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Abstract

Logical relations have now the maturity to deal with pro-
gram equivalence for realistic programming languages with
features likes recursive types, higher-order references and
first-class continuations. However, such advanced logical
relations—which are defined with technical developments
like step-indexing or heap abstractions using recursively de-
fined worlds—can make a proof tedious. A lot of work has
been done to hide step-indexing in proofs, using Gödel-
Löb logic. But to date, step-indexes have still to appear
explicitely in particular constructions, for instance when
building recursive worlds in a stratified way. In this paper,
we go one step further, proposing an extension of Abadi-
Plotkin logic with forcing construction which enables to en-
capsulate reasoning about step-indexing or heap in different
layers. Moreover, it gives a uniform and abstract manage-
ment of step-indexing for recursive terms or types and for
higher-order references.

1. Introduction

1.1 Logical relations

Logical relations appear in the last decade to be a power-
ful technique for proving program equivalence, able to deal
with concrete non-trivial equivalence of programs making
use of complex features like recursive types, control opera-
tors and higher-order references. For instance, it is now well
known that fix point operators or recursive types [1] can
be handled by logical relations using step indexing, a tech-
nique introduced in [3]. To avoid the apparent circularity in
the definition of logical relations for recursive types, step-
indexes are used to stratify logical relations with a natural
number representing roughly the number of steps for which
the programs in question behave similarly. In this way, it be-
comes possible to prove the equivalence of many programs
that makes use of recursive types by performing a simple
induction on step-indexes. But the management of step in-
dexes during a proof appears to be—borrowing a word from
N. Benton—”ugly”. That’s why many authors, starting from
the work of A. Appel et al. [4], have proposed to hide step-
indexing using Gödel-Löb logic.

[Copyright notice will appear here once ’preprint’ option is removed.]

More recently, D. Dreyer et al. [2, 12] have defined step-
indexed Kripke logical relations with the ability to establish
properties about local state that evolve during computation
in some controlled fashion. Basically, instead of using local
invariants as in the seminal work of A. Pitts and I. Stark [17],
the evolution of the heap is constrained by a state transition
system (STS).

To encompass higher-order references, D. Dreyer et al.
have to extend their notion of heap relations that are used
in each node of the STSs of a world to heap relations taking
a world as a parameter. While all those ideas appear to be
intuitively very elegant, their precise definitions still requires
to make an explicit use of step-indexing and stratification
where people just would like to use Gödel-Löb logic and
recursively defined set of worlds.

This paper proposes a logical setting where all those
different notions can be defined modularly and combined
uniformly.

1.2 Forcing for set theory

Forcing is a method originally designed by P. Cohen in the
60s to prove the independence of the Continuum Hypothesis
from the axiomatic set theory ZFC [8]. The main idea is to
extend a ground model M to a new model M [G] by adding
a new generic element G to M . As M [G] is in general re-
ally complicated, P. Cohen has proposed to control the true
propositions in M [G] by translating them into M . To do so,
he has used forcing conditions, which have to be seen as ap-
proximations of G. Such forcing conditions live in M while
it is not the case for the generic element G. Thus, from a for-
mula ϕ of M [G], the idea is to build syntactically a formula
p  ϕ̂—pronounced “p forces ϕ̂”—that lives in M , and such
that ϕ will be true when there is a“correct”approximation p
of G such that p  ϕ̂ in M . One key property of forcing con-
ditions is that they are ordered. Intuitively, p ≤ q when p is
a more precise approximation of G than q, i.e. contains more
information, so the relation  has to be monotonous for this
order. In a similar manner, J.-L. Krivine has used forcing
to transform into a program any proof using the dependent
choice axiom and the existence of a non-trivial ultrafilter
on N [14]. This approach has recently been clarified by A.
Miquel [16], who tries to understand proof transformation
induced by forcing translation through Curry-Howard iso-
morphism. Finally, in [9], forcing is used to prove construc-
tively the uniform continuity of some functionals defined in
intuitionistic type theory. In this article, we do not pretend
to follow precisely the line drawn by those works, but rather
an alternative line promoting the general slogan:

”Forcing can be used to add logical principles modularly.”

This slogan will be illustrated by defining logical relations in
different logic layers having more and more logical principles.
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1.3 Approximating logical relations with forcing
conditions

In analogy to Cohen’s forcing, we advocate that forcing con-
ditions in the setting of logical relations can be used to ap-
proximate the notion of observation. This follows the well-
known fact that step-indexing can be seen as an approxima-
tion of the equitermination observation O(t1, t2) which says
that the term t1 terminates if and only if t2 terminates.

More precisely, suppose given a logic in which logical
relations can be expressed and consider the formula

E JUnit → UnitK (t1, t2)

that says that the two terms t1 and t2 are related at type
Unit → Unit. In presence of complex features in the lan-
guage, we sometimes want to be able to relate terms that
are not absolutely equivalent but only under some condition
p, written

p  E JUnit → UnitK (t1, t2).

Technically, the formula above is translated into a formula of
the ground logic where the forcing condition p goes through
the formula monotonically until the observation

p  O(t1, t2)

which approximates the original observation. For instance,
when the forcing condition is a world w, the approximated
observation says that t1 and t2 behave the same for all heaps
related by w. When the forcing condition is a step-index n,
the approximated observation says that t1 and t2 behave the
same for n steps.

1.4 Step-indexing as forcing conditions

As indicated above, step-indexes can be rephrased as forcing
conditions over integers (with the usual order) that approx-
imate the observation. In this way, it is possible to recover
uniformly many definitions given in previous works. But the
really interesting part is that we can formalize the logical
principles that step-indexing validate in the forcing layer.

Forcing conditions can be used to approximate existing
formulas but also to give some meaning to new connector in
the logic. Namely, in the step-indexed (SI) layer, one can
define the so-called “later” operator as

n  ⊲ϕ
def
= ∀m < n, m  ϕ

and show that the Löb rule is valid under forcing. To be
more abstract about step-indexes, let us make explicit the
logic associated to the forcing layer

ψ1, . . . , ψk ⊢SI ϕ
def
= ∀n, (n  ψ1, . . . , n  ψk) ⊢ (n  ϕ)

that is, ϕ is true in the SI layer if and only if it is forced
by any step-index. This formalizes the intuition that step-
indexing provides approximations of logical relations whose
limits are logical relation themselves. In the SI layer, the
Löb rule is also valid and can simply be expressed by

⊲P ⊢SI P

⊢SI P

This means that working in the SI layer equipped the
ground logic with an induction principle for free. But we will
see in Section 4 that the SI layer has much more logical prin-
ciples, for instance the ability to define logical relations or
worlds recursively without making any explicit use of strat-
ification. But the fact that each new formula is translated
in the previous layer using the forcing relation enables to

validate the new reasoning principles in the previous layer,
which means that:

”The consistency of the logic defined in a forcing layer
ensues from the consistency of the ground logic.”

The idea of using forcing to prove relative consistency results
in proof theory is not new, see for example [5], but here, we
apply it to type theory.

While step-indexing is fitted to reason on contextual
approximations, it is harder to design step-indexed logical
relations to reason on contextual equivalences. In [11], then
refined in [13], a method based on a direction variable is
given, which corresponds in our framework to a simple
forcing with only two conditions {l, r}.

1.5 Kripke worlds as forcing conditions

Turning back to the seminal work of A. Pitts and I.
Stark [17], let us consider forcing conditions over a set of
worlds defined by

World
def
= Heap×Heap → Prop

A world is thus a relation that states which heaps are in
relation in this world. A world w′ is in the future of a world
w (noted w′ ⊒ w) when w′ extends w on new locations.
Then, defining the relation Ow as t1 and t2 behave the same
for all heaps related by w, we can recover the usual definition
of Kripke logical relations (see Section 5 for details). Note
that the judgement

w  ϕ

was already present in the work of A. Appel et al. [4], as the
definition of Kripke model, for which truth is not absolute
but relative to some appropriate notion of world.

As far as higher order references are concerned, we can no
longer define worlds in this simple manner since references
can point to other references whose relation depends on the
world. So one would like to define world recursively as

World
def
= (Heap×Heap) → World → Prop

However, by a cardinality argument, there is no solution to
this equation in Set. This has lead many authors (see [4]
or [12], for instance) to work with a stratified approximated
solution to this equation. But it seems that step-indexing
is coming into the picture again. Indeed, in [4] or [12],
worlds are indexed by an integer that decreases when time
advances.

One of the main contributions of this paper is to show
that this stratified construction can be recovered by defining
worlds in the step-indexed (SI) layer, using directly the
possibility to define recursive kinds.

2. The Logic FLR

2.1 The language Fµ!

We consider the language Fµ!; a standard call-by-value λ-
calculus with a fixpoint construction, recursive types, uni-
versal polymorphism, and ML-like references. For simplicity,
we do not have products, sums or existential types, but they
could be added easily following [13]. The syntax and the op-
erational semantics are given in in Figure 1, while the typing
rules can be found in Appendix.

2.2 Contextual equivalence

Let ∆ be a context for the free type variables, Υ for the
locations used by the term, and Γ for the free term variables.
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τ, σ
def
= Unit | Nat | α | τ → σ | ∀α.τ | µα.τ | ref τ

v
def
= () | n | l | λx.M | fix f(x).M | Λα.M | roll v

(where n ∈ Nat, l ∈ Loc)

M,N
def
= v | x | τ | MN | rollM | unrollM | refM |

!M | M := N

K
def
= ◦ | KM | Kτ | vK | rollK | unrollK |

refK | !K | K :=M | v := K

h
def
= emp | h[l 7→ v] | h • [l 7→ v]

((λx.M)v, h) 7→ (M {v/x} , h)
(fix f(x).M)v, h) 7→ (M {v/x} {fix f(x).M/f} , h)

((Λα.M)τ, h) 7→ (M {τ/α} , h)
(unroll (rollM), h) 7→ (M,h)

(!l, h) 7→ (v, h) when h(l) = v
(ref v, h) 7→ (l, h • [l 7→ v]) with l /∈ dom(h)

(l := v, h) 7→ ((), h[l 7→ v]) when l ∈ dom(h)

(M1, h1) 7→ (M1, h2)

(K[M1], h1) 7→ (K[M2], h2)

Figure 1. Definitions of Fµ!

Contexts C are defined as terms with a hole [.] anywhere
in the term, and have a type ⊢ C : (∆;Υ; Γ ⊢ τ) →
(∆′; Υ′; Γ′ ⊢ σ) saying that for any M with ∆;Υ; Γ ⊢M : τ ,
we have ∆′; Υ′; Γ′ ⊢ C[M ] : σ. The typing rules of context
are usual and can be found for example in the additional
details of [11]. The contextual equivalence M1 ≃ctx M2 : τ
is then defined over arbitrary context C with a hole:

M1 ≃∆;Υ;Γ
ctx M2 : τ

means that ∆;Υ; Γ ⊢ M1,M2 : τ and for all contexts C
(such that ⊢ C : (∆;Υ; Γ ⊢ τ) → (∆′; Υ′; Γ′ ⊢ σ)), C[M1]
and C[M2] equiterminate.

2.3 Syntax of FLR

Unlike Abadi-Plotkin logic [18] and all the successive de-
velopments like LSLR and LADR, which are based on
second-order logic, we use higher-order logic. The resulting
logic, called FLR, constitutes a language in which logical
relations—and their extension using a forcing condition—
can be defined.

FLR is an extension of (Curry style) Fω with implicit de-
pendent types and a constructor for finite partial functions.
We call kinds the types of the logic, to be differentiated from
types of Fµ!. Kinds are defined as :

T, U := Natp | Loc | Term | Val | Cont | Type | Prop | τ |
⊤ | ⊥ | T × U | T → U | T →fin U | ∀x : T.U

where p ∈ N. Cont will be the kind of contexts, while Type
will be the kind of types of Fµ!.

The atomic propositions are: (1) M = N : syntacti-
cal equality on terms, locations and heaps; (2) (M,h1) →
(N,h2): reduction relation on pairs of term and heap; (3)
abstract notion of observation O on pairs of term and heap;
(4) left and right approximations of the observation Ol

n,O
r
n.

The idea is that Ol
n,O

r
n are approximations of O, controlled

by the forcing conditions. Dealing with equitermination, Ol
n

will represent the left approximation for at most n steps, i.e.

“Ol
n((t1, h1), (t2, h2)) iff for all k ≤ n, if (t1, h1) can be

reduced k times then (t2, h2) terminates.”

It is axiomatized by the logical rules given in Section 2.4.
Formulas are defined by :

P,Q := n | l | M | K | τ | O | Ol
n | Or

n | M = N |
(M,h1) → (N,h2) | P ∧Q | P ∨Q |
P ⇒ Q | ∀x : T.P | ∃x : T.P | (x).P |
π1P | π1Q | 〈P,Q〉 | P ∈ Q

In the following, C denotes a logical context P̄ , i.e. a list
of propositions used as hypothesis, while Γ will be a typing
context. We abbreviateQ ∈ P as P (Q). The well-formedness
of propositions is ensured by standard typing rules given in
Figure 2.

2.4 Inference rules of FLR

Our logic comes with a congruence ∼= on formulas, which
take into account β and η equality. It is defined as the
smallest congruence satisfying the following axioms :

t ∈ x.P ∼= P {t/x}
x.(x ∈ P ) ∼= P when x /∈ FV (P )
π1 〈P,Q〉 ∼= P
π2 〈P,Q〉 ∼= Q

There are also inference rules describing the reduction of
Fµ!, mimicking the operational semantics of Figure 1.

FLR is equipped with standard inference rules given in
Figure 3. Approximated observation relations Ol

n and Or
n

satisfy specific inference rules (we only present the rules for
l):

Γ; C ⊢ Ol
k((M1, h1), (M2, h2) Γ; C ⊢ k < n

Γ; C ⊢ Ol
n((M1, h1), (M2, h2))

Γ; C ⊢ (M1, h1) → (M ′

1, h
′

1)

Γ; C ⊢ ∀k < n.Ol
k((M

′

1, h
′

1), (M2, h2))

Γ; C ⊢ Ol
n((M1, h1), (M2, h2))

Note that in the ground logic, there is no need for inference
rules for O. The expected inference rules will appear when
working in the step-indexed forcing layer.

The coherence of FLR can be ensured by constructing a
model adapted from the coherent space model of Miquel [15].
Our logic is just a fragment of its logic (without universes
and dependent types) with the additional presence of ⊤, ‚
and Natp base sorts.

2.5 Partial finite function

To model heaps and world, we will need partial functions
with finite support as we must guarantee to have free space
in the heap1. That is Heap must be defined as Loc →fin Val.

We use the kind A→fin B of partial finite functions from
A to B, a predicate dom on them, plus the empty function
emp and two constructors f • g and [u 7→ v]. We also have
a constructor f [u 7→ v] which enables to change the value of
a partial function f .

The usual typing rules are given in Annexe and the logical
rules are:

Γ; C ⊢ u /∈ dom(f)

Γ; C ⊢ (f • [u 7→ v])(u) = v

Γ; C ⊢ u ∈ dom(f)

Γ; C ⊢ (f [u 7→ v])(u) = v

1 It seems to be possible to encode them in our logic, like in [19],
but we prefer to define them directly in our system.
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q ≤ p

Γ ⊢ q : Natp Γ ⊢M : Term Γ ⊢ v : Val Γ ⊢ K : Cont Γ ⊢ l : Loc Γ ⊢ τ : Type Γ ⊢ P : ⊤

Γ, x : ⊥ ⊢ P : T for any P

(x : T ) ∈ Γ

Γ ⊢ x : T

Γ, x : T ⊢ P : U

Γ ⊢ x.P : T → U

Γ ⊢ P : T → U Γ ⊢ Q : T

Γ ⊢ Q ∈ P : U

Γ ⊢ P : T × U

Γ ⊢ π1P : T

Γ ⊢ P : T × U

Γ ⊢ π2P : U

Γ ⊢ P : T Γ ⊢ Q : U

Γ ⊢ 〈P,Q〉 : T × U

Γ ⊢ P : T Γ ⊢ T <: U

Γ ⊢ P : U

Γ, x : T ⊢ P : U

Γ ⊢ P : ∀x : T.U

Γ ⊢ P : Prop Γ ⊢ Q : Prop

Γ ⊢ P ⇒ Q : Prop

Γ ⊢ P : Prop Γ ⊢ Q : Prop

Γ ⊢ P ∧Q : Prop

Γ ⊢ P : Prop Γ ⊢ Q : Prop

Γ ⊢ P ∨Q : Prop

Γ, x : T ⊢ P : Prop

Γ ⊢ ∀x : T.P : Prop

Γ, x : T ⊢ P : Prop

Γ ⊢ ∃x : T.P : Prop

Γ ⊢M1,M2 : Term Γ ⊢ h1, h2 : Heap

Γ ⊢ Õ((M1, h1), (M2, h2)) : Prop

Γ ⊢M1,M2 : Term Γ ⊢ h1, h2 : Heap

Γ ⊢ (M1, h1) 7→ (M2, h2) : Prop

Γ ⊢M1,M2

Γ ⊢M1 =M2 : Prop

Γ ⊢ h1, h2 : Heap

Γ ⊢ h1 = h2 : Prop

Figure 2. Typing rules of FLR

P ∈ C

Γ; C ⊢ P

Γ; C ⊢ P ⇒ Q Γ; C ⊢ P

Γ; C ⊢ Q

Γ; C, P ⊢ Q

Γ; C ⊢ P ⇒ Q

Γ; C ⊢ P P ∼= P ′

Γ; C ⊢ P ′ Γ, q : Natp; C ⊢ q ≤ p

Γ; C ⊢ P Γ; C ⊢ Q

Γ; C ⊢ P ∧Q

Γ; C ⊢ P ∧Q

Γ; C ⊢ P

Γ; C ⊢ P ∧Q

Γ; C ⊢ Q

Γ; C ⊢ P

Γ; C ⊢ P ∨Q

Γ; C ⊢ Q

Γ; C ⊢ P ∨Q

Γ; C ⊢ P ∨Q Γ; C, P ⊢ R Γ; C, Q ⊢ R

Γ; C ⊢ R

Γ, x : T ; C ⊢ P x /∈ C

Γ; C ⊢ ∀x : T.P

Γ; C ⊢ ∀x : T.P Γ ⊢ t : T

Γ; C ⊢ P {t/x}

Γ; C ⊢ P {t/x}

Γ; C ⊢ ∃x : T.P

Γ; C ⊢ ∃x : T.P Γ, t : T ; C, P {t/x} ⊢ Q

Γ; C ⊢ Q

Figure 3. Basic Logical rules of FLR

plus the usual commutativity and associativity equality on
the two constructors • and [u 7→ v], extending the congru-
ence ∼=.

2.6 Subtyping

To eliminate implicit dependent types, we use a standard
subtyping relation that is a preorder, is covariant in both
arguments of the product types and validates the inference
rules of Figure 4. Even if a rule like ⊤ → ⊤ <: ⊤ could
appear to be non-standard, one can check that it is satisfied
in the slightly adapted model of [15].

2.7 Logical relations

We can already build a logical relation in this logic for the
pure, polymorphic fragment of Fµ!. Logical relations, built
by induction on types and defined on the following kinds

Rel
def
= (Term×Term) → Prop , Relτ,σ

def
= (τ × σ) → Prop

are given in Figure 5. The definition of logical relations for
polymorphic types uses an environment η which maps free
types to relations. It is important to notice that the defini-
tion of E JτK is made by biorthogonality, which is central in
our work since it is the only place where the observation O
appears. Note that for the definitions of S JΥK and ≃log, we

Γ ⊢ T <: ⊤ Γ ⊢ ⊤ → ⊤ <: ⊤

q ≤ p

Γ ⊢ Natq <: Natp

Γ ⊢ Natp <: Nat

Γ ⊢ T <: T ′ Γ ⊢ U <: U ′

Γ ⊢ T × U <: T ′ × U ′

Γ ⊢ T ′ <: T Γ ⊢ U <: U ′

Γ ⊢ T → U <: T ′ → U ′

Γ ⊢ t : T

Γ ⊢ ∀x : T.U <: U {t/x}

Γ ⊢ T ′ <: T Γ, x : T ′ ⊢ U <: U ′

Γ ⊢ ∀x : T.U <: ∀x : T ′.U ′

Figure 4. Subtyping rules

anticipate Section 5 and use the logical relation on reference
types.

3. Forcing layers

To increase the power of our logic, we will extend it with new
constructions, and new reasoning principles (e.g. the Löb
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V JαKη = η(α)
V JUnitKη = (v1, v2).v1 = v2 = ()
V JNatKη = (v1, v2).∃n : Nat.v1 = v2 = n
V Jτ → σKη = (u1, u2).∀v1, v2 ∈ V JτK (v1, v2),

(u1v1, u2v2) ∈ E JσK
V J∀α.τKη = (u1, u2).∀α1, α2 : Type, ∀r : Relα1,α2

.
(u1α1, u2α2) ∈ E JτKη,α 7→r

K JτKη = (K1,K2).∀v1, v2 ∈ V JτKη , ∀h1, h2 : Heap,
O((K1[v1], h1), (K2[v2], h2))

E JτKη = (M1,M2).∀K1,K2 ∈ K JτKη , ∀h1, h2 : Heap,
O((K1[M1], h1), (K2[M2], h2))

D J∆, αK = (η).∃η′ ∈ D J∆K .∃R : VRel.η = η′ • [α 7→ R]
G JΓ, x; τKη = (γ).∃γ′ ∈ G JΓK .∃(v1, v2) ∈ V JτKη .

γ = γ′ • [x 7→ (v1, v2)]
S JΥ, l : τK = (l, l) ∈ V Jref τK

∅
∧ S JΥK

M1 ≃∆;Υ;Γ

log M2 : τ = ∀η ∈ D J∆K , ∀γ ∈ G JΓKη .
S JΥKη ⇒ (η1γ1M1, η2γ2M2) ∈ E JτKη

Figure 5. Definition of logical relations

rule in the SI layer). Such extensions, organized in layers,
will be translated in the core logic FLR. To do that, we will
use forcing conditions from a partially ordered set (P ≤),
and the forcing relation

p  ϕ

for any p ∈ P, which carries the formula ϕ from a forcing
layer to FLR. Then, the consistency of a forcing layer will
follow directly from the consistency of FLR, since all new
inference rules of a layer can be translated directly in FLR.
Among others, the abstract observation O will take a differ-
ent meaning depending on which layer it is considered. Note
that sorts and terms dealing with finite functions are not
forced (that is the translation is the identity) and will not
appear in the rest of this section. When working in different
forcing layers, the meaning of logical relations will change
even if their definition will remain the same.

3.1 Translation of sorts

A typing judgement of a forcing layer

Γ ⊢P;F̄ P : T

will be translated in the underlying layer as

p : P, [Γ]p ⊢F̄ [P ] : [T ]p.

To define the translation of a kind T , there are two choices.
In some cases, it is necessary to impose a stratification

on kinds using forcing conditions, such a translation will be
noted [T ]p. We will called it higher-order forcing. This will
be particularly useful for the layer SI, where we will have
to translate recursive kinds.

[Base]p
def
= Pp → Base

[T → U ]p
def
= ∀p′ : Pp.[T ]p′ → [U ]p′

[∀x : T.U ]p
def
= ∀p′ : Pp.∀x : [T ]p′ .[U ]p′

[T × U ]p
def
= [T ]p × [U ]p

where Pp = {q | q ≤ p}. Note that Pp is not directly
definable in our logic since we do not have subset types.
This explain the presence of Natp to deal with the layer SI.
We will always suppose to have Pp <: Pq as soon as p ≤ q

This translation is close to the tripos to topos construc-
tion. Indeed, the translation can be seen as a presheaf on P.
This justifies the definition of T → U , since we need a prop-
erty of monotonicity for functions between two presheaves.

In more simple cases, translation of kinds, noted [T ], shall
not depend on forcing conditions :

[Base]
def
= P → Base

[T → U ]
def
= [T ] → [U ]

[∀x : T.U ]
def
= ∀x : [T ].[U ]

[T × U ]
def
= [T ] × [U ]

Notice that contrary to “traditional” forcing [16], even in
this simpler setting, individuals (like Nat) are changed by
forcing.

Note that [T ] corresponds morally to ∀p : P.[T ]p, which
means that the [T ] corresponds to the definition of constant
presheafs. Finally, one define [Γ]p as

[(x : T ),Γ]p = (x : [T ]p), [Γ]p

We now present a monotonicity property that corresponds
to the presheaf condition in [6].

Proposition 1 (Monotonicity for SI). For all type T and
forcing conditions q ≤ p, we have

[T ]p <: [T ]q

Proof. The proof goes by induction on T .

• The atomic kinds are proved using the contravariance of
subtyping relation at the left of the arrow, and the fact
that Pq <: Pp.

• In the case of an arrow kind, we have to prove that
(
∀p′ : Pp.[T ]p′ → [T ]p′

)
<:

(
∀p′ : Pq.[T ]p′ → [T ]p′

)

which is direct by the definition of the subtyping.
• The implicit dependent kind is done in the same way.
• The product kind is direct by induction.

The next theorem states that the forcing translation on sorts
is correct (we only present the theorem for higher-order
forcing translation).

Theorem 1. If Γ ⊢P;F̄ P : T then for all forcing condition
p, we have in the underlying layer p : Nat, [Γ]p ⊢F̄ [P ] : [T ]p.

Proof. The proof is done by induction on the proof of Γ ⊢P;F̄

P : T (and on p in case of SI).

• The axiom rule is transformed into :

(x : [T ]p) ∈ [Γ]p

p : Nat, [Γ]p ⊢ x : [T ]p

• The abstraction rule is transformed into :

p : Nat, [Γ]p, x : [T ]p ⊢ [P ] : [U ]p

p : Nat, [Γ]p ⊢ x.[P ] : ∀p′ : Natp.[T ]p′ → [U ]p′

This rule can be mimic using the derivation
(Hyp and subtyp)

p : Nat, p′ : Natp, [Γ]p′ , x : [T ]p′ ⊢ [P ] : [U ]p′
(Mono and subtyp)

p : Nat, p′ : Natp, [Γ]p, x : [T ]p′ ⊢ [P ] : [U ]p′
(Abs)

p : Nat, p′ : Natp, [Γ]p ⊢ x.[P ] : [T ]p′ → [U ]p′
(forall)

p : Nat, [Γ]p ⊢ x.[P ] : ∀p′ : Natp[T ]p′ → [U ]p′
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• The application rule is transformed into:

p : Nat, [Γ]p ⊢ [P ] : ∀p′ : Natp[T ]p′ → [U ]p′ p : Nat, [Γ]p ⊢ [Q] : [T ]p

p : Nat, [Γ]p ⊢ [Q] ∈ [P ] : [U ]p

The proof goes by instantiating forall at p and using the
application of the underlying layer.

• Other cases are either direct or similar.

3.2 Translation of formulas

Following [16], we now present the translation of formulas.
In the layer P, the rule

Γ1; C1 ⊢P ϕ1 . . . Γn; Cn ⊢P ϕn

Γ; C ⊢P ϕ

will be valid if for all forcing condition p

[Γ1]p; p  C1 ⊢ p  ϕ1 . . . [Γn]p; p  Cn ⊢ p  ϕn

p  Γ; p  C ⊢ p  ϕ

is valid in the underneath layer, where p  C is defined
pointwisely.

The forcing relation of a formula P is noted [P ]. If P is of
type T then [P ] is of type P → T . It is defined by induction
on the structure of the formula :

[x]
def
= x

[P ∧Q]
def
= (p : P).[P ]p ∧ [Q]p

[P ∨Q]
def
= (p : P).[P ]p ∨ [Q]p

[P ⇒ Q]
def
= (p : P).∀q ≤ p.[P ]q ⇒ [Q]p

[∀x : T.P ]
def
= (p : P).∀q ≤ p.∀x : [T ]q.[P ]q

[∃x : T.P ]
def
= (p : P).∃x : [T ]q.[P ]p

[x.P ]
def
= x.[P ]

[Q ∈ P ]
def
= [Q] ∈ [P ]

[πiP ]
def
= πi[P ]

[〈P,Q〉]
def
= 〈[P ], [Q]〉

and p  P is defined as p ∈ [P ].
This translation satisfies these following important prop-

erties (proofs of Proposition 2 and Theorem 2 can be directly
adapted from [16]).

Proposition 2 (substitution and congruence).

1. [P {Q/x}] = [P ] {[Q]/x}.
2. If P ∼= Q, then [P ] ∼= [Q].
3. p  P {Q/x} = p  P {[Q]/x}.
4. If P ∼= Q, then p  P ∼= p  Q.

Theorem 2 (Monotonicity). If p  P and q ≤ p then
q  P , as soon as it is the case for atomic propositions.

Theorem 3. If Γ, C ⊢P;F̄ P then for all forcing condition
p, we have in the underlying layer : [Γ]p, p  C ⊢F̄ p  P .

Proof. The proof goes by induction on the proof of Γ, C ⊢P;F̄

P . We only treat the case of forall elimination and introduc-
tion.

• Elimination of forall:

[Γ]p; p  C ⊢F̄ ∀q ≤ p.∀x : [T ]q.q  P [Γ]p ⊢F̄ [t] : [T ]p

[Γ]p; p  C ⊢F̄ p  P {t/x}

using the elimination of forall in the layer F̄ and substi-
tutivity.

• Introduction of forall:

[Γ]p, x : [T ]p; p  C ⊢F̄ p  P

[Γ]p; p  C ⊢F̄ ∀q ≤ p.∀x : [T ]q.q  P

using the introduction of forall in the base layer and
monotonicity of the translations.

Note that the last theorem justifies the coherence of the logic
defined in a forcing layer by the coherence of the logic in the
underlying layer. This justifies the following inference rule
to go from one layer to its underlying layer

Γ; C ⊢F̄;P P Γ ⊢F̄;P p : P

Γ; C ⊢F̄ (p  P )

But, as we will see in the rest of the paper, the main interest
of new forcing layers is that they can provide new reasoning
principle that were not explicit in the underlying layer.

3.3 Composition of forcing layers

Forcing layers can be combined sequentially. To define a new
layerQ over a layer P, it suffices to define the forcing relation
on atomic propositions and new logical connectors of P.

For example, the step-indexed layer introduces a new
logical connector ⊲ for which, when building the Kripke layer
over it, we have to define what w  ⊲ϕ is. In that case, it
is not difficult as it is just ⊲(w  ϕ). Note that the order
in which forcing conditions are composed—which will be
represented by a stack of forcing names P1; . . . ;Pn on the
judgement symbol ⊢—really matters. For instance, building
the Kripke layer before the SI layer provides from using
recursive sorts in the definition of worlds.

4. Step-indexing as forcing with

well-founded conditions

To avoid circular definitions in presence of recursion, it
is now common to use step-indexing [3], which amounts
to count the number of reduction steps. This technique
is general enough to deal with the different programming
features where recursion comes into the picture: (1) a fixed-
point operator in the language2, (2) recursive types or (3)
higher-order references.

In our framework, step-indexing will appear as forcing
conditions forming a well-founded order with smallest ele-
ment noted 0 (it will usually be the set of integers). It gives
rise to a forcing layer, noted SI. The well-foundation is cru-
cial to make inductive definitions correct. In SI, the step-
indexed notions of observations Ol

n and Or
n are replaced by

two abstract observations Ol, Or where indexes no longer
show up. Before reviewing the particular formulas and kind
constructions available in SI, we present the definition of
forcing for standard constructors of the logic. Forcing on
basic formulas and kinds is defined as follows: (1) 0 forces

any formula, (2) n  Od def
= Od

n (for n > 0 and d ∈ {r, l})
and (3) definitions for other formulas and kinds are those
given in Section 3.

4.1 Gödel-Löb Logic

In the SI layer, it is possible to define a modal operator
⊲—as introduced in [4]—which, when forced, expresses the

2Fixpoints can be handled without step-indexing, thanks to an
unwinding lemma, but this method is more tedious.
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fact that a property has to be true in the (strict) future:

p  ⊲P
def
= ∀q : Predp. q  P

where Predp is the sort of predecessors of an integer p,
defined as

Pred0 = ⊥ and Predp+1 = Natp.

This new connector satisfies two principles stating that the
SI layer forms a Gödel-Löb logic:

⊲-Mono
Γ; C1, C2 ⊢SI P

Γ; ⊲C1, C2 ⊢SI ⊲P
Löb

Γ; C, ⊲P ⊢SI P

Γ; C ⊢SI P

Proof. We will just prove the validity of the Löb rule, the
other one is direct. Using the elimination rule of the impli-
cation before going down to the underneath layer , the rule
becomes:

[Γ]n;n  C ⊢ ∀m ≤ n. (∀k : Predm. k  ϕ) ⇒ m  ϕ

[Γ]n;n  C ⊢ n  ϕ

We prove this inference rule by proving m ≤ n ⇒ m  ϕ
by induction on m, the case m = 0 being direct as 0  ϕ is
always true.

Note that the well-foundation of step-indexes is central to
be able to make an induction on forcing conditions.

There are also the usual distributivity rules of ⊲ over the
logical connectives (the symbol l indicates that the rule can
be used in both directions):

l ⊲-⇒
Γ; C ⊢SI ⊲(P ⇒ Q)

Γ; C ⊢SI ⊲P ⇒ ⊲Q
l ⊲-∧

Γ; C ⊢SI ⊲(P ∧Q)

Γ; C ⊢SI ⊲P ∧ ⊲Q

l ⊲-∨
Γ; C ⊢SI ⊲(P ∨Q)

Γ; C ⊢SI ⊲P ∨ ⊲Q

⊲-∃
Γ; C ⊢SI ⊲(∃x : T.P )

Γ; C ⊢SI ∃x : T. ⊲ P
⊲-∀

Γ; C ⊢SI ⊲(∀x : T.P )

Γ; C ⊢SI ∀x : T. ⊲ P

Proof. Let’s prove the rule ⊲-∀. Leaving the layer SI, we
have to prove that

[Γ]n;n  C ⊢SI ∀k : Predn.∀i : Natk.∀x : [T ]i.i  P (x)

[Γ]n;n  C ⊢SI ∀k : Natn.x : [T ]k.∀i : Predk.i  P (x)

So let k : Natn, x : [T ]k and i : Predk. By monotonicity we
know that x : [T ]i and instantiating the premise with k = i,
we know that i  P (x) (as xi < n).

Using this modality, it is possible to reason about recursion
abstractly as shown in [4]. To be able to reason about logical
relations, we exhibit derived inference rules on observation,
valid in SI, such as the following rule

Γ; C ⊢ (M1, h1) → (M ′

1, h
′

1) Γ; C ⊢SI ⊲O
l((M ′

1, h
′

1), (M2, h2))

Γ; C ⊢SI Ol((M1, h1), (M2, h2))

4.2 Recursive relations

Step-indexed forcing conditions enables to define recursive
relations in SI as

n  µr.R(M1,M2)
def
= ∀k : Predn. k  R {µr.R/r} (M1,M2)

The forcing definition is well-defined thanks to the decreas-
ing of the index. Such recursive relations satisfy the following

inference rules:

RRel-Type
Γ, r : Rel ⊢SI R : Rel

Γ ⊢SI µr.R : Rel

RRel-Inf
Γ; C ⊢SI ⊲R {µr.R/r} (M1,M2)

Γ; C ⊢SI µr.R(M1,M2)

Note that compared to other works, we do not require that
recursive relations are contractive, i.e. have a ⊲ in front of
each occurrence of r. But to prove the membership of two
terms in a recursive relation, we have to reason in the future,
as the Rule RRel-Inf indicates.

As explained in the introduction, using a recursive rela-
tion, logical relations can be extended to recursive types:

V Jµα.τKη
def
= µr.

(

(v1, v2).∃u1, u2 : Val.v1 = rollu1

∧v2 = rollu2 ∧ ⊲V JτKη,α 7→r (u1, u2)
)

4.3 Recursive kinds

In a recent study of step-indexing in the topos of trees [6],
Birkedal et al. have introduced the notion of a later operator
on presheaves, which indicates that we could define such
an operator3 ◮ T (together with recursive kinds µT.U) at
the level of kinds in the SI layer. Indeed, the following
translation of kinds under step-indexed forcing conditions

[◮ T ]0
def
= ⊤

[◮ T ]p+1
def
= [T ]p

[µT.U ]0
def
= ⊤

[µT.U ]p+1
def
= [U [µ.T/T ]]p

gives rise to a stratified construction of kinds. The subtyping
relation is defined as the identity on the new kinds. From
those definitions, one can deduce the validity of the following
typing rules

lRec-Kind
Γ ⊢SI P : ◮ U {µT.U/T}

Γ ⊢SI P : µT.U

lSwitch-◮ ⊲
Γ ⊢SI P : ◮ Prop

Γ ⊢SI ⊲P : Prop

lCommut-◮
Γ ⊢SI P : ◮ (T → U)

Γ ⊢SI P : ◮ T → ◮ U

Mono-◮
Γ ⊢SI P : T

Γ ⊢SI P : ◮ T

together with rules that say that ◮ vanishes in front of the
atomic kinds (but Prop of course).

Proof. • Rec-Kind : [ ◮ U {µT.U/T}]n = [µT.U ]n.
• Switch-◮ ⊲ : For non null integer p, we have to
equiderive

[Γ]p ⊢ [P ] : Predp → Prop

[Γ]p ⊢ n.∀q : Predn.q  P : Natp → Prop

which comes from

[Γ]p, n : Predp ⊢ p  P : Prop

[Γ]p, n : Natp, q : Predn ⊢ q  P : Prop .

3We borrow this notation from [6], to differentiate it from ⊲ which
is used on propositions.
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The case p = 0 is direct using the canonical typing rules
of ⊥ and ⊤.

• Commut-◮ :
Case p = 0:
[ ◮ (T → U)]0 = ⊤ <: ⊤ → ⊤ = [ ◮ T → ◮ U ]0
Case p+ 1:
[ ◮ T → ◮ U ]p+1 <: [ ◮ T → ◮ U ]p = [T → U ]p−1

(induction hypothesis) and [ ◮ T → ◮ U ]p+1 <:
[T ]p → [U ]p. So [ ◮ T → ◮ U ]p+1 <: [T → U ]p.
The same holds for the other direction.

• Mono-◮ : We use the fact that [T ]n <: [◮ T ]n.

Such recursive kinds will be used to build recursive worlds
(Section 5.2), and will explain the presence of ⊲ in the
different definitions of logical relations involving recursive
worlds.

4.4 Equational reasoning

One of the main problem of step-indexing is that it is inher-
ently asymmetric in the sense that going from inequational
to equational logical reasoning is not automatic. Indeed,
from a step-indexed order logical relation 4

τ
n which links

two terms at level n, the induced equivalence M1 ≃τ
n M2

does not satisfy the following extensional property:

If ∀(u1, u2), u1 ≃τ
n u2 ⇒M1 u1 ≃σ

n M2 u2 then M1 ≃τ→σ
n M2

To avoid this problem, the idea—which first appears in
[11]—is to use a parameter indicating what direction of the
proof is to be proved.

To embody this parametric technique in our logic, we
introduce a new layer D, whose forcing conditions is the set
{l, r}, flat-ordered by equality. In this layer, there is only
one notion of observation, which is O. The forcing condition
is then defined by:

l  O
def
= Ol and r  O

def
= Or

and is transparent for the other formulas and kinds of SI.
A reasoning in the SI;D layer has to be true for l and r
indifferently, so it corresponds to an equational reasoning.
Some derivable rules valid in the layer SI,D are shown in
the Figures 6 and 7.

5. Kripke Logical Relation

We now express another use of forcing conditions—the con-
struction of worlds for Kripke logical relations. It is well-
known that Kripke model can be seen as forcing, so this
should not appear as a surprise. What is interesting here is
the interaction between the Kripke layer and other already
defined forcing layers.

Note that compared to step-indexing, it is not possible
to hide the reasoning on worlds, since there is a crucial
interaction between worlds and terms. So in this layer (which
will be called the K layer), we do not really get new logical
principles as it was the case for the SI layer, but we rather
get a new symbol W in the logic which enables to talk about
the heap in formulas. Using this new symbol, the definition
of the logical relation at type ref τ is given by

V Jref τKη (l1, l2)
def
= ∀v1, v2 : τ. W(l1, l2)(v1, v2)

⇐⇒ (v1, v2) ∈ ⊲V JτKη

It says that two locations are related at type ref τ if the
values v1, v2 related in the current world at those locations
are exactly the values that are related at type τ (in the
future).

This means that to define Kripke logical relations over a
set of worlds, we simply have to define

w  W and w  Õ

where Õ means any notion of observation. The rest of the
definitions for formulas and kinds is straightforward. Forcing
an observation with a world w is independent of the very
nature of the observation, since w  Õ((M1, h1), (M2, h2))
ise defined as

(h1, h2) : w ⇒ Õ((M1, h1)(M2, h2)).

It is just a restriction of the observation to heaps related in
the world w, where the formula (h1, h2) : w in the definition
above is a short-hand for

∀l1, l2 ∈ dom(w). w  W(l1, l2)(h1(l1), h2(l2)).

This explains why the layer K can be defined above SI or
D indifferently, where the new logical connectors introduced
in SI are forced transparently as in the rule

w  ⊲ϕ
def
= ⊲(w  ϕ).

Those transparent definitions ensure that the new reasoning
principles available in SI are still valid in the layer K.

As it is the case for Kripke models, an important fact
is that the set of worlds has to be ordered (usually noted
w′ ⊒ w and pronounced w′ future of w) in order to provide
a good notion of forcing conditions. Note that we require the
definition of forcing for the observation to be monotonous,
which is the case in this paper but would not be the case for
complex notion of worlds using STSs [12]. Nevertheless, it is
possible to relax monotony conditions by the use of modal
forcing which makes explicit any need of monotonicity (see
Section 9).

5.1 First-order References

For first-order references, worlds (i.e. forcing conditions)
have the kind

World
def
= (Loc× Loc) →fin Rel

and the meaning of W is simply given by

w  W(l1, l2)(v1, v2)
def
= w(l1, l2)(v1, v2)

This reconstructs logical relations defined by Pitts and
Stark [17]. Note that in that case, we make no use of the
new logical principles available in the SI layer.

5.2 Higher-order references in SI

Dealing with higher-order references requires to define
worlds recursively. This means that we must make use of
recursive kinds available In the SI layer. For higher-order
references, worlds (i.e. forcing conditions) have the kind

World
def
= µW.(Loc× Loc →fin W → Rel),

which corresponds to the one used in the semantics model4

of [7]. Using the typing rule of SI, one can see that the only
“typable” definition of W is the following (used for instance
in [12]):

w  W(l1, l2)(v1, v2)
def
= ⊲w(l1, l2)(w)(v1, v2)

4 In [7] and previous works, the authors needs a monotonic func-
tions space between W and Rel. It appears that—through forcing
construction—any arrow in the K layer is monotonic so we have
it for free in our framework.

8 2011/3/30



Indeed, the typing derivation is

Ax

↑Rec-Kind
Γ ⊢ w : World

↓Commut-◮
Γ ⊢ w :◮ (Loc× Loc →fin World → Rel)

App
Γ ⊢ w : T Γ ⊢ l1, l2 : Loc · · ·

↓Switch◮ ⊲
Γ ⊢ w(l1, l2)(w)(v1, v2) :◮ Prop

Γ ⊢ ⊲w(l1, l2)(w)(v1, v2) : Prop

where Γ and T are respectively

w : World, l1, l2 : Loc, v1, v2 : Term

and

Loc× Loc →fin World → (Term× Term) →◮ Prop

5.3 Reasoning in the K layer

Let C′ = C, (h1, h2) : w and Ow = w  O. Figure 6 presents
the derived rules on Ow. As said before, those rules are
not expressible in the layer K as a precise knowledge of the
current world is required. Nevertheless, when the heap is not
modified by the reduction, we can reason directly in the layer
K. Indeed, the previous inference rules can be written in the
layers ⊢K;SI and ⊢D;K;SI , forgetting any hypothesis about
heaps hi. Hence, inference rules on E JτK can be deduced
(see Figure 7, the proof of Step-D;K;SI-⊲E is given in
Appendix).

Finally, due to the definition of forcing in D and K, we
can show that their forcing relations commute, which is
sometime useful when we want to exit one of the two layer.

6. Properties of Logical Relations

Now that logical relations are defined for the whole language,
let us look at its soundness with respect to observational
equivalence. The proof of soundness for the pure fragment
can be done in the SI;D;K layer as it can be completely
abstracted with respect to worlds. Indeed, pure terms does
not change heap. Such a proof can then be instantiated by
any world, going down to the SI;D layer. When dealing with
the impure fragment, we have to leave the K layer since we
need to know the world under consideration precisely. And
in the same way, when making an asymmetric reasoning,
we will leave the layer D in order to work with a concrete
direction (left or right).

6.1 Compatibility lemmas

To establish the correctness of our logical relation E JτK, we
first prove the so-called compatibility lemmas of Figure 8.
We just give the prove the compatibility for Fix, Roll and
Assign. The rest of the proof can be found in appendix.

Proof. • Rule Fix :
Using the rule V-to-E , we just have to prove that
Γ; C ⊢D,K,SI V Jτ → σK (fix f(x).M1, fix f(x).M2). To do
so, we use the Löb rule, so we have to prove

Γ; C, ⊲(V Jτ → σK (fix f(x).M1, fix f(x).M2))
︸ ︷︷ ︸

C′

⊢D,K,SI V Jτ → σK (fix f(x).M1, fix f(x).M2)

Unwinding the definition, we will prove that

Γ, v1 : τ, v2 : τ ; C′,V JτK (v1, v2)

⊢D,K,SI E Jτ → σK ((fix f(x).M1)v1, (fix f(x).M2)v2)

Using the rule Step-D;K;SI-⊲E , we just have to prove
that

Γ′; C′ ⊢D,K,SI ⊲(E JσK (M1 {v1/x} {f1/f} ,M2 {v2/x} {f1/f}))

and using the rule ⊲-Mono we can conclude using the
premise.

• Rule Roll :
Let K1,K2 two contexts s.t. K Jµα.τKη (K1,K2), we will
prove that K Jτ {µα.τ/α}Kη (K1[roll ◦],K2[roll ◦]).
Let v1, v2 two values s.t. V Jτ {µα.τ/α}Kη (v1, v2), then
we have to prove that

∀h1, h2.O((K1[roll v1], h1), (K2[roll v2], h2))

which is direct since, by monotony and substitution we
have

⊲(V JτKη,α 7→VJµα.τK
η

(v1, v2))

so

V Jµα.τKη (roll v1, roll v2).

• Rule Assign :
Let K1,K2 two contexts s.t. K JUnitKη (K1,K2), we will
prove that K Jref τKη (K1[◦ := M1],K2[◦ := M2]). So let
l1, l2 two values s.t. V Jref τKη (l1, l2) we have to prove

∀h1, h2.O((K1[l1 :=M1], h1), (K2[l2 :=M2], h2))

To do so, we will prove that K JτKη (K1[l1 := ◦],K2[l2 :=
◦]). Let v1, v2 two values s.t. V JτKη (v1, v2) we have to
prove

∀h1, h2.O((K1[l1 := v1], h1), (K2[l2 := v2], h2))

Leaving the layer K, suppose h1, h2 : w then from w 

V Jref τKη (l1, l2) we get that li ∈ dom(hi).
Then we conclude, using the rules StepL-K;SI-E and
StepR-K;SI-E , by showing that

w  O((K1[()], h1[l1 7→ v1]), (K2[()], h2[l2 7→ v2]))

using the fact that w  K JUnitKη (K1,K2) and (h1[l1 7→
v1), h2[l2 7→ v2]) : w.

An other crucial derived rule is the adequacy between V JτK
and E JτK over values :

V-to-E
Γ; C ⊢D,K,SI V JτK (M1,M2)

Γ; C ⊢D,K,SI E JτK (M1,M2)

6.2 Soundness of logical relations

Now we prove the soundness of our logical relation with
respect to the contextual equivalence, following the usual
schema of [13].

Theorem 4. Fundamental property If ∆;Υ; Γ ⊢ t : τ then

⊢D,K,SI t ≃
∆;Υ;Γ

log t : τ .

By induction on the typing rule, in each case using the
previous compatibility lemmas.

Theorem 5. Congruence If ⊢ M1 ≃∆;Υ;Γ

log M2 : τ and

⊢ C : (∆;Υ; Γ ⊢ τ) → (∆′; Υ′; Γ′ ⊢ σ) then ∆;Υ; Γ ⊢
C[M1] ≃log C[M2] : τ .

The proof is done by induction on the context C, using
again compatibility lemmas.

Theorem 6. Adequacy If M1 ≃·,·,Υ
log M2 : τ then for all heap

h satisfying Υ, O((M1, h), (M2, h)).
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Step-Ol
w

Γ; C′ ⊢ (M1, h1) → (M ′
1, h

′
1) Γ; C′ ⊢SI (h′

1, h2) : w
′ Γ; C′ ⊢SI Ol

w′ ((M
′
1, h

′
1), (M2, h2))

Γ; C ⊢SI Ol
w((M1, h1), (M2, h2))

and the dual rule for r

Step-⊲Ol
w

Γ; C′ ⊢ (M1, h1) → (M ′
1, h

′
1) Γ; C′ ⊢SI (h′

1, h2) : w
′ Γ; C′ ⊢SI ⊲Ol

w′ ((M
′
1, h

′
1), (M2, h2))

Γ; C ⊢SI Ol
w((M1, h1), (M2, h2))

and the dual rule for r

Step-⊲Ow

Γ; C′ ⊢ (Mi, hi) → (M ′
i , h

′
i) i ∈ {1, 2} Γ; C′ ⊢D;SI (h′

1, h
′
2) : w

′ Γ; C′ ⊢D;SI ⊲Ow′ ((M ′
1, h

′
1), (M

′
2, h

′
2))

Γ; C ⊢D;SI Ow((M1, h1), (M2, h2))

Figure 6. Derived rules on Ow

StepL-K;SI-E
Γ; C ⊢ (M1, h1) → (M ′

1, h1) Γ; C ⊢K;SI l  E JτK ((M ′

1, h1), (M2, h2))

Γ; C ⊢K;SI l  E JτK ((M1, h1), (M2, h2))
and the dual rule for r

StepL-K;SI-⊲E
Γ; C ⊢ (M1, h1) → (M ′

1, h
′

1) Γ; C ⊢K;SI l  ⊲E JτK ((M ′

1, h
′

1), (M2, h2))

Γ; C ⊢K;SI l  E JτK ((M1, h1), (M2, h2))
and the dual rule for r

Step-D;K;SI-⊲E
Γ; C ⊢ (Mi, hi) → (M ′

i , hi) (i = 1, 2) Γ; C ⊢D;K;SI ⊲E JτK (M ′

1,M
′

2)

Γ; C ⊢D;K;SI E JτK (M1,M2)

Figure 7. Derived rules on E JτK for the layer K;SI

To prove it, we just have to show that the empty context
is in K JτK.

Theorem 7. Soundness If ⊢D,K,SI M1 ≃∆;Υ;Γ

log M2 : τ then

⊢D,K,SI M1 ≃∆;Υ;Γ
ctx M2 : τ .

Direct by combining adequacy and congruence lemmas.

7. An example : the Landin Knot

To illustrate our work, we are going to show that the well-
known Landin knot is logically equivalent to the usual fix-
point operator. Following [13], we consider

M1 = let y = ref (λx.⊥) in y:= (λ x.let f = !y in
e);!y

and

M2 = fix λ f(x).e

and we will prove that ⊢D,K,SI (M1,M2) ∈ E Jτ → σK.
Unwinding the definition of E Jτ → σK, we have to prove that

(K1,K2) ∈ K Jτ → σK ⊢D,K,SI

((K1[M1], h1), (K2[M2], h2)) ∈ O

Leaving the layer K, we have to prove that those two terms
are in Ow for every world w. Then, we use the rule Step-Ol

w

with the fact that (K1[M1], h1) reduce to

(λx.let f = !l in e
︸ ︷︷ ︸

M′

1

, h1 • [l 7→ λx.let f = !l in e]
︸ ︷︷ ︸

h′

1

)

So we build a world w′ ⊒ w which restrains l to always point
in h1 to λx.let f = !l in e :

w′ = w • [(l, l) 7→ R]

where R is the relation (t1, t2).t1 = λx.let f = !l in e.
So we just have to prove that w′

 (M ′
1,M2) ∈ E Jτ → σK.

To do so, we use the rule V-to-E and the Löb rule, and thus

prove that

⊲(w′
 (M ′

1,M2) ∈ V Jτ → σK
︸ ︷︷ ︸

C1

) ⊢D;SI

w′
 (M ′

1,M2) ∈ V Jτ → σK

Using the rule Abstr in the layer D;SI, then the rule Step-
D;K;SI-⊲E , this amount to prove

Γ; ⊲C1; C2 ⊢D;SI

w′
 ⊲(e {v1/x} {M

′
1/f} , e {v2/x} {M2/f}) ∈ E JσK

where Γ is l : Loc, v1, v2 : τ and C2 is (v1, v2) ∈ V JτK. Then,
using the rule Mono-⊲, we make the ⊲ disappear and we
conclude using the rule App with the hypothesis C1, C2.

8. Related works

8.1 Syntactic models

The difficulties encountered to build logical relations for
Fµ! also appear at the semantic model level. Indeed, those
models—associating to each type a set of terms—can some-
how be seen as unary version of logical relations.

The very modal model [4] introduces the stratification of
worlds and the ⊲ operator, following the idea that derefer-
encing will always take at least one step of reduction. In this
way properties about the value stocked there only have to
be proved in the strict future.

In [19], F. Pottier gives a typed store-passing transla-
tion for higher-order references. This syntactic construction
is based on Nakano’s system, introducing co-inductively de-
fined kinds with well-formation defined thanks to a “later”
modality on those kinds. As it is the case for [7], there are
clear connections between this syntactic presentation and
the logical principles available in the SI layer.

8.2 Topos of trees

In [6], Birkedal et al. define a semantic model of a language
similar to Fµ!, built over the topos of trees (i.e. of presheaves
over ω̄). It appears that this topos constitutes a model of
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Abstr

Γ, v1 : τ, v2 : τ ; C,V JτKη (v1, v2) ⊢D,K,SI E JσKη (M1 {v1/x} ,M2 {v2/x})

Γ; C ⊢D,K,SI E Jτ → σKη (λx.M1, λx.M2)

App

Γ; C ⊢D,K,SI E Jτ → σKη (M1,M2) Γ; C ⊢D,K,SI E JτKη (N1, N2)

Γ; C ⊢D,K,SI E JσKη (M1N1,M2N2)

Fix
Γ, v1 : τ, v2 : τ ; C,V JτKη (v1, v2),V Jτ → σKη (f2, f1) ⊢D,K,SI E JσKη (M1 {v1/x} {f1/f} ,M2 {v2/x} {f1/f})

Γ; C ⊢D,K,SI E Jτ → σKη (fix f(x).M1
︸ ︷︷ ︸

f1

, fix f(x).M2)
︸ ︷︷ ︸

f2

Gen

Γ, α1 : Type, α2 : Type, r : Relα1,α2
; C ⊢D,K,SI E JτKη,α 7→r (M1 {α1/α} ,M2 {α1/α})

Γ; C ⊢D,K,SI E J∀α.τKη (Λα.M1,Λα.M2)

Inst

Γ; C ⊢D,K,SI E J∀α.τKη (M1,M2) Γ ⊢D,K,SI σ : Type

Γ; C ⊢D,K,SI E Jτ {σ/τ}Kη (M1σ,M2σ)

Roll

Γ; C ⊢D,K,SI E Jτ {µα.τ/α}Kη (M1,M2)

Γ; C ⊢D,K,SI E Jµα.τKη (rollM1, rollM2)
Unroll

Γ; C ⊢D,K,SI E Jµα.τKη (M1,M2)

Γ; C ⊢D,K,SI E Jτ {µα.τ/α}Kη (unrollM1, unrollM2)

Alloc

Γ; C ⊢D,K,SI E JτKη (M1,M2)

Γ; C ⊢D,K,SI E Jref τKη (refM1, refM2)
Deref

Γ; C ⊢D,K,SI E Jref τKη (M1,M2)

Γ; C ⊢D,K,SI E JτKη (!M1, !M2)

Assign

Γ; C ⊢D,K,SI E Jref τKη (M1,M2) Γ; C ⊢D,K,SI E JτKη (N1, N2)

Γ; C ⊢D,K,SI E JτKη (M1 := N1,M2 := N2)

Figure 8. Compatibility lemmas

our SI layer—even so we don’t need models to testimony
the consistency of our logic as we just translate it into
FLR using forcing definitions. This should not appear as a
surprise as Cohen forcing can be rephrased in topos theory,
following the work of Lawvere and Thierney [20].

More precisely, a predicate ϕ in the layer SI is seen as an
ω-valued function, mapping to the set of indexes which force
it. The stratification of sorts appearing in the SI layer corre-
sponds to the construction of presheaves. The stratification
of Prop induced by forcing conditions corresponds exactly to
the definition of the subobject classifier Ω of the topos. The
fact that the translation of sorts is constant but for Prop and
µT.U follows from the idea that constant presheaves (i.e. the
logic of the tripos over ω) are enough to model LSLR.

8.3 LSLR and LADR

LSLR [11] is an extension of Abadi-Plotkin logic to reason
about equivalence of λ-terms with polymorphism and re-
cursive types. LADR [13] is an extension of LSLR to prove
equivalence of λ-terms with higher-order states, e.g. using
Kripke logical relations. Both logics make step-indexing ab-
stract using Gödel-Lob logic and a ⊲ operator. But to build
recursive worlds in LADR, the authors use an explicit strat-
ification which makes step-indexes apparent. It should be
possible to integrate their construction in our system, just
like the refinement of [12], without making any step-index
visible in the layer SI, using recursive kinds.

Our approach is really different from LSLR and LADR:
we do not rely on any particular model to prove the co-
herence of our logic. Indeed, the coherence of the different
forcing layers comes directly from the translation of propo-
sitions in the core logic.

Definitions of recursive relations µr.R in LSLR must sat-
isfy a syntactic criterion of contractivity, which enforces the
presence of ⊲ in front of each occurrence of the variable r.
This criterion is crucial to build their model. Our approach
is different since the ⊲ operator is not in the definition of re-
cursive relations but appears through a particular inference
rule that unfolds the definition of µr.R only in the future.

Compared to LSLR, we do not count only roll and unroll
reductions in step-indexes, but decides that every reduction
matters. Then, using the rule ⊲-Mono, it is possible to erase
occurrences of ⊲ that will not be relevant in the proof. Doing
so, step-indexing can be used to deal with fixpoint operator,
but it is no longer guided by the inference rules, as it is the
case with the ⊳ in LSLR.

Finally, the idea of a direction parameter d to deal with
the problem of equational reasoning in presence of step-
indexing appeared first in LSLR, where it is simply a term
variable of type bool, which always appear in the typing
context Γ. This idea is then refined in LADR where the
parameter appears in the definition of worlds. Here, we go
one step further and define a proper forcing layer D where
we can deal with equational reasoning.

9. Future work

Monotonicity and modal forcing What we have pre-
sented here correspond to intuitionnistic forcing, since the
monotonicity is imposed by the definition of p  P ⇒ Q
and p  ∀x : T.P . This is enough to deal with worlds seen
as invariants on heap. But recent works in [2] and [12] have
developed notions of worlds which described the evolution
of the heap. To deal with such works in our framework, we
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would need to relax the monotonicity of our forcing relation,
and rather add a modality � just as in [13]

p  �P
def
= ∀q ≤ p.q  P.

Using this modality, we can explicitly state were monotonic-
ity has to be enforced and where it is not relevant. In the
same way we could deal with public and private transition
of [12] by splitting the order of forcing condition into two
parts.

Finer description of the heap It would be interesting to
see if relational separation logic can be used to link abstract
worlds and heaps, as in [12]. Then, temporal logic could be
used to reason about STSs, which are used to restrict the
possible futures of worlds. The problem with this method
is that the order on worlds is eminently not linear, so we
have to keep track of each choice made while moving in the
future. This is done in LADR using island contexts. With
such an extension of our framework we would be able to
express useful derived rules for programs modifying their
heap, without leaving the layer K.

Implicit Complexity A recent work of Hofmann and Dal
Lago on a realizability model for implicit complexity type
system [10] uses a notion of resource monoid which fits
well in our framework, when working with a predicative
(as opposed to relational) notion of termination for the
observation. This would be an example where the order on
forcing conditions in the SI layer is not linear.

Subset types Some of the properties of our logic, like the
kinds Natp and T →fin U , could be defined using usual
subset types. However, adding them in our framework is not
easy, since we would then have to define the forcing transla-
tion of such sorts. This seems anyway possible following the
translation of proofs induced by forcing given in [16].

Formalization in Coq Formalizing this work in Coq
would not be totally easy due to the lack of implicit de-
pendent types in CIC. So this requires a deep embedding of
the logic. An other possibility would be to avoid the use of
implicit depend types by constraining the monotonicity of
[T → U ] directly in the definition (using record types).

10. Conclusion

In this paper, we decompose the construction of logical re-
lations for a language with recursive types and higher-order
references. This is achieved by reunderstanding Cohen’s forc-
ing as a way to increase step-by-step the power of a logical
setting. The first step is to extend the logic with the Löb
rule, recursive relations and recursive kinds by means of forc-
ing with step indexes which stratify formulas and kinds. The
second step is to encompass the asymmetric nature of proofs
of equivalence by means of forcing with two elements repre-
senting the left and right orientation. Finally, the last step is
to extend the model with a notion of recursive worlds (based
on recursive kinds provided by step-indexes), which—when
seeing as forcing conditions—defines directly the usual no-
tion of Kripke logical relations. One of the main achievement
of this paper is to build complex notion of worlds directly
inside the logic. We believe that the use of forcing conditions
opens the door to the definition of richer logical relations to
deal with concurrent or design specific languages.
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Appendix

Typing rules for partial finite functions.

(x : τ) ∈ Γ

∆;Υ; Γ ⊢ x : τ ∆;Υ; Γ ⊢ () : Unit ∆;Υ; Γ ⊢ n : Nat

∆;Υ; Γ ⊢M : τ → σ ∆;Υ; Γ ⊢ N : τ

∆;Υ; Γ ⊢MN : σ

∆;Υ; Γ, x : τ ⊢M : σ

∆;Υ; Γ ⊢ λx.M : τ → σ

∆;Υ; Γ, x : τ, f : τ → σ ⊢M : σ

∆;Υ; Γ ⊢ fix f(x).M : τ → σ

∆;Υ; Γ ⊢M : ∀α.τ FV (σ) ⊆ ∆

∆;Υ; Γ ⊢Mσ : τ {σ/α}

∆, α; Υ; Γ ⊢M : τ

∆;Υ; Γ ⊢ Λα.M : ∀α.τ

∆;Υ; Γ ⊢M : µα.τ

∆;Υ; Γ ⊢ unrollM : τ {µα.τ/α}

∆, α; Υ; Γ ⊢M : τ {µα.τ/α} FV (τ) ⊆ ∆ ∪ {α}

∆;Υ; Γ ⊢ rollM : µα.τ

∆;Υ; Γ ⊢ l : ref Υ(l)

∆;Υ; Γ ⊢ M : ref τ

∆;Υ; Γ ⊢!M : τ

∆;Υ; Γ ⊢ M : ref τ ∆;Υ; Γ ⊢ N : τ

∆;Υ; Γ ⊢ M := N : Unit

Typing rules for partial finite functions.

Γ ⊢ f : A→fin B

Γ ⊢ dom(f) : A→ Prop

Γ ⊢ f : A→fin B

Γ ⊢ f : A→ B Γ ⊢ emp : A→fin B

Γ ⊢ f : A→fin B Γ ⊢ u : A Γ ⊢ v : B

Γ ⊢ f • [u 7→ v] : A→fin B

Γ ⊢ f : A→fin B Γ ⊢ u : A Γ ⊢ v : B

Γ ⊢ f [u 7→ v] : A→fin B

Compatibily lemmas.

• Rule Abstr :

Using the rule V-to-E , we just have to prove that Γ; C ⊢D,K,SI V Jτ → σK (λx.M1, λx.M2). Unwinding the definition, we
will prove that

Γ, v1 : τ, v2 : τ ; C,V JτK (v1, v2) ⊢D,K,SI E Jτ → σK ((λx.M1)v1, (λx.M2)v2)

and we conclude using the rule StepS-E .

• Rule App :

LetK1,K2 s.t.K JσK (K1,K2), we will prove thatK Jτ → σK (K1[◦N1],K2[◦N2]). So letM
′
1,M

′
2 s.t. V Jτ → σK (λx.M ′

1, λx.M
′
2),

then we must show

∀h1, h2.O((K1[(λx.M
′

1)N1], h1),K2[(λx.M
′

2)N2], h2)

Using the fact that E JτK (N1, N2), we just have to prove that K JτK (K1[(λx.M
′
1)◦],K2[(λx.M

′
2)◦]). so taking v1, v2 s.t.

V JτK (v1, v2) and we can conclude showing

∀h1, h2.O((K1[(λx.M
′

1)v1], h1),K2[(λx.M
′

2)v2], h2)

which comes from the fact that E JσK ((λx.M ′
1)v1, (λx.M

′
2)v2) and K JσK (K1,K2).

• Rule Fix :

Using the rule V-to-E , we just have to prove that Γ; C ⊢D,K,SI V Jτ → σK (fix f(x).M1, fix f(x).M2). To do so, we use the
Löb rule, so we have to prove

Γ; C, ⊲(V Jτ → σK (fix f(x).M1, fix f(x).M2))
︸ ︷︷ ︸

C′

⊢D,K,SI V Jτ → σK (fix f(x).M1, fix f(x).M2)

Unwinding the definition, we will prove that

Γ, v1 : τ, v2 : τ ; C′,V JτK (v1, v2) ⊢D,K,SI E Jτ → σK ((fix f(x).M1)v1, (fix f(x).M2)v2)
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Using the rule Step-D;K;SI-⊲E , we just have to prove that

Γ′; C′ ⊢D,K,SI ⊲(E JσK (M1 {v1/x} {f1/f} ,M2 {v2/x} {f1/f}))

and using the rule ⊲-Mono we can conclude using the premiss.

• Rule Gen :

Using the rule V-to-E , we just have to prove Γ; C ⊢D,K,SI V J∀α.τKη (Λα.M1,Λα.M2). So let α1, α2 two types and
r : Relα1,α2

and we prove that

Γ, α1 : Type, α2 : Type, r : Relα1,α2
; C ⊢D,K,SI E JτKη,α 7→r (((Λα.M1)α1, (Λα.M2)α2)

using the rule Step-D;K;SI-⊲E .

• Rule Inst :

Let K1,K2 two contexts s.t. K Jτ {σ/α}K (K1,K2), we will prove that

K J∀α.τK (K1[◦σ],K2[◦σ])

Indeed, let v1, v2 two values s.t. V J∀α.τK (v1, v2), we must show :

∀h1, h2.O((K1[v1σ], h1), (K2[v2σ], h2))

To do so, we use the fact that E JτKη,α 7→r (v1σ, v2σ) for all r : Relσ, that K Jτ {σ/α}Kη (K1,K2) and the equality between
E JτKη,α 7→VJσK

η

and E Jτ {τ/α}Kη.

• Rule Unroll :

Let K1,K2 s.t. K Jτ {µα.τ/α}K (K1,K2), we just have to prove that K Jµα.τK (K1[unroll ◦],K2[unroll ◦]). So let v1, v2 s.t.
V Jµα.τK (roll v1, roll v2), we will show that
∀(h1, h2),O((K1[unroll roll v1], h1), (K2[unroll roll v2], h2)).

To do so, we know that ⊲E Jτ {µα.τ/α}K (v1, v2), i.e. ⊲O((K1[v1], h1), (K2[v2], h2)).

Then we conclude using the rule StepS-⊲O with the fact that (K[unroll roll vi], hi) → (K[vi], hi) with i ∈ {1, 2}.

• Rule Roll :

Let K1,K2 two contexts s.t. K Jµα.τKη (K1,K2), we will prove that K Jτ {µα.τ/α}Kη (K1[roll ◦],K2[roll ◦]).

Let v1, v2 two values s.t. V Jτ {µα.τ/α}Kη (v1, v2), then we have to prove that

∀h1, h2.O((K1[roll v1], h1), (K2[roll v2], h2))

which is direct since, by monotony and substitution we have ⊲(V JτKη,α 7→VJµα.τK
η

(v1, v2)) so V Jµα.τKη (roll v1, roll v2).

• Rule Alloc :

The proof takes place out of the layer K, so let w a world, we have to prove

Γ; C ⊢D;SI ∀w′ ⊒ w.w′
 K JτKη (K

′

1,K
′

2) ⇒ ∀(h1, h2).Ow′((K′

1[M1], h1), (K
′

2[M2], h2))

Γ; C ⊢D;SI ∀w′ ⊒ w.w′
 K Jref τKη (K1,K2) ⇒ ∀(h1, h2).Ow′((K1[refM1], h1), (K2[refM2], h2))

So let K1,K2 two contexts s.t. w′
 K Jref τKη (K1,K2). We will prove that w′

 K JτKη (K1[ref ◦],K2[ref ◦]). Taking

w′′ ⊒ w′ and v1, v2 two values s.t. w′′
 V JτKη (v1, v2), we have to prove :

∀h1, h2.Ow′′((K1[ref v1], h1), (K2[ref v2], h2))

Let h1, h2 two heaps then (Ki[ref vi], hi) → (Ki[li], hi • [li 7→ vi]) with li /∈ dom(hi).

If (h1, h2) : w
′′ then (l1, l2) /∈ dom(w′′), and we can build a new world

w0 = w′′ • [(l1, l2) 7→ (w).w  V JτKη]

and using the rules StepL-K;SI-E and StepR-K;SI-E we just have to prove that

Ow0
((K1[l1], h1 • [l1 7→ v1]), (K2[l2], h2 • [l2 7→ v2]))

which comes from the fact that (h1 • [l1 7→ v1], h2 • [l2 7→ v2]) : w0 and that w0  V Jref τKη (l1, l2), true by definition of w0.
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• Rule Deref :

The proof takes place out of the layer K, so let w a world, we have to prove

Γ; C ⊢D;SI ∀w′ ⊒ w.w′
 K Jref τKη (K

′

1,K
′

2) ⇒ ∀(h1, h2).Ow′((K′

1[M1], h1), (K
′

2[M2], h2))

Γ; C ⊢D;SI ∀w′ ⊒ w.w′
 K JτKη (K1,K2) ⇒ ∀(h1, h2).Ow′((K1[!M1], h1), (K2[!M2], h2))

LetK1,K2 two contexts s.t. w′
 K JτKη (K1,K2), we will prove that w

′
 K Jref τKη (K1[!◦],K2[!◦]). So let a world w′′ ⊒ w′

and two values l1, l2 s.t. w′′
 V Jref τKη (l1, l2), we have to prove :

w′′
 ∀h1, h2.O((K1[!l1], h1), (K2[!l2], h2))

Suppose h1, h2 : w′′ then using the fact that w′′
 V Jref τKη (l1, l2), we know that (l1, l2) ∈ dom(w′′) because W(l1, l2) has

to be defined since V JτKη is not the empty relation. Then we can deduce that li ∈ dom(hi).

So using the rule Step-D;K;SI-⊲E with the same world, we just have to prove that

w′′
 ⊲O((K1[h1(l1)], h1), (K2[h2(l2)], h2))

which come from the fact that w′′
 ⊲V JτKη (h(l1), h(l2)). Indeed, h1, h2 : w′′ means w′′

 W(l1, l2)(h1(l1), h2(l2)) and we
conclude using the definition of V Jref τK.

• Rule Assign :

Let K1,K2 two contexts s.t. K JUnitKη (K1,K2), we will prove that K Jref τKη (K1[◦ :=M1],K2[◦ :=M2]). So let l1, l2 two
values s.t. V Jref τKη (l1, l2) we have to prove :

∀h1, h2.O((K1[l1 :=M1], h1), (K2[l2 :=M2], h2))

To do so, we will prove that K JτKη (K1[l1 := ◦],K2[l2 := ◦]). Let v1, v2 two values s.t. V JτKη (v1, v2) we have to prove :

∀h1, h2.O((K1[l1 := v1], h1), (K2[l2 := v2], h2))

Leaving the layer K, suppose h1, h2 : w then from w  V Jref τKη (l1, l2) we get that li ∈ dom(hi)

Then we conclude, using the rules StepL-K;SI-E and StepR-K;SI-E , by showing that :

w  O((K1[()], h1[l1 7→ v1]), (K2[()], h2[l2 7→ v2]))

using the fact that w  K JUnitKη (K1,K2) and (h1[l1 7→ v1), h2[l2 7→ v2]) : w

Proof tree for rule Step-D;K;SI-⊲E.

Γ′; C′ ⊢F (Mi, hi) → (M ′
i , hi)

Γ′; C′ ⊢F (K1[Mi], hi) → (K2[M
′
i ], hi)

Γ′; C′ ⊢F K JτKη (K1,K2)

Γ′; C′ ⊢F ⊲K JτKη (K1,K2)

Γ′; C′ ⊢F ⊲E JτK (M ′
1,M

′
2)

Γ′; C′ ⊢F ⊲K JτKη (K1,K2) ⇒ ⊲O((K1[M1], h1), (K2[M2], h2))

Γ′; C′ ⊢F ⊲O((K1[M1], h1), (K2[M2], h2))

Γ,K1,K2 : Cont, h1, h2 : Heap; C,K JτKη (K1,K2) ⊢F O((K1[M1], h1), (K2[M2], h2))

Γ; C ⊢F ∀(K1,K2),K JτKη (K1,K2) ⇒ ∀h1, h2.O((K1[M1], h1), (K2[M2], h2))

where F = D;K;SI and Γ′; C′ = Γ,K1,K2 : Cont, h1, h2 : Heap; C,K JτKη (K1,K2).
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