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Abstract

We describe an elementary algorithm to build convex inner approximations of
nonconvex sets. Both input and output sets are basic semialgebraic sets given as
lists of defining multivariate polynomials. Even though no optimality guarantees
can be given (e.g. in terms of volume maximization for bounded sets), the algorithm
is designed to preserve convex boundaries as much as possible, while removing re-
gions with concave boundaries. In particular, the algorithm leaves invariant a given
convex set. The algorithm is based on Gloptipoly 3, a public-domain Matlab pack-
age solving nonconvex polynomial optimization problems with the help of convex
semidefinite programming (optimization over linear matrix inequalities, or LMIs).
We illustrate how the algorithm can be used to design fixed-order controllers for
linear systems, following a polynomial approach.

Keywords: polynomials; nonconvex optimization; LMI; fixed-order controller design

1 Introduction

The set of controllers stabilizing a linear system is generally nonconvex in the parameter
space, and this is an essential difficulty faced by numerical algorithms of computer-aided
control system design, see e.g. [4] and references therein. It follows from the derivation
of the Routh-Hurwitz stability criterion (or its discrete-time counterpart) that the set
of stabilizing controllers is real basic semialgebraic, i.e. it is the intersection of sublevel
sets of given multivariate polynomials. A convex inner approximation of this nonconvex
semialgebraic stability region was obtained in [4] in the form of linear matrix inequali-
ties (LMI) obtained from univariate polynomial positivity conditions, see also [9]. Convex
polytopic inner approximations were also obtained in [13], for discrete-time stability, using

1CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse; France.
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reflection coefficients. Convex inner approximations make it possible to design stabiliz-
ing controllers with the help of convex optimization techniques, at the price of loosing
optimality w.r.t. closed-loop performance criteria (H2 norm, H∞ norm or alike).

Generally speaking, the technical literature abounds of convex outer approximations of
nonconvex semialgebraic sets. In particular, such approximations form the basis of many
branch-and-bound global optimization algorithms [12]. By construction, Lasserre’s hier-
archy of LMI relaxations for polynomial programming is a sequence of embedded convex
outer approximations which are semidefinite representable, i.e. which are obtained by
projecting affine sections of the convex cone of positive semidefinite matrices, at the price
of introducing lifting variables [6].

After some literature search, we could not locate any systematic constructive procedure
to generate convex inner approximations of nonconvex semialgebraic sets, contrasting
sharply with the many convex outer approximations mentioned above. In the context of
fixed-order controller design, inner approximations correspond to a guarantee of stability,
at the price of loosing optimality. No such stability guarantee can be ensured with outer
approximations.

The main contribution of this paper is therefore an elementary algorithm, readily imple-
mentable in Matlab, that generates convex inner approximations of nonconvex sets. Both
input and output sets are basic semialgebraic sets given as lists of defining multivariate
polynomials. Even though no optimality guarantees can be given in terms of volume
maximization for bounded sets, the algorithm is designed to preserve convex boundaries
as much as possible, while removing regions with concave boundaries. In particular, the
algorithm leaves invariant a given convex set. The algorithm is based on Gloptipoly 3,
a public-domain Matlab package solving nonconvex polynomial optimization problems
with the help of convex LMIs [7]. We illustrate how the algorithm can be used to design
fixed-order controllers for linear systems, following a polynomial approach.

2 Convex inner approximation

Given a basic closed semialgebraic set

S = {x ∈ R
n : p1(x) ≤ 0 . . . pm(x) ≤ 0} (1)

where pi are multivariate polynomials, we are interested in computing another basic closed
semialgebraic set

S̄ = {x ∈ R
n : p̄1(x) ≤ 0 . . . p̄m̄(x) ≤ 0} (2)

which is a valid inner approximation of S, in the sense that

S̄ ⊂ S.

Ideally, we would like to find the tightest possible approximation, in the sense that the
complement set S\S̄ = {x ∈ S : x /∈ S̄} is as small as possible. Mathematically we may
formulate the problem as the volume minimization problem

inf
S̄

∫

S\S̄
dx
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but since set S is not necessarily bounded we should make sure that this integral makes
sense. Moreover, computing the volume of a given semialgebraic set is a difficult task in
general [8], so we expect that optimizing such a quantity is as much as difficult. For these
reasons, we have not been able to define a mathematically sound while tractable measure
of tightness of the inner approximation. In practice we will content ourselves of an inner
approximation that removes the nonconvex parts of the boundary and keeps the convex
parts as much as possible.

3 Detecting nonconvexity

Before describing the method, let us recall some basics definitions on polynomials and
differential geometry. Let x ∈ R

n 7→ pi(x) ∈ R[x] be a multivariate polynomial of total
degree d. Let

gi(x) =

[

∂pi(x)

∂xj

]

j=1...n

∈ R
n[x]

be its gradient vector and

Hi(x) =

[

∂2pi(x)

∂xj∂xk

]

j,k=1...n

∈ R
n×n[x]

its (symmetric) Hessian polynomial matrix. Define the optimization problem

qi = minx,y yTHi(x, y)y
s.t. pi(x) = 0

pj(x) ≤ 0, j = 1 . . .m, j 6= i
yTgi(x) = 0
yTy = 1

(3)

with global minimizers {x1 . . . xki} and {y1 . . . yki}.
Let us make the following nondegeneracy assumption on defining polynomials pi(x):

Assumption 1 There is no point x such that pi(x) and gi(x) vanish simultaneously while
satisfying pj(x) ≤ 0 for j = 1, . . . , m, j 6= i.

Since the polynomial system pi(x) = 0, gi(x) = 0, involves n+1 equations for n unknown,
Assumption 1 is satisfied generically. In other words, in the Euclidean space of coefficients
of polynomials pi(x), instances violating Assumption 1 belong to a variety of measure
zero, and an arbitrarily small perturbation on the coefficients generates a perturbed set
Sǫ satisfying Assumption 1.

Theorem 1 Under Assumption 1, polynomial level set (1) is convex if and only if qi ≥ 0
for all i = 1, . . . , m.
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Proof: The boundary of set S consists of points x such that pi(x) = 0 for some i, and
pj(x) ≤ 0 for j 6= i. In the neighborhood of such a point, consider the Taylor series

pi(x+ y) = pi(x) + yTgi(x) + yTHi(x)y +O(y3) (4)

where O(y3) denotes terms of degree 3 or higher in entries of vector y, the local coordinates.
By Assumption 1, the gradient gi(x) does not vanish along the boundary, and hence
convexity of the boundary is inferred from the quadratic term in expression (4). More
specifically, when yTgi(x) = 0, vector y belongs to the hyperplane tangent to S at point
x. Let V be a matrix spanning this linear subspace of dimension n − 1 so that y =
V ŷ for some ŷ. The quadratic form yTHi(x)y = ŷTV THiV ŷ can be diagonalised with
the congruence transformation ŷ = Uȳ (Schur decomposition), and hence yTHi(x)y =
ȳTUTV THiV UȳT =

∑n−1

i=1
hi(x)ȳ

2
i . The eigenvalues hi(x), i = 1, . . . , n− 1 are reciprocals

of the principal curvatures of the surface. Problem (3) then amounts to finding the
minimum curvature, which is non-negative when the surface is locally convex around x.�

In the case of three-dimensional surfaces (n = 3), the ideas of tangent plane, local coor-
dinates and principal curvatures used in the proof of Theorem 1 are standard notions of
differential geometry, see e.g. Section 3.3. in [2] and in particular Example 5 for connec-
tions between principal curvatures and eigenvalues of the local Hessian form (called the
second fundamental form, once suitably normalized).

Figure 1: Hyperboloid of one sheet (white), with tangent plane (gray) at the origin, a
saddle point with a tangent convex parabola (thick black) and a tangent concave hyperbola
(thick black).

As an example illustrating the proof of Theorem 1, consider the hyperboloid of one sheet
S = {x ∈ R

3 : p1(x) = x2
1 − x2

2 − x3 ≤ 0} with gradient and Hessian

g1(x) =





2x1

−2x2

−1



 , H1(x) =





2 0 0
0 −2 0
0 0 0



 .
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At the origin x = 0, the tangent plane is T = {y ∈ R
3 : y3 = 0} and p1(y) = 2y21 − 2y22

is a bivariate quadratic form with eigenvalues 2 and −2, corresponding respectively to
the convex parabola {x : x2

2 + x3 = 0} (positive curvature) and concave hyperbola
{x : x2

1 − x3 = 0} (negative curvature), see Figure 1.

Theorem 1 can be exploited in an algorithmic way to generate a convex inner approxima-
tion of a semialgebraic set.

Algorithm 1 (Convex inner approximation)

Input: Polynomials pi, i = 1 . . .m defining set S as in (1). Small nonnegative scalar ǫ.

Output: Polynomials p̄i, i = 1 . . . m̄ defining set S̄ as in (2).

Step 1: Let i = 1.

Step 2: If deg pi ≤ 1 then go to Step 5.

Step 3: If pi(x) ∈ S, solve optimization problem (3) for optimum qi and minimizers
{x1 . . . xk}. If pi(x) /∈ S, go to Step 5.

Step 4: If qi < 0, then select one of the minimizers xj, j = 1 . . . ki, let pm+1 = gi(x
j)(x−

xj) + ǫ. Then let m = m+ 1, and go to step 3.

Step 5: Let i = i+ 1. If i ≤ m then go to Step 2.

Step 6: Return p̄i = pi, i = 1, . . .m.

The idea behind the algorithm is as follows. At Step 3, by solving the polynomial opti-
mization problem of Theorem 1 we identify a point of minimal curvature along algebraic
varieties defining the boundary of S. If the minimal curvature is negative, then we sep-
arate the point from the set with a gradient hyperplane, and we iterate on the resulting
semialgebraic set. At the end, we obtain a valid inner approximation.

Note that Step 2 checks if the boundary is affine, in which case the minimum curvature
is zero and there is no optimization problem to be solved.

The key parameter of the algorithm is the small positive scalar ǫ used at Step 4 for
separating strictly a point of minimal curvature, so that the algorithm does not identify
it again at the next iteration. Moreover, in Step 4, one must elect arbitrarily a minimizer.
We will discuss this issue later in this paper.

4 Matlab code and examples

At each step of Algorithm 1 we have to solve a potentially nonconvex polynomial optimiza-
tion problem. For that purpose, we use Gloptipoly 3, a public-domain Matlab package [7].
The methodology consists in building and solving a hierarchy of embedded linear matrix
inequality (LMI) relaxations of the polynomial optimization problem, see the survey [11].
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The LMI problems are solved numerically with the help of any semidefinite programming
solver (by default Gloptipoly 3 uses SeDuMi). Under the assumption that our original
semi-algebraic set is compact, the sequence of minimizers obtained by solving the LMI
relaxations is ensured to converge mononotically to the global minimum. Under the addi-
tional assumption that the global optima live on a zero-dimensional variety (i.e. there is
a finite number of them), Gloptipoly 3 eventually extracts some of them (not necessarily
all, but at least one) using numerical linear algebra. The LMI problems in the hierarchy
have a growing number of variables and constraints, and the main issue is that we cannot
predict in advance how large has to be the LMI problem to guarantee global optimality.
In practice however we observe that it is not necessary to go very deep in the hierarchy
to have a numerical certificate of global optimality.

4.1 Hyperbola

Let us first with the elementary example of an unbounded nonconvex hyperbolic region
S = {x ∈ R

2 : p1(x) ≤ 0} with p1(x) = −1 + x1x2, for which optimization problem (3)
reads

min 2y1y2
s.t. x2y1 + x1y2 = 0

−1 + x1x2 = 0
y21 + y22 = 1.

Necessary optimality conditions yield immediately k1 = 2 global minimizers x1 =
√
2

2
(1, 1),

y1 =
√
2

2
(1,−1) and x2 =

√
2

2
(−1,−1), y2 =

√
2

2
(−1, 1), and hence two additional (normal-

ized) affine constraints p2(x) = −2 + x1 + x2 and p3(x) = −2 − x1 − x2 defining the slab
S̄ = {x : pi(x) ≤ 0, i = 1, 2, 3} = {x : −2 ≤ x1 + x2 ≤ 2} which is indeed a valid inner
approximation of S.

4.2 Egg quartic

Now we show that Algorithm 1 can be used to detect convexity of a semialgebraic set.
Consider the smooth quartic sublevel set S = {x ∈ R

2 : p1(x) = x4
1 + x4

2 + x2
1 + x2 ≤ 0}

represented on Figure 2. Assumption 1 is ensured since the gradient g1(x) = [2x1(x
2
1 +

2) 4x3
2 + 1] cannot vanish for real x.

A Matlab implementation of the first steps of the algorithm can be easily written using
Gloptipoly 3:

% problem data

mpol x y 2

p1 = x(1)^4+x(2)^4+x(1)^2+x(2);

g1 = diff(p1,x); % gradient

H1 = diff(g1,x); % Hessian

% LMI relaxation order

order = 3;

% build LMI relaxation
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Figure 2: Convex smooth quartic.

P = msdp(min(y’*H1*y), p1==0, ...

g1*y==0, y’*y==1, order);

% solve LMI relaxation

[status,obj] = msol(P)

Notice that we solve the LMI relaxation of order 3 (e.g. moments of degree 6) of prob-
lem (3). Running the above script, Gloptipoly returns obj = 2.0000 and status = 1,
certifying that the minimal curvature is strictly positive, and hence that the polynomial
sublevel set is convex.

Note that in this simple case, convexity of set S follows directly from positive semidefi-
niteness of the Hessian H1(x) = diag (12x2

1+2, 12x2
2), yet Algorithm 1 can systematically

detect convexity in more complicated cases.

4.3 Waterdrop quartic

Consider the quartic S = {x ∈ R
2 : p1(x) = x4

1 + x4
2 + x2

1 + x3
2 ≤ 0} which has a singular

point at the origin, hence violating Assumption 1.

Applying Algorithm 1, the LMI relaxation of order 4 (moments of degree 8) yields a glob-
ally minimal curvature of −0.094159 achieved at the 2 points x1 = (−0.048892, −0.14076)
and x2 = (0.048896, −0.14076). With the two additional affine constraints pk(x) =
g1(x

k)(x − xk) ≤ 0, k = 2, 3, the resulting set S̄ has a globally minimal curvature of 1
certified at the LMI relaxation of order 4, and therefore it is a valid convex inner approx-
imation of S, see Figure 3.
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Figure 3: Nonconvex waterdrop quartic (light gray) and its convex inner approximation
(dark gray) obtained by adding affine constraints at two points x1 and x2 of minimal
curvature.

This example illustrates that Algorithm 1 can work even when Assumption 1 is violated.
Here the singularity is removed by the additional affine constraints. This example also
shows that symmetry of the problem can be exploited, since two global minimizers are
found (distinct points with the same minimal curvature) to remove two nonconvex parts
of the boundary simultaneously.

4.4 Singular quartic

Consider the quartic S = {x ∈ R
2 : p1(x) = x4

1 +x4
2+x3

2 ≤ 0} which has a singular point
at the origin, hence violating Assumption 1.

Running Algorithm 1, we obtain the following sequence of bounds on the minimum cur-
vature, for increasing LMI relaxation orders:

order 2 3 4 5
obj −7.5000 · 10−1 −7.7502 · 10−2 −8.5855 · 10−3 −4.9525 · 10−3

GloptiPoly is not able to certify global optimality, so we can only speculate that the global
minimum is zero and hence that set S is convex, see Figure 4. We may say that set S is
numerically convex.

Indeed if we strenghten the constraint p1(x) ≤ 0 into p1(x)+ǫ ≤ 0 for a small positive ǫ, say
10−3, then GloptiPoly 3 certifies global optimality and convexity with obj = -4.0627e-7

at the 4th LMI relaxation. On the other hand, if we relax the constraint into p1(x)+ǫ ≤ 0
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Figure 4: Numerically convex singular quartic.

with a negative ǫ = −10−3, then GloptiPoly 3 certifies global optimality and nonconvexity
with obj = -0.22313 at the 4th LMI relaxation. We can conclude that the optimum of
problem 3 is sensitive, or ill-conditioned, with respect to the problem data, the coefficients
of p1(x). The reason behind this ill-conditioning is the singularity of S at the origin, see
Figure 5 which represents the effect of perturbing the constraint p1(x) ≤ 0 around the
singularity.

5 Control applications

In this section we focus on control applications of Algorithm 1, which is used to generate
convex inner approximation of stability regions in the parameter space.

5.1 Fourth-order discrete-time system

Consider now the fourth degree polynomial x2 + x1z − (x1 + x2)z
3 + z4. Its roots are in

the open unit disk if and only if x = (x1, x2) belongs to the interior of stability region
S = {x ∈ R

2 : p1(x) = 2x2
1x2 +3x1x

2
2+2x2

1+x1x2 +x2
2+x2− 1 ≤ 0, p2(x) = −2x2− 1 ≤

0, p3(x) = −2x1 + x2 − 2 ≤ 0}.
With the following GloptiPoly 3 implementation of Steps 1-3 of Algorithm 1:

% problem data

mpol x y 2
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Figure 5: Perturbed quartic p1(x) + ǫ ≤ 0 (bold line) can be convex (ǫ = 10−3) or
nonconvex (ǫ = −10−3) near singularity of original quartic level set p1(x) = 0 (light line).

p1 = 2*x(1)^2*x(2)+3*x(1)*x(2)^2+2*x(1)^2+x(1)*x(2)+x(2)^2+x(2)-1;

p2 = -2*x(2)-1;

p3 = -2*x(1)+x(2)-2;

g1 = diff(p1,x); % gradient

H1 = diff(g1,x); % Hessian

% LMI relaxation order

order = 4;

% build LMI relaxation

P = msdp(min(y’*H1*y), p1==0, p2<=0, p3<=0, ...

g1*y==0, y’*y==1, order);

% solve LMI relaxation

[status,obj] = msol(P)

we obtain along the cubic boundary p1(x) = 0 a strictly negative minimum curva-
ture of obj = −6.0344 at the LMI relaxation of order 4 (moments of degree 8), cer-
tified by status=1. Region S is therefore nonconvex. GloptiPoly 3 extracts two so-
lutions x1 = −(0.9784, 0.3499), y1 = (0.7931, 0.6090) and x2 = −(0.9784, 0.3499),
y2 = −(0.7931, 0.6090).

We follow Step 4 of Algorithm 1 add we add the affine constraint p4(x) = gT1 (x
1)(x −

x1) + ǫ ≤ 0 with ǫ a small positive real, say 10−3, and we run Step 3 again on the new
problem:
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% select one solution

x1 = double(x); x1 = x1(:,:,1);

y1 = double(y); y1 = y1(:,:,1);

g11 = double(g1); g11 = g11(:,:,1);

% new constraint

p4 = g11*(x-x1)+1e-3;

% LMI relaxation order

order = 4;

% build LMI relaxation

P = msdp(min(y’*H1*y), p1==0, p2<=0, p3<=0, p4<=0, ...

g1*y==0, y’*y==1, order);

% solve LMI relaxation

[status,obj] = msol(P)

GloptiPoly 3 now returns a positive minimum curvature obj=0.2663 certified by status=1
and hence the resulting semialgebraic set S̄ = {x : p1(x) ≤ 0, . . . p4(x) ≤ 0} is a valid
convex inner approximation of nonconvex stability region S, see Figure 6.

x1
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x
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x 2

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6: Convex inner approximation (dark gray) of nonconvex fourth-order discrete-
time stability region (light gray).

Let us remark that set S actually does not satisfy Assumption 1 since the cubic curve
p3(x) = 0 has a singular point at x = (−1/2, 1) denoted by s on Figure 6. However, since
the point of minimum curvature x1 is found elsewhere and the corresponding affine cut
removes P from S̄, this is not troublesome.

Finally, from Figure 6 we see that the choice of point of minimum curvature x1 is not
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necessarily optimal in terms of maximizing the surface of S̄. A point chosen between x1

and s along the boundary would be likely to generate a larger convex inner approximation.

5.2 Third-order discrete-time stability region

Algorithm 1 can lend insight into the (nonconvex) geometry of the stability region. Con-
sider the simplest non-trivial case of a third-order discrete-time polynomial x1 + x2z +
x3z

2 + z3 which is stable (roots within the open unit disk) if and only if parameter
x = (x1, x2, x3) lies within the interior of compact region S = {x ∈ R

3 : p1(x) =
−x1 − x2 − x3 − 1 ≤ 0, p2(x) = x1 − x2 + x3 − 1 ≤ 0, p3(x) = x2

1 − x1x3 + x2 − 1 ≤ 0}.
Stability region S is nonconvex, delimited by two planes p1(x) = 0, p2(x) = 0 and a
hyperbolic paraboloid p3(x) = 0 see e.g. [1, Example 11.4].

Optimization problem (3) corresponding to convexity check of the hyperbolic paraboloid
reads as follows:

min −2y21 + 2y1y3
s.t. x2

1 − x1x3 + x2 − 1 = 0
−x1 − x2 − x3 − 1 ≤ 0
x1 − x2 + x3 − 1 ≤ 0
(2x1 − x3)y1 + y2 + x3y3 = 0
y21 + y22 + y23 = 1.

(5)

The objective function and the last constraint depend only on y, and necessary optimality
conditions obtained by differentiating the Lagrangian −2y21 + 2y1y3 + t(y21 + y22 + y23 − 1)
with respect to y yield the symmetric pencil equation





−4 + 2t 0 2
0 2t 0
2 0 2t









y1
y2
y3



 = 0

From the determinant of the above 3-by-3 matrix, equal to t(t2 − 2t − 1), we conclude
that multiplier t can be equal to 1 −

√
2,0 or 1 +

√
2. The choice t = 0 implies y1 =

0, y2 = 1, y3 = 0 which is inconsistent with the last but one constraint in (5). The choice

t = 1 −
√
2 yields y1 = ±(1 +

√
2)α, y2 = 0, y3 = ±α with α = 1/

√

4− 2
√
2 and the

objective function −2y21 + 2y1y3 = −1 +
√
2. The choice t = 1 +

√
2 yields y1 = ±α,

y2 = 0, y3 = ±(−1 −
√
2)α and the objective function −1 −

√
2, a negative minimum

curvature. Therefore region S is indeed nonconvex.

From the remaining constraints in (5), we conclude that the minimal curvature points x
can be found along the portion of parabola

√
2x2

1 − x2 +1 = 0 included in the half-planes
(2+

√
2)x1+x2+1 ≥ 0 and −(2+

√
2)x1+x2+1 ≥ 0. Any plane tangent to the hyperbolic

paraboloid p3(x) = 0 at a point along the parabola
√
2x2

1 − x2 + 1 = 0 can be used to
generate a valid inner approximation of the stability region. For example, with the choice
x1 = (0, 1, 0), we generate the gradient half-plane p4(x) = g3(x

1)(x− x1) = x2 − 1 ≤ 0.

More generally, for discrete-time polynomials of degree n ≥ 3, stability region S is the
image of the box B = [−1, 1]n (of so-called reflection coefficients) though a multiaffine
mapping, see e.g. [13] and references therein. The boundary of S consists of ruled

12



surfaces, and the convex hull of S is generated by the images of the vertices of B through
the multiaffine mapping. It would be interesting to investigate whether this particular
geometry can be exploited to generate systematically a convex inner approximation of
maximum volume of the stability region S.

6 Conclusion

We have presented a general-purpose computational algorithm to generate a convex inner
approximation of a given basic semialgebraic set. The inner approximation is not guar-
anteed to be of maximum volume, but the algorithm has the favorable features of leaving
invariant a convex set, and preserving convex boundaries while removing nonconvex re-
gions by enforcing linear constraints at points of minimum curvature.

Each step of the algorithm consists in solving a potentially nonconvex polynomial opti-
mization problem with the help of a hierarchy of convex LMI relaxations. For this we
use Gloptipoly 3, unfortunately with no guarantee of a priori computational burden, even
though in practice it is observed that global optimality is ensured at a moderate cost, as
soon as the dimension of the ambient space is small. Numerical experiments indicate that
the approach may be practical for ambient dimensions up to 4 or 5. For larger problems,
we can rely on more sophisticated nonlinear or global optimization codes [12], even though
this possibility has not been investigated in this paper. Indeed, our main driving force is
to contribute with a readily available Matlab implementation.

Generally speaking, one may question the relevance of applying a relatively complex algo-
rithm to obtain a convex inner approximation in the form of a list of defining polynomials
which are not necessary individually convex. Indeed, if convexity of the inner approxi-
mation is guaranteed in the presented work, convexity of the defining polynomials would
allow the use of constant multipliers to certificate optimality in a nonlinear optimiza-
tion framework. Instead, with no guarantee of convexity of the defining polynomials,
the geometric proprety of convexity of the sets is more delicate to exploit efficiently by
optimization algorithms. However, it is conjectured that all convex semialgebraic sets
are semidefinite representable in [3], see also [10]. It may then become possible to fully
exploit the geometric convexity of our inner convex through an explicit representation as
a projection of an affine section of the semidefinite cone. For example, in our target ap-
plication domain, this would allow to use semidefinite programming to find a suboptimal
stabilizing fixed-order controller.
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