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DIVIDED DIFFERENCES & RESTRICTION

OPERATOR ON PALEY-WIENER SPACES PW p
τ FOR

N−CARLESON SEQUENCES

FRÉDÉRIC GAUNARD

Abstract. For a sequence of complex numbers Λ we consider
the restriction operator RΛ defined on Paley-Wiener spaces PW p

τ

(1 < p < ∞). Lyubarskii and Seip gave necessary and sufficient
conditions on Λ for RΛ to be an isomorphism between PW p

τ
and

a certain weighted lp space. The Carleson condition appears to be
necessary. We extend their result to N−Carleson sequences (finite
unions of N disjoint Carleson sequences). More precisely, we give
necessary and sufficient conditions for RΛ to be an isomorphism
between PW p

τ
and an appropriate sequence space involving divided

differences.

1. Introduction

Let X be a Banach space of analytic functions defined on a domain
Ω of the complex plane and Λ a sequence of points lying in Ω. The
restriction operator RΛ associated to Λ is defined on X by

RΛ : X ∋ f 7→ (f (λ))λ∈Λ ∈ C
Λ.

Our aim is to describe the range of RΛ, denoted by X|Λ, as well as the
injectivity of RΛ. This problem is related to interpolation problems in
X and to geometrical properties of reproducing kernels in X⋆. See [10],
[16, Part D] or [18].

In the late 1950s and early 1960s, Carleson [4] (p = ∞) and Shapiro
and Shields [19] (1 ≤ p < ∞) showed that RΛ is surjective from the
Hardy space onto a suitable weighted lp space if and only if Λ satisfies
a certain separation condition, the so-called Carleson condition (more
precise definitions below). Notice that, in Hardy spaces, as soon as the
sequence satisfies the Blaschke condition, RΛ cannot be injective.
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The results of Carleson and Shapiro-Shields have been generalized
to finite unions of Carleson sequences (which are called N−Carleson
sequences) by Vasyunin [21] (p = ∞) and Hartmann [8] (1 < p < ∞).
A similar result has been obtained by Bruna, Nicolau and Øyma [3]. In
this more general situation the description of the range of RΛ involves
divided differences.

Many authors like Hrushev, Nikolskii, Pavlov [10] or Minkin [13],
have investigated interpolation problems in Paley-Wiener spaces using
tools from operator theory (for instance invertibility criteria for a suit-
able Toeplitz operator) since the 1970s. Note that these spaces can
be considered as special cases of backward shift invariant subspaces in
Hardy spaces. More recently, Lyubarskii and Seip [12] have character-
ized the sequences Λ for which the associated restriction operator is
an isomorphism between the Paley-Wiener space and an appropriate
weighted lp space. Their proof is in a sense more elementary and al-
lows to consider sequences defined on the whole complex plane while the
methods of Hrushev, Nikolskii, Pavlov intrinsically restrict the problem
to sequences in a half-plane.

Here we investigate a generalization of Lyubarskii and Seip’s result
to N−Carleson sequences, in the spirit of Hartmann. Observe first
that the Carleson condition turns out to be necessary for the classical
interpolation problem in the Paley-Wiener space. Now, starting from
an N−Carleson sequence Λ, we want to find necessary and sufficient
conditions on Λ for RΛ to be an isomorphism between the Paley-Wiener
space and an appropriate sequence space involving now divided differ-
ences.

Let us fix the notation and the results we mentioned above. We first
recall the definition of the Hardy space, for 1 ≤ p <∞,

Hp
(

C
±
a

)

:=

{

f ∈ Hol
(

C
±
a

)

: sup
y≷a

ˆ

R

|f (x+ iy)|p dx <∞

}

on the half-plane

C
±
a := {z ∈ C : Im (z) ≷ a} , (a ∈ R) .

For p = ∞,

H∞
(

C
±
a

)

:=

{

f ∈ Hol
(

C
±
a

)

: sup
z∈C±

a

|f (z)| <∞

}

.

For short we will write C± := C
±
0 and Hp

± := Hp (C±). A function
I ∈ H∞ (C±

a ) satisfying |I (x+ ia)| = 1 a.e. x ∈ R is called an inner
function.
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As previously mentioned, Carleson [4], Shapiro and Shields [19] solved
the interpolation problem in the Hardy space. Their results were ob-
tained in the unit disk, but translate clearly to any half-plane. Setting

lp (|Im (λn)− a|) :=

{

u = (un)n≥1 :
∑

n≥1

|Im (λn)− a| |un|
p <∞

}

,

we can state their result as follows. If Λ = {λn : n ≥ 1} ⊂ C±
a , then

Hp
(

C
±
a

)

|Λ = lp (|Im (λn)− a|)

if and only if Λ satisfies the Carleson condition

(1.1) inf
λ∈Λ

∏

µ∈Λ
µ6=λ

∣

∣

∣

∣

λ− µ

λ− µ− 2ia

∣

∣

∣

∣

> 0.

Such sequences will be simply called Carleson sequences.
We consider now the Paley-Wiener space PW p

τ (for 1 ≤ p < ∞)
which consists of all entire functions of exponential type at most τ
satisfying

‖f‖pp =

ˆ

R

|f (x)|p dx <∞.

It is well-known (see e.g. [11]) that in the case p = 2, the Fourier trans-
form is an isometric isomorphism between PW 2

τ and L2 (−τ, τ) which
allows to reformulate the problem in terms of geometrical properties of
exponentials in L2 (we still refer to [10]). From the Plancherel-Polyà
inequality (see Proposition 20 below), it follows that PW p

τ = e−iτ ·Kp
Iτ ,

where

Kp
Iτ := Hp

+ ∩ IτHp
−

is the backward shift invariant subspace associated with the inner func-
tion Iτ (z) := exp (2iτz), z ∈ C+. In particular, the Paley-Wiener
space can be considered as a subspace of the Hardy space.

Luybarskii and Seip [12] gave necessary and sufficient conditions for
RΛ to be an isomorphism from PW p

τ onto the weighted sequence space
lp
(

e−pτ |Im(λn)| (1 + |Im(λn)|)
)

. Their proof is based on the boundedness
of the Hilbert transform in certain weighted Hardy space.

Recall that the Hilbert transform H is defined by

(1.2) Hf(z) =

ˆ +∞

−∞

f(t)

t− z
dt,

where the integral has to be understood as a principle value integral
for real z. It is known (see e.g [9] and [5]) that, if w > 0, H is bounded
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from the weighted space

Lp(w) :=

{

f meas. on R :

ˆ

R

|f |pwdm <∞

}

into itself, if and only if w satisfies the Muckenhoupt (Ap) condition

(Ap) sup
I

(

1

|I|

ˆ

I

w

)(

1

|I|

ˆ

I

w− 1

p−1

)
p

p−1

<∞,

where the supremum is taken over all intervals of finite length. In [12],
the authors also introduce the discrete Hilbert transform as follows. For
fixed ǫ > 0 and two sequences Γ := {γn}n and Σ := {σn}n satisfying
|γn − σn| = ǫ, and a = (an)n,

(HΓ,Σ (a))n :=
∑

j

aj
γj − σn

.

According to [12, Lemma 1]), HΓ,Σ is bounded from lp(wn) into itself
if and only if (wn)n satisfies the discrete Muckenhoupt condition

(Ap) sup
k∈Z
n>0

(

1

n

k+n
∑

j=k+1

wj

)(

1

n

k+n
∑

j=k+1

w
−1/(p−1)
j

)p−1

<∞.

Definition 1. A sequence Λ ⊂ C satisfies the condition (LS)τ,p for
τ > 0 and 1 < p <∞, if the following set of conditions hold:

(i) ∀a ∈ R, Λ ∩ C±
a satisfies the Carleson condition (1.1);

(ii) The sequence is relatively dense: ∃r > 0, ∀x ∈ R,

d(x,Λ) := infλ∈Λ |x− λ| < r;

(iii) The limit

S(z) = lim
R→∞

∏

|λ|<R

(

1−
z

λ

)

exists and defines an entire function of exponential type τ ;

(iv) The function x 7→
(

|S(x)|
d(x,Λ)

)p

satisfies (Ap).

Note that if 0 ∈ Λ, then the corresponding factor in (iii) reduces
to z. In order to not complicate the notation we shall assume in all
what fallows that 0 6∈ Λ which we can do without loss of generality (for
instance, by shifting the sequence). We are now in a position to state
the Lyubarski-Seip theorem [12, Theorem 1].

Theorem 2. (Lyubarskii-Seip). Let Λ ⊂ C, τ > 0 and 1 < p < ∞.
The following assertions are equivalent.
(1) RΛ is an isomorphism from PW p

τ onto lp
(

e−pτ |Im(λ)| (1 + |Im(λ)|)
)

;
(2) Λ satisfies (LS)τ,p.



Divided differences and restriction operator on Paley-Wiener spaces 5

Remark 3. The condition (iv) can be replaced by the condition (iv)′

(iv)’ There is a relatively dense subsequence Γ = (γn)n ⊂ Λ such
that the sequence (|S ′ (γn)|

p)n satisfies the discrete Mucken-
houpt condition (Ap).

The aim of this paper is to generalize the Lyubarskii-Seip result
to finite unions of Carleson sequences. In the case of Hardy spaces,
this problem has been solved by Vasyunin [21] and Hartmann [8] and
involves divided differences.

As mentioned previously, in the case p = 2 the Fourier transform
allows to express our main result Theorem 17 in terms of bases of
exponentials in L2 thereby generalizing a result by Avdonin and Ivanov
[2, Theorem 3].

This paper is organized as follows. The next section will be devoted
to divided differences. Section 3 deals with N−Carleson sequences.
We will state our main result after some technical constructions in the
fourth section. For an easier reading, we have postponed the proofs
of Section 4 to the fifth section. Finally, in the last section we will
discuss the necessity of the N−Carleson condition with an appropriate
definition of the trace PW p

τ |Λ.

A final word on notation. If δ is a metric on Ω, we will denote by
Dδ (x, η) the ball (relatively to δ) with center x ∈ Ω and radius η > 0,
and diamδ(E) the δ−diameter of E. We shortly write diam(E) and
D (x, η) when δ is the Euclidian distance. If ω = (ωn)n≥1 is a sequence
of strictly positive numbers and 1 ≤ p < ∞, we denote by lp (ω) or
lp (ωn) the space

lp (ω) :=

{

a = (an)n≥1 :
∑

n≥1

|an|
p ωn <∞

}

.

2. Divided Differences

Divided differences appear in many results about interpolation or
bases of exponentials (see e.g. [21], [8], [3] or [2]). Here we will give the
definitions and some properties that we will need later on. We recall
that the (non-normalized) Blaschke factors in a half-plane C±

a are given
by

b±,aµ (z) =
z − µ

z − µ− 2ia
.
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(The formula is actually the same for the upper and the lower half-
plane). The associated pseudohyperbolic distance will be denoted by

ρ±,a(z, µ) :=
∣

∣b±,aµ (z)
∣

∣ .

For C+, we will write bµ = b+,0µ and use ρ for ρ+,0 and ρ−,0.
The definitions and properties below are stated and proved in C

+

but are obviously valid for any half-plane C±
a .

Definition 4. Let Γ := {µi : 1 ≤ i ≤ |Γ| <∞} ⊂ C+. For a finite set
a = {ai}1≤i≤|Γ|, we define the sequence of (pseudohyperbolic) divided
differences of a relatively to Γ as follows

∆0
Γ(ai) := ai, ∆1

Γ(ai, aj) :=
aj − ai
bµi(µj)

,

and

∆k
Γ(ai1 , ..., aik+1

) :=
∆k−1

Γ (ai1 , ..., aik−1
, aik+1

)−∆k−1
Γ (ai1 , ..., aik)

bµik (µik+1
)

.

We will need to estimate the divided differences when Γ lies in a com-
pact set K ⊂ C+ and a = {f(µ) : µ ∈ Γ} for f an analytic function
bounded in K. Here K is supposed to be the closure of a non empty
open connected set. By f ∈ H∞(K) we mean that f is holomorphic in
the interior of K and

‖f‖∞,K := sup
z∈K

|f(z)| <∞.

Lemma 5. Suppose that Γ lies in a compact set K with the proper-
ties mentioned above, and assume that there exists η > 0 such that
ρ(Γ, ∂K) ≥ η. Then, for each function f ∈ H∞(K), we have

∣

∣∆j
Γ

(

f(µ(j+1))
)∣

∣ ≤

(

2

η

)j j
∏

k=0

(

1

1− k
2M

)

‖f‖∞,K

where

µ(j+1) = (µ1, ..., µj+1) and f
(

µ(j+1)
)

= (f(µ1), ..., f(µj+1)) .

Proof. Set

Aj :=

{

z ∈ K : ρ(z, ∂K) ≥
j

2N
η

}

, 0 ≤ j ≤ N − 1.

We show by induction over j that for every z ∈ Aj ,
∣

∣∆j
Γ

(

f(µ(j), z)
)∣

∣ ≤ cj ‖f‖∞,K
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with

cj =

(

2

η

)j j
∏

k=0

(

1

1− k
2M

)

.

Since Γ ⊂ AN−1 ⊂ ... ⊂ A1 ⊂ A0, the result will follow. The claim is
obviously true for j = 0. Now, the function

z 7→ ∆j+1
Γ

(

f
(

µ(j+1), z
))

is holomorphic on Aj+1 and by the maximum principle and the defini-
tion of divided differences, we have for z ∈ Aj+1,
(2.1)
∣

∣∆j+1
Γ

(

f
(

µ(j+1), z
))∣

∣ ≤ sup
ξ∈∂Aj+1

∣

∣

∣

∣

∣

∆j
Γ

(

f
(

µ(j), ξ
))

−∆j
Γ

(

f(µ(j+1))
)

ρ(ξ, µj+1)

∣

∣

∣

∣

∣

.

Let ξ ∈ ∂Aj+1. It is possible to find a point ζ ∈ ∂K such that

ρ(ζ, ξ) =

(

j + 1

2N

)

η

and so, since µj+1 ∈ Γ and ρ(Γ, ∂K) ≥ η, we have, by the triangle
inequality,

(2.2) ρ(ξ, µj+1) ≥ ρ(ζ, µj+1)− ρ(ξ, ζ) ≥ η

(

1−
j + 1

2N

)

.

From (2.1), (2.2) and the induction hypothesis, we finally obtain

∣

∣∆j+1
Γ

(

f(µ(j+1), ξ)
)∣

∣ ≤
2

η

(

1

1− j+1
2N

)

cj ‖f‖∞,K

which gives the required estimate. �

The next lemma will be important in the sequel; we can define a ra-
tional Newton type interpolating function which interpolates the values
{a(µ) : µ ∈ Γ} on Γ.

Lemma 6. The holomorphic function

PΓ,a(z) :=

|Γ|
∑

k=1

∆k−1
Γ

(

a(µ(k))
)

k−1
∏

l=1

bµl(z)

satisfies

PΓ,a(µ) = a(µ), µ ∈ Γ.

The proof is quite straightforward (see also [7, p.80]).
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Remark 7. Divided differences with respect to pseudohyperbolic metric
can be found in [3, 8, 21]. We will also need euclidian divided differ-
ences:

�0
Γ := ai, �1

Γ (ai, aj) :=
aj − ai
µj − µi

,

and

�k
Γ

(

ai1 , .., aik+1

)

:=
�k−1

Γ

(

ai1 , .., aik−1
, aik+1

)

−�k−1
Γ (ai1 , .., aik)

µk+1 − µk
.

3. N−Carleson sequences

Definition 8. Let N ≥ 1 be a natural number. A sequence Λ ⊂ C±
a

is called a N−Carleson sequence if it is possible to find a partition

Λ =
N
⋃

i=1

Λi

such that, for every i = 1, ..., N , the sequence Λi satisfies the Carleson
(1.1) condition in C±

a .

Note that the number N is not uniquely defined.

Let us make a link between the N−Carleson condition and the Gen-
eralized Carleson condition, also called Carleson-Vasyunin condition
(see e.g. [14] and references therein). The following result has orig-
inally been stated in D (see [8, Proposition 3.1]) but can easily be
translated to any half-plane C±

a .

Proposition 9. Let Λ be a sequence of complex numbers, lying in C±
a .

The following assertions are equivalent
(i) Λ is N−Carleson in C±

a ;
(ii) There exists δ > 0 and a sequence of Blaschke products (Bn)n≥1

such that supn degBn ≤ N , Λ =
⋃

n σn, with σn := {λ ∈ C±
a : Bn (λ) = 0}

and (Bn)n≥1 satisfies the Generalized Carleson condition

(3.1) |B(z)| > δ inf
n≥1

|Bn(z)| , z ∈ C
±
a ,

where B denotes the Blaschke product associated to Λ.

Observe that if Λ satisfies (ii), then, for (λ, µ) ∈ σn × σm (n 6= m),
we have ρ (σn, σm) ≥ δ and thus

inf
n 6=m

ρ (σn, σm) ≥ δ > 0.
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Remark 10. The subsets σn can for instance be obtained as intersec-
tions τ ǫn ∩ Λ where τ ǫn are the connected components of L(B, ǫ) :=
{z : |B(z)| < ǫ} and ǫ is small enough. Moreover, choosing ǫ in a suit-
able way, it is possible to assume that the pseudohyperbolic diameter
of σn is arbitrarily small.

Proposition 11. Let Λ = {λn : n ≥ 1} be an N−Carleson sequence
in C±

a . There exists η > 0 such that every connected component of
⋃

n≥1Dρ (λn, η) admits at most N elements.

Remark 12. We can deduce from the previous proposition that if Λ is
N−Carleson in C±

a (or equivalently satisfies condition (ii) of Proposi-
tion 9), it is possible to construct a sequence of rectangles of C±

a defined
by

Rn = Rect (zn, Ln, ln) =

{

x+ iy ∈ C
±
a : |x− xn| ≤

Ln
2
, |y − yn| ≤

ln
2

}

with Ln, ln > 0 and zn = xn+iyn. These rectangles satisfy the following
properties:

(3.2) σn ⊂ Rn, n ≥ 1;

(3.3) Ln ≍ ln ≍ |yn − a| ≍ d (∂Rn,R+ ia) , n ≥ 1;

(3.4) 0 < inf
n≥1

ρ (σn, ∂Rn) ≤ sup
n≥1
λ∈σn

ρ (λ, ∂Rn) <∞;

and finally, since the diameter of σn can be chosen arbitrarily small
by Remark 10, we can suppose the Rn disjoints and even

(3.5) inf
n 6=k

ρ (Rn, Rk) > 0.

Let Λ be N−Carleson in C±
a and 1 < p < ∞. From Proposition 9,

we can write

Λ =
⋃

n≥1

σn,

with in particular |σn| ≤ N . We will construct divided differences
relatively to σn. We set

σn = {λn,k : 1 ≤ k ≤ |σn|} and λ(k)n = (λn,1, ..., λn,k) .
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We choose, in an arbitrarily way, λn,0 in σn and introduce, for a =
(a (λ))λ∈Λ ∈ CΛ,

‖a‖Xp
±a(Λ)

:=





∑

n≥1

|Im(λn,0)− a|

|σn|
∑

k=1

∣

∣∆k−1
σn

(

a
(

λ(k)n

))∣

∣

p





1

p

and the space

Xp
±a (Λ) :=

{

a ∈ C
Λ : ‖a‖Xp

±a(Λ)
<∞

}

.

Observe that for every λ ∈ σn, 1 ≍ |Im (λ)− a| / |Im (λn,0)− a| and
so the definition of Xp

±a (Λ) does not depend on the choice of λn,0. The
following result was originally stated in D (see [8]) but it is not hard
to check that it holds in C±

a . The reader will find details in [6, p. 92].

Theorem 13. (Hartmann). Let Λ be N−Carleson in C±
a and 1 < p <

∞. Then, RΛ is continuous and surjective from Hp (C±
a ) onto Xp

±a (Λ).

4. Main Result

Let Λ be a sequence in the complex plane. In this section we assume
that there is an integer N ≥ 1 such that for every a ∈ R, the sequence

Λ±
a := Λ ∩ C

±
a

is N−Carleson in the corresponding half-plane. Note that the parti-
tions discussed in the previous section were adapted to sequences in a
half-plane. Here, we will start discussing a “right” partition of Λ taking
into account the fact that Λ lies in the whole complex plane

4.1. An adapted partition. From our above discussions it is possible
to write

Λ±
a =

⋃

n≥1

σ±
n,a,

where
(

B±,a

σ±n,a

)

n
satisfies the generalized Carleson condition in the cor-

responding half-plane C±
a (B±,a

σ±n,a
being the Blaschke product in C±

a van-

ishing on σ±
n,a). To simplify the notation, we will omit a if a = 0 and

write

σn :=

{

σ+
n+1, n ≥ 0
σ−
n , n < 0

.

The reader might notice that σ+
n and σ−

m can come very close for certain
values of n and m. This issue will be fixed below. Let us distinguish
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the sets of points close to the real axis and the ones far away from it.
Let us fix ǫ > 0 for all what follows. We can assume that

ρ0 := sup
n∈Z

diamρ (σn) <
ǫ

2
.

(Observe that ρ0 is well defined by the Generalized Carleson condition).
Next introduce

Mǫ,∞ := {n ∈ Z : σn ∩ {|Im(z)| < ǫ} = ∅} ,

Λǫ,∞ :=
⋃

n∈Mǫ,∞

σn

(corresponding to the points for which the corresponding set σn does
not interset the previous strip) and

Λǫ := Λ \ Λǫ,∞.

Notice that Λǫ contains the points of Λ lying in the real axis and more-
over

Λǫ ⊂ {z ∈ C : |Im(z)| < 3ǫ} .

Indeed, if λ ∈ Λǫ and λ 6∈ R, then there is nλ ∈ Z \Mǫ,∞ such that
λ ∈ σnλ

. Hence, it is possible to find µ ∈ σnλ
such that |Im (µ)| < ǫ. It

follows that

|λ− µ| =
|λ− µ|

|λ− µ|
|λ− µ|

≤ ρ0 (2 |Im (µ)|) + |λ− µ|

≤
3

2
ǫ2 <

3

2
ǫ,

which implies that |Im (λ)| < 5ǫ/2. Now, since Λǫ is contained in a
strip, parallel to the real axis, of finite width and is N−Carleson in
C

+
−3ǫ , Λǫ breaks up into a disjoint union

Λǫ =
⋃

n≥1

σ
′

n

with

ρ
′

0 := sup
n≥1

diam
(

σ
′

n

)

<
ǫ

2

and moreover, for some δ > 0, the subsets

Ωn :=







z ∈ C :
∏

λ∈σ′n

|z − λ| ≤ δ







, n ≥ 1,
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satisfy

(4.1) inf
n 6=m

d (Ωn,Ωm) > 0.

This is possible in view of Remarks 10 and 12. It follows that we can
write Λ as the following disjoint union

Λ =





⋃

n∈Mǫ,∞

σn



 ∪

(

⋃

n≥1

σ′
n

)

=:
⋃

n∈Z

τn.

Now that the partition is done, it is possible to construct divided dif-
ferences. Since we will need both definitions of divided differences, we
set

∆̃τn :=

{

∆τn if ∃k s.t. τn = σk
�τn if ∃k s.t. τn = σ

′

k

.

It is now possible to introduce a space of sequences that will be, as-
suming some hypotheses on Λ, the range of RΛ. Naturally, we write

τn = {λn,k : 1 ≤ k ≤ |σn|} and λ(k)n := (λn,1, ..., λn,k) .

As previously, we choose, in an arbitrarily way, λn,0 ∈ τn, for every
n ∈ Z. We define, for 1 < p <∞,

Xp
τ,ǫ(Λ) :=

{

a = (a(λ))λ∈Λ : ‖a‖Xp
τ,ǫ(Λ)

<∞
}

,

with

‖a‖p
Xp

τ,ǫ(Λ)
:=
∑

n∈Z

(1 + |Im(λn,0)|)

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn

(

ae±iτ ·
(

λ(k)n

))

∣

∣

∣

p

,

and

e±iτλ =

{

eiτλ if λ ∈ τn, n ∈ N+,
e−iτλ if λ ∈ τn, n ∈ N−,

where

N+ :=
{

n ∈ Z : τn ∩
(

C
+ ∪ R

)

6= ∅
}

and

N− := Z \N+.

(The factor e±iτλ does not really matter close to R.) Next proposition
will be proved in Section 5.

Proposition 14. If there exists ǫ > 0 such that RΛ is an isomorphism
between PW p

τ and Xp
τ,ǫ (Λ) then Λ is relatively dense, i.e. there exists

r > 0 such that for every x ∈ R, d (x,Λ) < r.
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It follows from the conclusion of the previous proposition that the
relative density is necessary. Thus, we will assume in all what follows
that Λ is relatively dense:

∃r > 0, ∀x ∈ R, d(x,Λ) < r.

Still relative to the previous partition of Λ, we introduce, for n ≥ 1,
the products

pn (x) :=
∏

λ∈τn

|x− λ|

which permit us to define the function

dN (x) := inf
n∈Z

pn (x) , x ∈ R.

Remark 15. From the definition of the function dN , we can do the
following observations.

• (1) The relative density condition implies that

sup
x∈R

dN(x) ≤
(

r + δ
′

0

)N

<∞,

where

δ
′

0 := inf
n 6=m

d(σ
′

n, σ
′

m) > 0.

• (2) It is clear that, in the definition of dN , the infimum is actu-
ally a minimum. So, for each x ∈ R, there is nx ∈ Z such that
dN(x) = pnx

(x). It is not difficult to see that

inf
x∈R

inf
m6=nx

pm(x) ≥

(

δ
′

0

2

)N

> 0.

• (3) Using the relative density, a similar reasoning as the one that
can be used to show (2) yields that, with an other partition (and
in particular with an other choice of ǫ), the function obtained
is equivalent to dN .

4.2. The theorem.

Definition 16. Let Λ beN−Carleson in every half-plane and relatively
dense. We say that Λ satisfies the conditions (HN)τ,p (for τ > 0 and

1 < p <∞) if

• (i) The limit

S(z) := lim
R→∞

∏

|λ|<R

(

1−
z

λ

)

exists and defines an entire function of exponential type τ .
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• (ii) The function x 7→
(

|S(x)|
dN (x)

)p

satisfies the (continuous) Muck-

enhoupt condition (Ap).

The reader would notice that, in view of Remark 15−(3), the defini-
tion of the conditions (HN)τ,p do no depend on the partition of Λ.

Theorem 17. Let N ≥ 1, τ > 0, 1 < p < ∞ and Λ be N−Carleson
in every half-plane and relatively dense (for some r > 0). Then, the
restriction operator RΛ is an isomorphism from PW p

τ onto Xp
τ,r(Λ) if

and only if Λ satisfies (HN)τ,p.

Remark 18. We will see in the following that (HN)τ,p − (ii) can be

replaced by (ii)′, which is

• (ii)′ There exists a subsequence Γ = {γn : n ≥ 1} ⊂ Λ, still
relatively dense, such that, if σγn is the set containing γn, the
sequence











|S ′ (γn)|
p

∏

λ∈σγn
λ 6=γn

|γn − λ|p











n≥1

satisfies the discrete Muckenhoupt condition (Ap).

It is clear that for N = 1, d1(x) = d(x,Λ) and (H1)τ,p with the
Carleson condition and the relative density corresponds exactly to the
(LS)τ,p conditions. The proof of Theorem 17 will be done in Section 5.

Remark 19. The choice of ǫ = r in our construction ensures that, for
every x ∈ R, τnx

= σ
′

nx
and permits us to avoid tedious considerations

but the conclusion or Theorem 17 is still true with any choice of ǫ > 0.

We will discuss below the necessity of the N−Carleson condition
in Theorem 24. In Theorem 17, the definition of the range of RΛ

definitely depends on the partition of Λ which is possible because of
the N−Carleson condition. In Section 6, we will construct a space
without the a priori assumption that Λ is N−Carleson in every half-
plane.
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5. Proofs

5.1. Proof of Proposition 14.

Proof. Let us suppose to the contrary that there exists a real sequence
{xj}j≥1 and a sequence of positive numbers {rj}j≥1 such that rj → ∞,
j → ∞ and

B(xj , rj) ∩ Λ = ∅.

We consider the functions of PW p
τ defined by

fj(z) :=
sin τ (z − xj)

τ (z − xj)
, z ∈ C, j ≥ 1.

Since RΛ is an isomorphism, we obtain that

1 ≍ ‖fj‖
p
p ≍ ‖RΛfj‖

p
Xp

τ,ǫ(Λ)
.

We will show that ‖RΛfj‖
p
Xp

τ (Λ)
−→ 0, j → ∞, which implies the

required contradiction. From the definition, we have

‖RΛfj‖
p
Xp

τ,ǫ(Λ)
=
∑

n≥1

(1 + |Im (λn,0)|)

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn

(

fje
±iτ ·

(

λ(k)n

))

∣

∣

∣

p

.

Using Lemme 5 (see [6, p. 95] for details), we can see that, for every
n ≥ 1 and every 1 ≤ k ≤ |τn|,

∣

∣

∣
∆̃k−1
τn

(

fje
±iτ ·

(

λ(k)n

))

∣

∣

∣

p

.
1

|λn,0 − xj |
p ,

which implies

‖RΛfj‖
p
Xp

τ,ǫ(Λ)
.
∑

n≥1

1 + |Im (λn,0)|

|λn,0 − xj |
p .

On the other hand, p > 1 and so we can find α > 0 such that p−α > 1.
Recall that |λn,0 − xj | ≥ rj and let us write

‖RΛfj‖
p
Xp

τ,ǫ(Λ)
.

1

rαj

∑

n≥1

1 + |Im (λn,0)|

|λn,0 − xj |
p−α .

We split this sum in two parts, writing {λn,0 : n ≥ 1} = A+ ∪ A−,
where

A+ ⊂
(

C
+ ∪ R

)

⊂ C
+
− 1

2

and

A− ⊂ C
− ⊂ C

−
1

2

.
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Since rj → ∞, j → ∞, we obtain |λn,0 − xj | ≍ |λn,0 − xj ± i|. It
follows that the functions

g± : z 7→
1

z − xj ± i
∈ Hp−α

(

C
±
∓ 1

2

)

.

Now, A± is Carleson in C
±
∓ 1

2

, thus

∑

λ∈A±

1 + |Im (λ)|

|λ− xj ± i|p−α
=
∑

λ∈A±

1 + |Im (λ)|

|g± (λ)|p−α
. ‖g‖p−α

Hp−α

(

C
±

∓ 1
2

) . 1.

We finally obtain that

‖RΛfj‖
p
Xp

τ,ǫ(Λ)
.

1

rαj
→ 0, j → ∞,

which is the required contradiction and ends the proof. �

5.2. Proof of Theorem 17. The proof of Theorem 17 follows the
main ideas of Lyubarskii and Seip’s paper but needs an important
technical work to characterize this more general case.

5.2.1. Paley-Wiener Spaces. We will need some well known facts about
Paley-Wiener spaces that we recall here. First, we have the Plancherel-
Polyà inequality (see e.g. [11] or [18, p. 95]).

Proposition 20. (Plancherel-Polyà).Let f ∈ PW p
τ and a ∈ R. Then,

ˆ +∞

−∞

|f(x+ ia)|pdx ≤ eτp|a| ‖f‖pp .

It follows that for every f ∈ PW p
τ , the function z 7→ eiτzf(z) belongs

to Hp
+. It also follows that translation is an isomorphism from PW p

τ

onto itself. The second fact is a pointwise estimate; there exists a
constant C = C(p) such that for every f ∈ PW p

τ , we have

(5.1) |f(z)| ≤ C ‖f‖p (1 + |Im(z))−
1

p eτ |Im(z)|, z ∈ C.

5.2.2. Necessary conditions. Let us do the construction of subsection
4.1 with ǫ = r and suppose that RΛ is an isomorphism between PW p

τ

and Xp
τ,ǫ (Λ). The necessity of (HN) − (i) can be shown exactly as in

[12] and so we do not prove it here. We first show that the condition
(ii)′ is necessary. Then, with a technical lemma, adapted from [12], we
prove that (ii)′ implies (ii).

Since RΛ is bijective, for each λ ∈ Λ, there is a unique function
fλ ∈ PW p

τ such that

fλ(µ) =

{

1, if µ = λ
0, if µ 6= λ

.
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As in [12], it can be shown that fλ only vanishes on Λ \ {λ} and that
fλ is of exponential type τ (if its type was τ ′ < τ then considering
the function ei(τ−τ

′)(·−λ)fλ, we would obtain a contradiction with the
injectivity of RΛ). Moreover, z 7→ (z − λ) fλ(z) is a function of the
Cartwright Class C vanishing exactly on Λ (see e.g. [11] for definition
and general results on C). Hence, since S is also of exponential type τ ,
S(z) = cλ (z − λ) fλ(z), z ∈ C, or

fλ(z) =
S(z)

S ′(λ) (z − λ)
.

For each n ≥ 1, the holomorphic function

gn : z 7→
S(z)

∏

λ∈σ′n

(z − λ)

does not vanish in Ωn (see Formula 4.1). Moreover, choosing λ
′

n,0 ∈ σ
′

n,

gn(λn,0) =
S ′
(

λ
′

n,0

)

∏

λ∈σ′n
λ 6=λn,0

(

λ
′

n,0 − λ
) .

Hence, it follows from the maximum and the minimum principle that

inf
ξ∈∂Ωn

∣

∣

∣

∣

∣

∣

∣

S(ξ)
∏

λ∈σ′n

(ξ − λ)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S ′
(

λ
′

n,0

)

∏

λ∈σ′n
λ 6=λn,0

(

λ
′

n,0 − λ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ sup
ξ∈∂Ωn

∣

∣

∣

∣

∣

∣

∣

S(ξ)
∏

λ∈σ′n

(ξ − λ)

∣

∣

∣

∣

∣

∣

∣

.

From the intermediate values theorem, we deduce the existence of a
point θn ∈ ∂Ωn such that

(5.2) |S(θn)| = δ

∣

∣S ′(λ
′

n,0)
∣

∣

∏

λ∈σ′n
λ 6=λn,0

∣

∣λ
′

n,0 − λ
∣

∣

=: δωn.

Let us consider now a subsequence Γ := (γn)n≥1 of
{

λ
′

n,0 : n ≥ 1
}

which is still relatively dense and such that

inf
n≥1

(Re (γn+1)− Re (γn)) > 0.
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We define σγn as the set containing γn. The sequence Θ := (θn)≥1

denotes the previous θn, corresponding to γn, and for n ≥ 1, we set

ωn :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

S ′ (γn)
∏

λ∈σγn
λ 6=γn

(γn − λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

so that

|S (θn)| = δωn.

We show that the discrete Hilbert transform HΓ,Θ is bounded from lp(ω)
into itself. Indeed, let (an)n≥1 be a finite sequence of lp(ω). Then, the
sequence

a(λ) :=

{

anS
′ (γn) , if λ = γn

0 , if λ ∈ Λ \ Γ

belongs to Xp
τ (Λ) because, if γk = λ

′

n,0 = λn,|σγn | is choosen as the “last”

point of σ
′

n,

∆̃k−1
σn

(

aeiτ ·
(

λ(k)n

))

= 0, k < |σn|

and

∣

∣

∣
∆̃|σn|−1
σn

(

aeiτ ·
(

λ(|σn|)n

))

∣

∣

∣
=

∣

∣anS
′(λ

′

n,0)
∣

∣ e
−τ

∣

∣

∣
Im

(

λ
′

n,0

)
∣

∣

∣

∏

λ∈σ′n
λ 6=λ

′
n,0

∣

∣λ− λ
′

n,0

∣

∣

.

Thus, from (5.2), we obtain, observing that 1 +
∣

∣Im(λ
′

n,0)
∣

∣ and
∣

∣eiτλ
∣

∣,

λ ∈ σ
′

n, are comparable to a constant since σ
′

n is close to R,

‖a‖p
Xp

τ (Λ)
=

∑

n

(

1 +
∣

∣

∣
Im(λ

′

n,0)
∣

∣

∣

) ∣

∣

∣
∆̃

|σ
′
n|−1

σ′n

(

aeiτ ·
(

λ(|σ
′
n|)

n

))∣

∣

∣

p

≍
∑

n















∣

∣anS
′(λ

′

n,0)
∣

∣

∏

λ∈σ′n
λ 6=λ

′
n,0

∣

∣λ
′

n,0 − λ
∣

∣















p

=
∑

n

ωpn |an|
p .(5.3)

So, let f ∈ PW p
τ be the (unique) solution of the interpolation problem

f |Λ = a. Notice that, since RΛ is an isomorphism onto Xp
τ (Λ), then

(5.4) ‖f‖pp . ‖a‖p
Xp

τ (Λ)
.
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This function is of the form f(z) =
∑

j aj
S(z)
z−γj

and so, with (5.2) we

have

∑

n

|f(θn)|
p =

∑

n

∣

∣

∣

∣

∣

∑

j

aj
S (θn)

θn − γj

∣

∣

∣

∣

∣

=
∑

n

|S (θn)|

∣

∣

∣

∣

∣

∑

j

aj
θn − γj

∣

∣

∣

∣

∣

and, from the construction of Θ, we obtain

(5.5)
∑

n

|f(θn)|
p = δp

∑

n

ωpn

∣

∣

∣

(

HΓ,Θ((aj)j≥1)
)

n

∣

∣

∣

p

.

On the other hand, the Polyà inequality (see [11, Lecture 20]), and the
inequalities (5.4) and (5.3) give

(5.6)
∑

n

|f(θn)|
p . ‖f‖pp . ‖a‖p

Xp
τ (Λ)

.
∑

n

ωpn |an|
p .

From (5.5) and (5.6), we deduce that HΓ,Θ is bounded from lp(ωp) into
itself. Using a slight modified version of [12, Lemma 1], we can conclude
that the weight (ωpn)n≥1 satisfies the discrete Muckenhoupt condition
(Ap).

Remark 21. It follows from the weak density condition ((HN) − (i)),
the Genralized Carleson condition (3.1) on

(

Bσγn

)

n
and the growth of

the sequence (Re (γn))n that we have Re(γn+1) − Re (γn) ≤ 3ǫ. This
implies that

δ
′

0 ≤ |γn − γn+1| ≤ 4ǫ.

Now, in order to prove (iii), we use the following lemma, adapted
from [12, Lemma 2].

Lemma 22. Suppose x ∈ R and Re(γn) ≤ x ≤ Re(γn+1). Then, there
exists an α = α(x) ∈ [0, 1] such that

ωαnω
1−α
n+1 ≍

|S(x)|

dN(x)
,

uniformly with respect to x ∈ R.

Assuming this lemma to hold, (iii) follows from (iii)′ and the in-
equality tαs1−α ≤ t + s, t, s > 0 and α ∈ [0, 1] (we still refer to [6] for
details).

Proof. For x ∈ [Re(γn),Re(γn+1)], we set N(x) :=
{

n : d(σ
′

n, x) < ǫ
}

and

Λ(x) :=





⋃

n∈N(x)

σ
′

n



 ∪ σγn ∪ σγn+1
.
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Notice that σγn and σγn+1
may be subsets of

⋃

n∈N(x) σ
′

n. Observe also
that since Λ is a finite union of Carleson sequences, we have

sup
x∈R

|N(x)| <∞.

For α ∈ [0, 1], we want to show that ϑ ≍ 1, where

ϑ :=
ωαnω

1−α
n+1dN(x)

|S(x)|
,

and x 6∈ Λ (this is not restrictive since the expression extends continu-
ously to Λ). From the definition of S, we have that

S ′(λ) = −
1

λ

∏

µ∈Λ
µ6=λ

(

1−
λ

µ

)

, λ ∈ Λ.

In order to not overcharge notation, all infinite products occurring be-
low will be understood as symmetric limits of finite products:

∏

λ∈Λ

a (λ) = lim
R→∞

∏

|λ|≤R

a (λ) .

Thus,

ϑ =















∣

∣

∣

∣

∣

1
γn

∏

λ∈Λ\{γn}

(

1− γn
λ

)

∣

∣

∣

∣

∣

α ∣
∣

∣

∣

∣

1
γn+1

∏

λ∈Λ\{γn+1}

(

1− γn+1

λ

)

∣

∣

∣

∣

∣

1−α

dN(x)

∏

λ∈Λ

(

1− x
λ

)
∏

λ∈σγn\{γn}

|λ− γn|
α ∏

λ∈σγn+1
\{γn+1}

|λ− γn+1|
1−α















.

For λ ∈ Λ \ {γn, γn+1},

∣

∣1− γn
λ

∣

∣

α ∣
∣1− γn+1

λ

∣

∣

1−α

∣

∣1− x
λ

∣

∣

=
|λ− γn|

α |λ− γn+1|
1−α

|x− λ|
.

Note also that for the remaining two points γn, γn+1 we have:

∣

∣

∣

1
γn

(

1− γn
γn+1

)∣

∣

∣

α ∣
∣

∣

1
γn+1

(

1− γn+1

γn

)∣

∣

∣

1−α

∣

∣

∣

(

1− x
γn

)(

1− x
γn+1

)∣

∣

∣

=
|γn+1 − γn|

α |γn − γn+1|
1−α

|γn − x| |γn+1 − x|
.

Now, we split ϑ in two products ϑ = Π1(x) · Π2(x) corresponding
essentially to zeros in Λ(x) and zeros in Λ \ Λ(x) (dN(x) appearing
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in Π1):

Π1(x) : =

∏

λ∈Λ(x)\{γn}

|λ− γn|
α ∏

λ∈Λ(x)\{γn+1}

|λ− γn+1|
1−α dN(x)

∏

λ∈Λ(x)

|λ− x|
∏

λ∈σγn\{γn}

|λ− γn|
α ∏

λ∈σγn+1
\{γn+1}

|λ− γn+1|
1−α

=

∏

λ∈Λ(x)\σγn

|λ− γn|
α ∏

λ∈Λ(x)\σγn+1

|λ− γn+1|
1−α dN(x)

∏

λ∈Λ(x)

|λ− x|

and

Π2(x) :=
∏

λ∈Λ\Λ(x)

(

|λ− γn|
α |λ− γn+1|

1−α

|λ− x|

)

.

We can write

Π1(x) =









∏

λ∈σγn+1

|λ− γn|
α ∏

λ∈σγn

|λ− γn+1|
1−α dN(x)

∏

σγn∪σγn+1

|x− λ|









×







∏

Λ(x)\(σγn∪σγn+1)

|λ− γn|
α |λ− γn+1|

1−α

|x− λ|







and notice that if λ ∈ Λ(x) \
(

σγn ∪ σγn+1

)

, then λ ∈ σ
′

l for a suitable
l ∈ N(x), so that

1 . d(σγn , σ
′

l) ≤ |λ− γn| ≤ 2ρ
′

0 + 2ǫ . 1

and, in view of Remark 21, for λ ∈ σγn and µ ∈ σγn+1
, we have

|λ− γn+1| ≍ 1 and |µ− γn| ≍ 1.

These three relations imply that

Π1(x) ≍
dN(x)
∏

λ∈Λ(x)

|x− λ|
.

Now, let nx be such that dN(x) = pnx
(x) (we refer to Remark 15).

Clearly nx ∈ N(x). Note also that for λ ∈ σ
′

m, m ∈ N(x), we have
|λ− x| ≤ d

(

σ
′

m, x
)

+ diam
(

σ
′

m

)

≤ ǫ+ ρ
′

0. Hence

1
(

ǫ+ ρ
′

0

)|N(x)|−1
≤

dN(x)
∏

λ∈Λ(x)

|x− λ|
=

1
∏

λ∈Λ(x)\σnx

|λ− x|
≤

(

2

δ
′

0

)N ·(|N(x)|−1)
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and, from the end of Remark 15, we obtain that

Π1(x) ≍ 1.

The relation

Π2(x) ≍ 1

is shown exactly in the same way as in [12], using the N−Carleson
condition. The lemma is proved. �

5.2.3. Sufficient conditions. We show the converse of the theorem in
two parts; first, the injectivity of RΛ and then its surjectivity.

Let f ∈ PW p
τ such that f(λ) = 0, λ ∈ Λ. We want to show that

f ≡ 0. Let us introduce φ := f/S. It can be shown that φ is an entire
function of exponential type 0 (see [6, pp. 96-98] for details). The
idea of the proof, given by Lyubarskii and Seip in [12], is to bound φ
by a constant on the imaginary axis and to use a Phragmen-Lindelöf
theorem to obtain that φ is a constant. Then, for integrability reasons,
the only possible value for the constant will be zero.

We will proceed as follows: since φ is analytic, it is bounded on the
compact [−2iǫ, 2iǫ]. In order to bound φ on iR \ [−2iǫ, 2iǫ], we will use
a lower estimate for S in a certain area of C. Let us introduce

An := {z ∈ C : |Im(z)| ≥ 2ǫ, ρ (λn,0, z) < 2ρ0 < ǫ} , n ∈ Z.

We begin to show that for z ∈
(

C
+
2ǫ ∪ C

−
−2ǫ

)

\ (
⋃

nAn),

(5.7) |S(z)| & eτ |Im(z)| (|Im(z)|)
1

q (1 + |z|)−1 .

Indeed, let us introduce

S1(z) := (S/Bǫ) (z),

where

Bǫ(z) :=
∏

λ∈Λǫ

(

cλ
z − λ

z − λ+ 3iǫ

)

,

is the Blaschke product in C
+
− 3

2
ǫ

associated to Λǫ, and cλ is the uni-

modular normalizing constant which ensures the convergence of the
Blaschke product (we do not need the explicit value here). Let x ∈ R.
Observe that for n ≥ 1 and λ ∈ σ

′

nx
, we have

∣

∣x− λ
∣

∣ = |x− λ| ≤ ǫ+ diam
(

σ
′

nx

)

≤ ǫ+ ρ
′

0 . 1.

Hence,
∣

∣x− λ+ 3iǫ
∣

∣ ≍ 1.
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It follows from these inequalities that




∏

λ∈σ′nx

∣

∣

∣

∣

x− λ

x− λ+ 3iǫ

∣

∣

∣

∣



 ≍ dN(x).

Writing

|Bǫ(x)| =





∏

λ∈σ′nx

∣

∣

∣

∣

x− λ

x− λ+ 3iǫ

∣

∣

∣

∣









∏

λ∈Λǫ\σ
′
nx

∣

∣

∣

∣

x− λ

x− λ+ 3iǫ

∣

∣

∣

∣





and using the fact that Λǫ is N−Carleson in C
+
− 3

2
ǫ
, we have then that

(5.8) |Bǫ(x)| ≍ dN(x),

and so x 7→ |S1(x)|p satisfies (Ap).

In particular, the function z 7→ eiτz S1(z)
z+i

= eiτz S(z)
Bǫ(z+i)

belongs to Hp
+

and the function z 7→ eiτzS1(z) is a function of N+, the Smirnov Class
in the upper half-plane (for definition and general results, see e.g. [15,
A.4]). Hence, we can write

S1(z) = e−iτzB1(z)G1(z), z ∈ C
+,

where B1 is the Blaschke product associated to Λ+ \ Λǫ and G1 is
an outer function in C

+(observe that eiτ ·S1 cannot contain any inner
singular factor). Thus, x 7→ |G1(x)|p satisfies (Ap) or equivalently,
x 7→ |G1(x)|−q satisfies (Aq), with 1

p
+ 1

q
= 1. So, it follows from

properties of functions satisfying Muckenhoupt’s (Ap) condition, that

φG1
: z 7→

1

G1(z)(z + i)
∈ Hq

+

and, from well known estimates in Hq
+, we get

|φG1
(z)| .

1

(Im(z))
1

q

,

and so, for z ∈ C+,
∣

∣

∣

∣

1

G1(z)

∣

∣

∣

∣

. (1 + |z|) (Im(z))−
1

q .

Moreover, because of the N−Carleson condition of Λ+ \ Λǫ, we have
that

|B1(z)| & 1, z ∈ C
+ \

(

⋃

n≥0

An

)
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and so we do have the lower bound for S1 stated in (5.7). We notice
that |S (z)| ≍ |S1 (z)|, Im(z) > 2ǫ and so we have the same bound for
S in C

+
2ǫ. A similar reasonning gives us the estimate in C

−
−2ǫ.

Using now (5.1) and (5.7), we have for z ∈
(

C
+
2ǫ ∪ C

−
−2ǫ

)

\ (
⋃

nAn),

|φ(z)| =

∣

∣

∣

∣

f(z)

S(z)

∣

∣

∣

∣

.
(1 + |z|)

eτ |Im(z)| |Im(z)|
1

q

eτ |Im(z)|

(1 + |Im(z)|)
1

p

≍
(1 + |z|)

|Im(z)|
1

q (1 + |Im(z)|)
1

p

=: ψ(z).

We notice then that if An ∩ iR 6= ∅, then

An ⊂ S± :=

{

z ∈ C
± :

∣

∣

∣

∣

Im(z)

Re(z)

∣

∣

∣

∣

< η

}

,

where η is a suitable constant. Note that S± are Stolz angles in C
± at

x = 0. Since An is far from R and has uniformly bounded pseudohy-
perbolic diameter, every An hitting the imaginary axis will be in the
Stolz angle S+ or S−. Obviously, there is some M > 0 such that for
every z ∈ C

±
±2ǫ ∩ S±, we have

|ψ(z)| ≤M.

In particular, |φ(z)| ≤M for z ∈ ∂An and by the maximum principle,

|φ(iy)| ≤M for iy ∈ An ∩ iR.

Hence, φ is uniformly bounded on iR and it follows, by a Phragmen-
Lindelöf principle that φ ≡ K, and f = KS. Let us now show that
K = 0. Because x 7→ |S1 (x)|

p satisfies (Ap) we have
ˆ

|S1 (x)|
p = ∞

and, applying the Plancherel-Polyà inequality, we also have
ˆ

|S1 (x+ 2iǫ)|p = ∞

but |S (x+ 2iǫ)| ≍ |S1 (x+ 2iǫ)|, so
ˆ

|S1 (x+ 2iǫ)|p = ∞.

We apply again the Plancherel-Polyà inequality to obtain
ˆ

|S (x)|p = ∞.

From the fact that f ∈ PW p
τ , we have by definition that f ∈ Lp and

since f = φS = KS, the only possibility is K = 0 and so f ≡ 0, which
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ends the proof of the injectivity of RΛ. Now, we can show the last part
of the proof.

Let us consider a finite sequence a = (a (λ))λ∈Λ and the solution of
the interpolation problem f (λ) = a (λ), λ ∈ Λ, given by

f(z) =
∑

λ∈Λ

a(λ)
S(z)

S ′(λ)(z − λ)
.

Since the sum is finite, f is an entire function of type at most τ . We
want to split this sum according to the localization of the points of Λ.
More precisely, we recall that we have the decomposition Λ =

⋃

n∈Z τn
and we have already introduced

N+ =
{

n ∈ Z : τn ∩
(

C
+ ∪ R

)

6= ∅
}

and N− = Z \N+.

We set
Λ+ :=

⋃

n∈N+

τn and Λ− :=
⋃

n∈N−

τn = Λ \ Λ+.

(Observe that since diam (τn) <
ǫ
2
, we have Λ+ ⊂ C

+
− ǫ

2

). Now, we can

write f = f+ + f−, with

f±(z) :=
∑

λ∈Λ±

a(λ)
S(z)

S ′(λ)(z − λ)
=
∑

n∈N±

∑

λ∈τn

a(λ)
S(z)

S ′(λ)(z − λ)
.

We want to estimate, separately,

(5.9) inf
{

∥

∥f± − g
∥

∥

p
: g ∈ PW p

τ , g|Λ = 0
}

.

Here we will only consider f+, the method is the same for f−. In the
following, β will be the Blaschke product associated to Λ+

−ǫ := Λ∩C
+
−ǫ

β(z) =
∏

λ∈Λ+

−ǫ

(

cλ
z − λ

z − λ+ 2iǫ

)

, z ∈ C
+
−ǫ,

where again cλ is a suitable normalizing factor. For z ∈ C
+
−ǫ, we write

S(z) = e−iτzβ(z)G(z). Observe that β(0) =
∏

λ∈Λ cλ
λ

λ−2iǫ
(recall that

we have assumed 0 6∈ Λ). Thus, we can write

G(z) = eiτzS(z)β(z)−1

= eiτz
∏

λ∈Λ

(

λ− z

λ

)

∏

λ∈Λ+
−ǫ

(

cλ
z − λ+ 2iǫ

z − λ

)

= β(0)−1eiτz
∏

λ̃∈Λ̃

(

1−
z

λ̃

)

,
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with Λ̃ :=
(

Λ \ Λ+
−ǫ

)

∪
(

Λ+
−ǫ − 2iǫ

)

⊂ C
−
−ǫ. The function G is outer

in C
+
−ǫ. As in (5.8), we obtain |β(x)| ≍ dN(x). In particular, we have

|G(x)|p ∈ (Ap). Let then be η such that ǫ
2
< η < ǫ. Since Λ̃ is the

union (not necessarily disjoint) of two N−Carleson sequences in C
−
−ǫ,

and in particular

Im
(

λ̃+ iη
)

≤ η − ǫ < 0, λ̃ ∈ Λ̃,

(which implies in particular that every real x is far from Λ̃), we obtain
that

|G(x− iη)| = eτη |G(x)|





∏

λ̃∈Λ̃

∣

∣

∣

∣

∣

x− λ̃− iη

x− λ̃

∣

∣

∣

∣

∣



 ≍ |G(x)|.

So x 7→ |G(x − iη)|p also satisfies the Muckenhoupt condition (Ap).
According to the Plancherel-Polyà inquality, it is possible to estimate
(5.9) on the axis {Im(z) = −η}.

By duality arguments (see [19, p. 576] or [6, p. 94]), we need to
estimate

sup
h∈Hq(C+

−η)
‖h‖q=1

N(h),

with

N(h) : =

∣

∣

∣

∣

∣

∑

λ∈Λ+

a(λ)

S ′(Λ)

ˆ

G(x− iη)h(x− iη)

x− iη − λ
dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

λ∈Λ+

a(λ)

S ′(λ)
H(G̃h̃)(λ+ iη)

∣

∣

∣

∣

∣

where z 7→ G̃(z) = G(z−iη) is an outer function in C+and the function

z 7→ h̃(z) = h(z− iη) belongs to Hq
+. In order to compute S ′(λ), let us

recall that

S(z) = e−iτzβ(z)G(z), z ∈ C
+
−η.

For λ ∈ τn, n ∈ N+, we have

S ′(λ) = cλ
e−iτλ

λ− λ+ 2iǫ
G(λ)

β

bǫλ
(λ),

where bǫλ(z) = cλ
z−λ

z−λ+2iǫ
. Using that G(λ) = G̃(λ+ iη), and setting

ψ :=
H(G̃h̃)

G̃
and α(λ) := a(λ)eiτλ, λ ∈ Λ+,
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where we recall that H denotes the Hilbert transform (see 1.2 for defi-
nition) the expression becomes

N(h) =

∣

∣

∣

∣

∣

∣

∣

∑

n∈N+

∑

λ∈τn

α(λ)ψ(λ+ iη)
∏

µ6=λ

bǫµ(λ)

(

λ− λ + 2iǫ
)

∣

∣

∣

∣

∣

∣

∣

.

Writing

N+ = Nǫ ∪N∞, with Nǫ := {n ∈ N+ : τn ∩ {|Im(z)| < ǫ} 6= ∅} ,

we set, with the help of the functions of Lemma 6,

Pτn,α(z) :=

|τn|
∑

k=1

∆k−1
τn

(

α
(

λ(k)n

))

k−1
∏

l=1

bλn,l
(z), n ∈ N∞,

Pτn,α(z) :=

|τn|
∑

k=1

�k−1
τn

(

α
(

λ(k)n

))

k−1
∏

l=1

(z − λn,l) , n ∈ Nǫ

and setting τ̃n := τn + iη

Qτ̃n,ψ(z) :=

|τ̃n|
∑

k=1

∆k−1
τ̃n

(ψ(λn,1 + iη, ..., λn,k + iη))
k−1
∏

l=1

bλn,l+iη(z).

We notice that

N(h) =

∣

∣

∣

∣

∣

∣

∣

∑

n∈N+

∑

λ∈τn

Pτn,α(λ)Qτ̃n,ψ(λ+ iη)
∏

µ6=λ

bǫµ(λ)

(

λ− λ+ 2iǫ
)

∣

∣

∣

∣

∣

∣

∣

.

Recall now that τn ⊂ Rn, where (Rn)n are the disjoint rectangles (con-
structed here in the half-plane C

+
−η so that in particular satisfying

d (∂Rn,R− iη) ≍ ln ≍ Ln) introduced in Remark 12. (Note also that
here we have that Λ+ ⊂ C

+
− ǫ

2

and in particular, Λ+ is far from R− iη).

Then, if Γn := ∂Rn, the function

z 7→ hn(z) :=
Pτn,α(z)Qτ̃n,ψ(z + iη)

β(z)

is a meromorphic function in
◦

Rn with simple poles at λ ∈ τn. Thus,
the residue theorem implies that

ˆ

Γn

hn(z)dz = 2iπ
∑

λ∈τn

Res(hn, λ)
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and

Res(hn, λ) = Pτn,α(λ)Qτ̃n,ψ(λ+ iη)

(

β

bǫλ
(λ)

)−1

·
(

λ− λ+ 2iǫ
)

.

It follows that

N(h) =

∣

∣

∣

∣

∣

∣

1

2iπ

∑

n∈N+

ˆ

Γn

Pτn,α (z)Qτ̃n,ψ (z + iη)

β
dz

∣

∣

∣

∣

∣

∣

.

Obviously
∣

∣bλn,l
(z)
∣

∣ ≤ 1. Observe also that by condition (3.5) of Re-
mark 12 for z ∈ Γn, n ∈ Nǫ, we have that |z − λn,l| is bounded by a
fixed constant. Hence for every n ∈ N+,

|Pτn,α| .

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn

(

α
(

λ(k)n

))

∣

∣

∣
.

Also

|Qτ̃n,ψ| .

|τ̃n|
∑

k=1

∣

∣∆k−1
τ̃n

(ψ(λn,1 + iη, ..., λn,k + iη))
∣

∣ ,

and we obtain that

N(h) .
∑

n∈N+





(
ˆ

Γn

∣

∣

∣

∣

dz

β(z)

∣

∣

∣

∣

)





|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn (α)

∣

∣

∣









|τ̃n|
∑

l=1

∣

∣∆l−1
τ̃n

(ψ)
∣

∣







 .

For z ∈ Γn, we see that

|β(z)| =





∏

λ∈Λ+\τn

∣

∣

∣

∣

z − λ

z − λ+ 2iǫ

∣

∣

∣

∣



 ·

(

∏

λ∈τn

∣

∣

∣

∣

z − λ

z − λ+ 2iǫ

∣

∣

∣

∣

)

=: Π1(z) · Π2(z).

Since Λ+ is N−Carleson in C
+
−ǫ, it follows from the fact that Rn is “far”

from τk, k 6= n that

Π1(z) ≍ 1

and from the fact that Rn is “far” from τn that

Π2(z) ≍ 1.

Hence, choosing arbitrarily λn,0 ∈ τn, the construction of Rn gives
ˆ

Γn

∣

∣

∣

∣

dz

β(z)

∣

∣

∣

∣

.

ˆ

Γn

|dz| . Im(λn,0) + η . 1 + |Im (λn,0)| .
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Applying Hölder’s inequality, we obtain

N(h) .





∑

n∈N+

(1 + Im(λn,0))

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn

(

eiτ ·a
)

∣

∣

∣

p





1

p

×





∑

n∈N+

Im(λn,0 + iη)

|τ̃n|
∑

k=1

∣

∣∆k−1
τ̃n

(ψ)
∣

∣

q





1

q

.

Now, notice that by the Muckenhoupt condition on |G̃|−q and thus the
boundedness of H on

Hq
+

(∣

∣

∣

∣

1

G̃

∣

∣

∣

∣

q)

:=

{

f ∈ N+ : f|R ∈ Lq
(∣

∣

∣

∣

1

G̃

∣

∣

∣

∣

q)}

,

(N+ denotes the Smirnov class) we get that ψ ∈ Hq
+ and ‖ψ‖q .

∥

∥

∥
h̃
∥

∥

∥

Hq
+

= 1. But, since

⋃

n∈N+

τ̃n = Λ+ + iη

is in fact N−Carleson in C
+
η− ǫ

2

⊂ C+ and ψ ∈ Hq
+, Theorem 13 implies

that




∑

n∈N+

Im(λn,0 + iη)

|τ̃n|
∑

k=1

∣

∣∆k−1
τ̃n

(ψ)
∣

∣

q





1

q

. ‖ψ‖Hq
+
.
∥

∥

∥
h̃
∥

∥

∥

Hq
+

= 1.

Finally, we obtain

N(h) .





∑

n∈N+

(1 + Im(λn,0))

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn

(

eiτ ·a
)

∣

∣

∣

p





1

p

= ‖a‖Xp
τ,ǫ(Λ)

,

which ends the proof.

6. About the N−Carleson condition

It is clear that the definition of Xp
τ,ǫ (Λ) depends on the N−Carleson

hypothesis, and more precisely for the construction of the groups τn.
In this last section, we show that in a certain way, the N−Carleson
condition is necessary.

It will be convenient to introduce the distance function

δ(z, ξ) :=
|z − ξ|

1 +
∣

∣z − ξ
∣

∣

, z, ξ ∈ C,
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which expresses that locally we deal with Euclidian geometry close to
the real axis and pseudohyperbolic geometry far away from the real axis
(see e.g. [17, page 715]). Let Λ = {λn}n≥1 be a sequence of complex

numbers. Let N ≥ 1 be an integer and η ∈
(

0, 1
2

)

. For λ ∈ Λ, we define

Dλ,η := {z ∈ C : δ(λ, z) < η} ,

Nλ := {µλ,i : 1 ≤ i ≤ N} ⊂ Λ

as the set of N closest neighboors of λ (including in particularλ) with
respect to the distance δ. Then we set

σλ := Dλ,η ∩Nλ, nλ := |σλ| ≤ N.

Note that the set Nλ, and consequently σλ, is not unique. It is now
natural to introduce the space (for 1 < p <∞)

Xp
τ (Λ, N) :=

{

a = (a(λ))λ∈Λ : ‖a‖Xp
τ (Λ,N) <∞

}

,

where

‖a‖p
Xp

τ (Λ,N)
:=
∑

λ∈Λ

(1 + |Im(λ)|)

nλ
∑

k=1

∣

∣

∣
∆̃k−1
σλ

(

ae±iτ ·
(

µ(k)
))

∣

∣

∣

p

with

∆̃σλ =

{

∆σλ , if σλ ∩ {z ∈ C : |Im(z)| < 1} = ∅

�σλ , if not

and

e±iτµ =

{

eiτµ , if µ ∈ σλand σλ ∩ {z ∈ C : Im (z) ≥ 0} 6= ∅
e−iτµ , otherwise

.

Remark 23. It can be shown that if Λ ∩ C±
a is N−Carleson in the

corresponding half-plane, for each a ∈ R, then this norm is equivalent
to the previously norm ‖·‖Xp

τ,ǫ(Λ)
(for every ǫ > 0) defined in the above

section. For the proof, we refer to [7, pp. 36-38].

The result is the following one.

Theorem 24. If RΛ is an isomorphism from PW p
τ onto Xp

τ (Λ, N),
then for every a ∈ R, Λ ∩ C±

a is N ′−Carleson in the corresponding
half-plane, with N ′ ≤ N .

The proof is in two parts. We begin by showing that if RΛ is such
an isomorphism, then Λ±

a is N ′−Carleson for some N ′ ∈ N. This only
requires the boundedness of RΛ. We first notice that by the Plancherel-
Polyà theorem (Proposition 20) the map

τa : PW p
τ → PW p

τ

f 7→ f(·+ i (1 + |a|)
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is an isomorphism and so R̃Λ := RΛ ◦ τa is still an isomorphism. Obvi-
ously, R̃Λ = RΛ̃, where

Λ̃ := Λ + i (1 + |a|) .

Note that for λ ∈ Λ+
a , with the notations of Lemma 6,

|aλ|
p e−pIm(λ) =

∣

∣Pσλ,e±iτ ·a

∣

∣ ≤
nλ
∑

k=1

∣

∣

∣
∆̃k−1
σλ

(

ae±iτ ·
(

µ(k)
))

∣

∣

∣

p

and so Xp
τ

(

Λ̃, N
)

injects into lp
((

1 +
∣

∣

∣
Im(λ̃)

∣

∣

∣

)

e−p|Im(λ̃)|
)

so that

RΛ̃ : PW p
τ → lp

((

1 +
∣

∣

∣
Im(λ̃)

∣

∣

∣

)

e−p|Im(λ̃)|
)

is bounded. We set Λ̃+
a := Λ+

a + i (1 + |a|) and reintroduce the inner
function Iτ (z) = exp (2iτz). We have mentioned in the beginning of
the paper that PW p

τ is isomorphic to Kp
Iτ , so

RIτ
Λ̃+
a
:= RΛ̃+

a

∣

∣

∣
Kp
Iτ

: Kp
Iτ

→ Lp
(

µΛ̃+
a

)

is bounded, where

µΛ̃+
a
:=
∑

λ̃∈Λ̃+
a

Im(λ̃)δλ̃.

In order to show that Λ±
a is N ′−Carleson, it is sufficient to show that

µΛ̃+
a

is a Carleson measure for Hp
+. Since in particular Λ̃+

a ⊂ C
+
1 , it is

possible to find ǫ ∈ (0, 1) such that

Λ̃+
a ⊂ L (Iτ , ǫ) :=

{

z ∈ C
+ : |Iτ (z)| < ǫ

}

.

Now, from a result of Treil and Volberg (see [20] or [1]), the bounded-
ness of RIτ

Λ̃+
a

implies that

(6.1) sup
I

µΛ̃+
a
(ωI)

m(I)
<∞,

where the supremum is taken over all the intervals of finite length such
that the Carleson window ωI constructed on I statisfies

ωI ∩ L(I
τ , ǫ) 6= ∅.

Observe that L (Iτ , ǫ) is in the upper half plane C
+
b , b = log (1/ǫ), so

that if the length of the Carleson window is less than b, then we have
ωI ∩ L(Iτ , ǫ) = ∅. Hence, ωI ∩ Λ̃+

a = ∅ and so µΛ̃+
a
(ωI) = 0. It follows

that (6.1) is true for all finite length intervals I, which is equivalent to



Divided differences and restriction operator on Paley-Wiener spaces 32

the fact that µΛ̃+
a

is a Carleson measure or also that Λ̃+
a is N ′−Carleson

and hence Λ+
a in the corresponding half-plane. Considering the map

s : PW p
τ → PW p

τ

f 7→ f (−·)

which is also an isomorphism, we will also have the result for Λ−
a .

Now, we want to prove that N ′ ≤ N . In the following, if Λ+
a is

(N + k)−Carleson, we write

Λ+
a =

⋃

n≥1

τkn ,

where the groups τkn come from the Generalized Carleson condition,
and so it is possible to assume that

diamδ

(

τkn
)

<
η

4

(which in particular implies that τkn ⊂ Dλ,η) and

γ := inf
n 6=m

δ
(

τkn , τ
k
m

)

> 0.

We need the following lemma and its corollary. For technical reasons,
let us assume (without loss of generality) that Λ+

a ⊂ C
+
1 so that we can

deal with the pseudohyperbolic metric and the corresponding divided
differences.

Lemma 25. If RΛ is an isomorphism from PW p
τ onto Xp

τ (Λ, N) and
Λ+
a is (N + k + 1)−Carleson, k ≥ 0, then it is possible to find ϑ > 0

such that every τk+1
n with

∣

∣τk+1
n

∣

∣ = N +k+1 satifies diamρ

(

τk+1
n

)

> ϑ.

Proof. Let us suppose to the contrary that we can find a subsequence
(τ̃j) of (τk+1

n ) such that |τ̃j | = N + k + 1 and diamρ(τ̃j) → 0, j → ∞.

We set τ̃j = {λji : i = 0, .., N + k}. Let us now introduce the sequence
aj = (aj(λ))λ∈Λ defined by

aj(λ) := 0, λ 66= λjN+k,

and

aj(λjN+k) := eτ Im(λ
j

N+k)Im
(

λjN+k

)− 1

p

∏

i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

max
i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

.

Let

Mj :=
{

λ ∈ Λ+
a : λjN+k ∈ σλ

}
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the set of the points of Λ+
a close to λjN+k. Since diamρ (τ̃j) <

η
4

and

λjN+k ∈ τ̃j we have for every λ ∈ τ̃j that λjN+k ∈ σλ, i.e. τ̃j ⊂ Mj . So,
let Bj :=Mj \ τ̃j . Also, since Λ+

a is (N + k + 1)−Carleson,

sup
j

∣

∣

∣
Λ+
a ∩Dλj

N+k

∣

∣

∣
<∞,

which implies that

sup
j

|Mj | <∞.

By construction,

∥

∥aj
∥

∥

p

Xp
τ (Λ,N)

=
∑

λ∈Mj

(1 + Im(λ))

nλ
∑

l=1

∣

∣∆l−1
σλ

(

ajeiτ ·
(

µ(l)
))∣

∣

p
.

(Observe that we only consider in the sum the points containing λjN+k

in their neighborhood.)
We have to evaluate this expression. Take λ ∈ Mj . We recall that

nλ = |σλ|. Note also that for every 1 ≤ l ≤ nλ, the divided difference
∣

∣∆l−1
σλ

(

aje±iτ ·
(

λ(l)
))∣

∣

will be equal either to 0 or to
∣

∣

∣

∣

∣

aj
(

λjN+k

)

e±iτλ
j
N+k

∏

m∈ωl

bλjm
(

λjN+k

)

∣

∣

∣

∣

∣

,

where ωl ⊂ σλ contains l − 1 points. Now, ωl = ωl,1 ∪ ωl,2 where
ωl,1 = σλ ∩ τ̃j and ωl,2 are the other points. Note that ωl cannot

contain λjN+k. By assumption, for µ ∈ ωl,2, |bµ(λ
j
N+k)| ≥ γ. Hence,

nλ
∑

l=1

∣

∣∆l−1
σλ

(

aje±iτ ·
(

λ(l)
))∣

∣

p

≤

nλ
∑

l=1

∏

i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

p

max
i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

p ·
1

Im
(

λjN+k

)
∏

µ∈ωl

∣

∣bµ
(

λjN+k

)∣

∣

p

≤
nλ
∑

l=1

1

γp|ωl,2|

∏

ξ∈Ωl

∣

∣bξ
(

λjN+k

)∣

∣

p

max
i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

p ·
1

Im
(

λjN+k

)

.
N

Im
(

λjN+K

) ,
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where Ωl = {λji : i = 0, . . . , N + k− 1} \ωl,1 are subsets of τ̃j . The last
of the above inequalities comes from the observation that Ωl contains
at least:

N + k − |ωl,1| ≥ N + k − (nλ − 1) ≥ N + k − (N − 1) = k + 1 ≥ 1

points. We deduce that aj ∈ Xp
τ (Λ, N) and that its norm is uniformly

bounded. Now, since RΛ is onto, there is f j ∈ PW p
τ such that f j|Λ = aj

and
∥

∥f j
∥

∥

PW p
τ
.
∥

∥aj
∥

∥

Xp
τ (Λ,N)

. 1.

Setting f̃ j := eiτ ·f j , it follows from the Plancherel-Polyà inequality
that f̃ j ∈ Hp

+ and since Λ+
a is (N + k + 1)−Carleson in C+, Theorem

(13) implies in particular that

Im(λjN+K)
∣

∣

∣
∆N+k
τ̃j

(

f̃ j
(

(

λj
)(N+k+1)

))∣

∣

∣

p

.
∥

∥f j
∥

∥ . 1.

But by construction, we have

Im(λjN+K)
∣

∣

∣
∆N+k
τ̃j

(

f̃ j
(

(

λj
)(N+k+1)

))∣

∣

∣

p

=
1

max
i 6=N+k

ρ
(

λjN+k, λ
j
i

)

which tends to ∞, j → ∞ because diamρτ̃j tends to 0, j → ∞, which
gives the required contradiction. �

The following corollary to the previous lemma allows us to end the
proof of our theorem.

Corollary 26. If RΛ is an isomorphism from PW p
τ onto Xp

τ (Λ, N) and
Λ+
a is (N + k + 1)−Carleson, k ≥ 0, then Λ+

a is (N + k)−Carleson.

Proof. We write Λ+
a =

⋃

n≥1 τ
k+1
n with |τk+1

n | ≤ N + k + 1. Let us

suppose that there are infinitely many n for which we have |τk+1
n | =

N+k+1 and let Z be the set of such n. Because of the previous lemma,
we can find ϑ > 0 such that diamρ(τ

k+1
n ) > ϑ for n ∈ Z. Then, for

every n ∈ Z, it is possible to write τk+1
n = {λni : i = 1, . . . , N + k + 1}

such that

ρ
(

λi, λ
n
N+k+1

)

≥
ϑ

2 (N + k)
, i = 1, . . . , N + k.

It follows that

Λ+
a =

⋃

n 6∈Z

τk+1
n ∪

(

⋃

n∈Z

τk+1
n \

{

λnN+k+1

}

)

∪

(

⋃

n∈Z

{

λnn+k+1

}

)

is a disjoint union of sets σn with |σn| ≤ N + k and it can be shown
that the sequence of Blascke products (Bσn)n satisfies the Generalized
Carleson condition and hence that Λ+

a is (N + k)−Carleson. �
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