ Zg. Therefore, we get from (A.18)

0 = A ◦ `
= −τA ◦ τ`
= −(A+ nSb) ◦ τ`
= −(A+ nSb) ◦ (`+ NA+ MB), (A.19)

where N, M ∈ Zg is de�ned by (A.13). The last intersection index in (A.19) equals −(n + M), which
gives τA = A−MSb. According to (A.2), the action of τ on B-cycles in H1(Rg \ {a, b}) is given by

τB = −B + HA+ mSb, (A.20)

for some m ∈ Zg. Then

0 = B ◦ `
= −τB ◦ τ`
= −(−B + HA+ mSb) ◦ τ`
= −(−B + HA+ mSb) ◦ (`+ NA+ MB), (A.21)

where N, M ∈ Zg are de�ned by (A.13). The last intersection index in (A.21) equals −(m+N+HM),
which by (A.14) implies τB = −B+HA+NSb. Finally, since the anti-holomorphic involution τ inverses
orientation we have τSb = −Sb. This completes the proof of Proposition A.1.

A.3 Action of τ on the Jacobian and theta divisor of real Riemann surfaces

In this part, we review known results [20], [6] about the theta divisor of real Riemann surfaces. Let us
choose the canonical homology basis satisfying (A.2) and consider the Jacobian J = J(Rg) of the real
Riemann surface Rg. The Abel map (2.5) µ : Rg 7−→ J can be extended linearly to all divisors on Rg,
which de�nes a map on linear equivalence classes of divisors.

The anti-holomorphic involution τ on Rg gives rise to an anti-holomorphic involution on the Ja-

cobian J : if D is a positive divisor of degree n on Rg, then τ D is the class of the point (
∫ τD
n τp0

ω) =

(
∫ D
n p0

τ∗ω) in the Jacobian. Therefore by (A.3), τ lifts to the anti-holomorphic involution on J , denoted
also by τ , given by

τζ = −ζ + nζ µ(τp0), ∀ζ ∈ J, (A.22)

where nζ ∈ Z, nζ ≤ g, is the degree of the divisor D such that µ(D) = ζ.
Now consider the following two subsets of the Jacobian

S1 = {ζ ∈ J ; ζ + τ ζ = iπ diag(H)}, (A.23)

S2 = {ζ ∈ J ; ζ − τ ζ = iπ diag(H)}. (A.24)

In this section we study their intersections S1 ∩ (Θ) and S2 ∩ (Θ) with the theta divisor (Θ), the set
of zeros of the theta function.

Let us introduce the following notations: (ei)k = δik, Bi = B ei. The following proposition was
proved in [20].
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Proposition A.3. The set S1 is a disjoint union of the tori Tv de�ned by

Tv = {ζ ∈ J ; ζ = 2iπ (1
4 diag(H) + v1

2 er+1 + . . .+
vg−r

2 eg) + β1 Re(B1) + . . .+ βg Re(Bg) ,
β1, . . . , βr ∈ R/2Z , βr+1, . . . , βg ∈ R/Z}, (A.25)

where v = (v1, . . . , vg−r) ∈ (Z/2Z)g−r and r is the rank of the matrix H. Moreover, if Rg(R) 6= ∅, then
Tv ∩ (Θ) = ∅ if and only if the curve is dividing and v = 0.

The last statement means that among all curves which admit real ovals, the only torus Tv which
does not intersect the theta-divisor is the torus T0 corresponding to dividing curves. This torus is given
by

T0 = {ζ ∈ J ; ζ = β1 Re(B1) + . . .+ βg Re(Bg), β1, . . . , βr ∈ R/2Z , βr+1, . . . , βg ∈ R/Z}. (A.26)

The following proposition was proved in [6].

Proposition A.4. The set S2 is a disjoint union of the tori T̃v de�ned by

T̃v = {ζ ∈ J ; ζ = 2iπ (α1 e1 + . . .+ αg eg) + v1
2 Br+1 + . . .+

vg−r

2 Bg, α1, . . . , αg ∈ R/Z}, (A.27)

where v = (v1, . . . , vg−r) ∈ (Z/2Z)g−r and r is the rank of the matrix H. Moreover, if Rg(R) 6= ∅, then
T̃v ∩ (Θ) = ∅ if and only if the curve is an M-curve and v = 0.

B Computation of the argument of the fundamental scalar q2(a, b)

This section is devoted to the computation of arg{q2(a, b)}, where q2(a, b) is de�ned by (2.12). As
before, Rg denotes a real compact Riemann surface of genus g with an anti-holomorphic involution τ .
The argument of q2(a, b) is computed both in the case τa = b, as well as in the case τa = a, τb = b.

B.1 Integral representation for q2(a, b)

Assume that a, b ∈ Rg can be connected by a contour which does not intersect basic cycles. Hence
we can de�ne the normalized meromorphic di�erential of the third kind Ωb−a which has residue 1 at b
and residue −1 at a.

Proposition B.1. Let a, b be distinct points on a compact Riemann surface Rg of genus g. Denote

by ka and kb local parameters in a neighbourhood of a and b respectively. Then the quantity q2(a, b)
de�ned in (2.12) admits the following integral representation

q2(a, b) = − lim
b̃→ b
ã→ a

[(
ka(ã) kb(b̃)

)−1
exp

{∫ b̃

ã
Ωb−a(p)

}]
, (B.1)

where the integration contour between ã and b̃, which in the sequel is denoted by ˜̀, does not cross any
cycle from the canonical homology basis.
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Proof. Notice that the scalar q2(a, b) does not depend on the choice of the contour ˜̀, assuming that ˜̀

lies in the fundamental polygon of the Riemann surface.
Denote by kx a local parameter in a neighbourhood of a point x ∈ Rg. To prove (B.1), recall that

∫ b̃

ã
Ωb−a(p) = ln

Θ[δ](
∫ b̃
b )

Θ[δ](
∫ b̃
a )

+ ln
Θ[δ](

∫ ã
a )

Θ[δ](
∫ ã
b )
. (B.2)

Since δ is an odd non singular characteristic, the expression
Θ[δ](

∫ p
b )

Θ[δ](
∫ p
a )

has a simple zero at b and a simple

pole at a. Therefore, if we consider ã lying in a neighbourhood of a, and b̃ lying in a neighbourhood
of b, we get (with α1, β1 6= 0)

Θ[δ](
∫ b̃
b )

Θ[δ](
∫ b̃
a )

= α1 kb(b̃) + o(kb(b̃)), (B.3)

Θ[δ](
∫ ã
a )

Θ[δ](
∫ ã
b )

= β1 ka(ã) + o(ka(ã)). (B.4)

Combining (B.2) together with (B.3) and (B.4), we obtain the following relation

lim
b̃→ b
ã→ a

[(
ka(ã) kb(b̃)

)−1
exp

{∫ b̃

ã
Ωb−a(p)

}]
= α1β1. (B.5)

Moreover, using the de�nition (2.12) of q2(a, b), it follows from (B.3) and (B.4) that α1β1 = −q2(a, b),
which by (B.5) completes the proof.

B.2 Argument of q2(a, b) when τa = b

Here we compute the argument of the fundamental scalar q2(a, b) de�ned in (2.12) in the case where
τa = b. Let us choose the homology basis satisfying (A.2).

Proposition B.2. Let a, b ∈ Rg be distinct points such that τa = b, with local parameters satisfying the

relation kb(τp) = ka(p) for any point p lying in a neighbourhood of a. Consider a contour ` connecting
points a and b; assume that ` is lying in the fundamental polygon of the Riemann surface Rg. Then

the scalar q2(a, b) is real, and its sign is given by:

1. if ` intersects the set of real ovals of Rg only once, and if this intersection is transversal, then

q2(a, b) < 0,

2. if ` does not cross any real oval, then q2(a, b) > 0.

Proof. Let ã, b̃ ∈ Rg lie in a neighbourhood of a and b respectively, and τ ã = b̃. Denote by ˜̀ an
oriented contour connecting ã and b̃. First, let us check that

arg{q2(a, b)} = π(1 + α), (B.6)

36



where α = (τ ˜̀+ ˜̀) ◦ `. The integral representation (B.1) of q2(a, b) leads to

arg{q2(a, b)} = π + Im

(∫
˜̀
Ωb−a(p)

)
. (B.7)

Using the action (A.6) of τ on the A-cycles in the homology group H1(Rg \{a, b}), we get the following
action of τ on the normalized meromorphic di�erentials of third kind Ωb−a:

τ∗Ωb−a = −Ωb−a, (B.8)

(notice that τa = b). Hence, the last term in the right hand side of (B.7) is equal to 1
2i

∫
τ ˜̀+˜̀Ωb−a(p).

The closed contour τ ˜̀+ ˜̀ admits the following decomposition in H1(Rg \ {a, b}),

τ ˜̀+ ˜̀= NA+ αSb, (B.9)

where α = (τ ˜̀+ ˜̀) ◦ ` and N ∈ Zg is de�ned in (A.13). Since the di�erential Ωb−a has vanishing
A-periods, by (B.9) we obtain ∫

τ ˜̀+˜̀
Ωb−a(p) = 2iπα, (B.10)

which leads to (B.6). Therefore, the sign of q2(a, b) depends on the parity of the intersection index
α = (τ ˜̀+ ˜̀) ◦ `.

Let us now consider cases (1) and (2) separatly.

Case (1). Assume that each of the contours ` and ˜̀ intersects the set of real ovals of Rg transversally
only once, and, moreover, this intersection point is the same for ` and ˜̀; we denote it by p0 ∈ Rg(R).
Then the closed contour τ ˜̀+ ˜̀ can be decomposed into a sum of two closed contours c ˜̀

1 and c ˜̀
2,

having the common point p0, and such that τ sends the set of points
{
c ˜̀

1

}
into the set of points{

c ˜̀
2

}
. Therefore, if the orientation of c ˜̀

1 and c ˜̀
2 is inherited from the orientation of τ ˜̀+ ˜̀, we have

τc ˜̀
1 = c ˜̀

2 as elements of H1(Rg \ {a, b}). Then,

c ˜̀
1 ◦ ` = −τc ˜̀

1 ◦ τ` = −c ˜̀
2 ◦ (−`+AN) = c ˜̀

2 ◦ `,

where we used the action (A.6) of τ on the contour `, and the fact that the intersection index between
c ˜̀

2 and A-cycles is zero by (B.9). Hence the intersection index α satis�es

α = (τ ˜̀+ ˜̀) ◦ ` = (c ˜̀
1 + c ˜̀

2) ◦ ` = 2,

which by (B.6) leads to q2(a, b) < 0.

Case (2). Let V be a ring neighbourhood of the path τ ˜̀+ ˜̀, bounded by two closed paths denoted
by ∂V1 and ∂V2, in such way that the path ` lies in V and τ {∂V1} = {∂V2}. We assume that V is
chosen such that no point of V is invariant under τ . Then V can be decomposed into two connected
components denoted by V1 and V2 as follows: V1 is bounded by ∂V1 and τ ˜̀+ ˜̀, and V2 is bounded by

∂V2 and τ ˜̀+ ˜̀. Then τV1 = V2 since the set of points
{
τ ˜̀+ ˜̀

}
is invariant under τ . In particular if

a ∈ V1, then b ∈ V2. Thus the intersection index α = (τ ˜̀+ ˜̀)◦ ` is odd, which leads to q2(a, b) > 0.
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B.3 Argument of q2(a, b) when τa = a and τb = b

Now let us consider the case where a and b are invariant with respect to τ .

Proposition B.3. Let a, b ∈ Rg(R) with local parameters satisfying ka(τp) = ka(p) for any point

p lying in a neighbourhood of a and kb(τp) = kb(p) for any point p lying in a neighbourhood of b.
Denote by {A,B, `} the generators of the relative homology group H1(Rg, {a, b}) (see Section A.2).

Let ã, b̃ ∈ Rg(R) lie in a neighbourhood of a and b respectively, and denote by ˜̀ an oriented contour

connecting ã and b̃. Then the argument of the scalar q2(a, b) is given by

arg{q2(a, b)} = arg{ka(ã) kb(b̃)}+ π

(
1 + α+

1

2
〈HM,M〉

)
− 1

2i
(〈BM,M〉+ 2 〈r,M〉) , (B.11)

where α equals the intersection index (τ ˜̀− τ ˜̀) ◦ `. Here r =
∫
` ω, and M ∈ Zg is de�ned in (A.13).

Proof. From the integral representation (B.1) of q2(a, b) we get

arg{q2(a, b)} = π + arg{ka(ã) kb(b̃)}+ Im

(∫
˜̀
Ωb−a(p)

)
. (B.12)

Considering the action (A.15) of τ on the A-cycles, due to the uniqueness of the normalized di�erential
of the third kind Ωb−a, we obtain

τ∗Ωb−a = Ωb−a +
∑
k

Mk ωk, (B.13)

where ωk are the normalized holomorphic di�erentials. Therefore

Im

(∫
˜̀
Ωb−a(p)

)
≡ 1

2i

(∫
˜̀
Ωb−a −

∫
τ ˜̀

Ωb−a −
∑
k

Mk

∫
τ ˜̀
ωk

)
.

The closed contour τ ˜̀− ˜̀∈ H1(Rg) satis�es τ(τ ˜̀− ˜̀) = −(τ ˜̀− ˜̀); thus by (A.16) it has the following
decomposition in H1(Rg \ {a, b})

τ ˜̀− ˜̀= NA+ MB + αSb, (B.14)

for some α ∈ Z, where N, M ∈ Zg are de�ned in (A.13). Hence we get

Im

(∫
˜̀
Ωb−a(p)

)
≡ 1

2i

−∫
BM

Ωb−a + 2iπα−
∑
k

Mk


∫

˜̀
ωk +

∑
j

(Bjk − iπHjk)Mj


 , (B.15)

where we used the fact that the normalized di�erential Ωb−a has vanishing A-periods, and that the
integral over the small contour Sb of the holomorphic di�erentials is zero. Since by de�nition the
contour ` does not cross any cycles of the absolute homology basis,∫

BM
Ωb−a = 〈M, r〉 . (B.16)

Hence we get

Im

(∫
˜̀
Ωb−a(p)

)
≡ πα+

π

2
〈HM,M〉 − 1

2i
(〈M, r̃ + r〉+ 〈BM,M〉) , (B.17)

where r̃ =
∫

˜̀ω. Considering the limit when ã tends to a and b̃ tends to b, we obtain (B.11).
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