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For a sequence of complex numbers Λ we consider the restriction operator R Λ defined on Paley-Wiener spaces P W p τ (1 < p < ∞). Lyubarskii and Seip gave necessary and sufficient conditions on Λ for R Λ to be an isomorphism between P W p τ and a certain weighted l p space. The Carleson condition appears to be necessary. We extend their result to N -Carleson sequences (finite unions of N disjoint Carleson sequences). More precisely, we give necessary and sufficient conditions for R Λ to be an isomorphism between P W p τ and an appropriate sequence space involving divided differences.

Introduction

Let X be a Banach space of analytic functions defined on a domain Ω of the complex plane and Λ a sequence of points lying in Ω. The restriction operator R Λ associated to Λ is defined on X by

R Λ : X ∋ f → (f (λ)) λ∈Λ ∈ C Λ .
Our aim is to describe the range of R Λ , denoted by X|Λ, as well as the injectivity of R Λ . This problem is related to interpolation problems in X and to geometrical properties of reproducing kernels in X ⋆ . See [START_REF] Hruscev | Unconditional bases of exponentials and of reproducing kernels in Complex analysis and spectral theory[END_REF], [START_REF] Nikolskii | Operators, functions and systems: An easy reading[END_REF]Part D] or [START_REF] Seip | Interpolation and sampling in spaces of analytic functions[END_REF].

In the late 1950s and early 1960s, Carleson [START_REF] Carleson | An interpolation problem for bounded analytic functions[END_REF] (p = ∞) and Shapiro and Shields [START_REF] Shapiro | On some interpolation problems for analytic functions[END_REF] (1 ≤ p < ∞) showed that R Λ is surjective from the Hardy space onto a suitable weighted l p space if and only if Λ satisfies a certain separation condition, the so-called Carleson condition (more precise definitions below). Notice that, in Hardy spaces, as soon as the sequence satisfies the Blaschke condition, R Λ cannot be injective.

The results of Carleson and Shapiro-Shields have been generalized to finite unions of Carleson sequences (which are called N-Carleson sequences) by Vasyunin [START_REF] Vasyunin | Traces of bounded analytic functions on finite unions of Carleson sets[END_REF] (p = ∞) and Hartmann [START_REF] Hartmann | Une approche de l'interpolation libre généralisée par la théorie des opérateurs et caractérisations des traces H p |Λ[END_REF] (1 < p < ∞). A similar result has been obtained by Bruna, Nicolau and Øyma [START_REF] Bruna | A note on interpolation in the Hardy spaces of the unit disc[END_REF]. In this more general situation the description of the range of R Λ involves divided differences.

Many authors like Hrushev, Nikolskii, Pavlov [START_REF] Hruscev | Unconditional bases of exponentials and of reproducing kernels in Complex analysis and spectral theory[END_REF] or Minkin [START_REF] Minkin | The reflection of indices and unconditionnal bases of exponentials[END_REF], have investigated interpolation problems in Paley-Wiener spaces using tools from operator theory (for instance invertibility criteria for a suitable Toeplitz operator) since the 1970s. Note that these spaces can be considered as special cases of backward shift invariant subspaces in Hardy spaces. More recently, Lyubarskii and Seip [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF] have characterized the sequences Λ for which the associated restriction operator is an isomorphism between the Paley-Wiener space and an appropriate weighted l p space. Their proof is in a sense more elementary and allows to consider sequences defined on the whole complex plane while the methods of Hrushev, Nikolskii, Pavlov intrinsically restrict the problem to sequences in a half-plane.

Here we investigate a generalization of Lyubarskii and Seip's result to N-Carleson sequences, in the spirit of Hartmann. Observe first that the Carleson condition turns out to be necessary for the classical interpolation problem in the Paley-Wiener space. Now, starting from an N-Carleson sequence Λ, we want to find necessary and sufficient conditions on Λ for R Λ to be an isomorphism between the Paley-Wiener space and an appropriate sequence space involving now divided differences.

Let us fix the notation and the results we mentioned above. We first recall the definition of the Hardy space, for 1 ≤ p < ∞,

H p C ± a := f ∈ Hol C ± a : sup y≷a ˆR |f (x + iy)| p dx < ∞
on the half-plane

C ± a := {z ∈ C : Im (z) ≷ a} , (a ∈ R) . For p = ∞, H ∞ C ± a := f ∈ Hol C ± a : sup z∈C ± a |f (z)| < ∞ .
For short we will write C ± := C ± 0 and H p ± := H p (C ± ). A function I ∈ H ∞ (C ± a ) satisfying |I (x + ia)| = 1 a.e. x ∈ R is called an inner function.

As previously mentioned, Carleson [START_REF] Carleson | An interpolation problem for bounded analytic functions[END_REF], Shapiro and Shields [START_REF] Shapiro | On some interpolation problems for analytic functions[END_REF] solved the interpolation problem in the Hardy space. Their results were obtained in the unit disk, but translate clearly to any half-plane. Setting Such sequences will be simply called Carleson sequences.

We consider now the Paley-Wiener space P W p τ (for 1 ≤ p < ∞) which consists of all entire functions of exponential type at most τ satisfying

f p p = ˆR |f (x)| p dx < ∞.
It is well-known (see e.g. [START_REF] Levin | Lectures on entire functions[END_REF]) that in the case p = 2, the Fourier transform is an isometric isomorphism between P W 2 τ and L 2 (-τ, τ ) which allows to reformulate the problem in terms of geometrical properties of exponentials in L 2 (we still refer to [START_REF] Hruscev | Unconditional bases of exponentials and of reproducing kernels in Complex analysis and spectral theory[END_REF]). From the Plancherel-Polyà inequality (see Proposition 20 below), it follows that P W p τ = e -iτ • K p I τ , where K p I τ := H p + ∩ I τ H p is the backward shift invariant subspace associated with the inner function I τ (z) := exp (2iτ z), z ∈ C + . In particular, the Paley-Wiener space can be considered as a subspace of the Hardy space.

Luybarskii and Seip [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF] gave necessary and sufficient conditions for R Λ to be an isomorphism from P W p τ onto the weighted sequence space l p e -pτ |Im(λn)| (1 + |Im(λ n )|) . Their proof is based on the boundedness of the Hilbert transform in certain weighted Hardy space.

Recall that the Hilbert transform H is defined by

(1.2) Hf (z) = ˆ+∞ -∞ f (t) t -z dt,
where the integral has to be understood as a principle value integral for real z. It is known (see e.g [START_REF] Hunt | Weighted norm inequalities for the conjugate Hilbert transform[END_REF] and [START_REF] Garnett | Bounded analytic functions[END_REF]) that, if w > 0, H is bounded from the weighted space

L p (w) := f meas. on R : ˆR |f | p wdm < ∞
into itself, if and only if w satisfies the Muckenhoupt (A p ) condition

(A p ) sup I 1 |I| ˆI w 1 |I| ˆI w -1 p-1 p p-1 < ∞,
where the supremum is taken over all intervals of finite length. In [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF], the authors also introduce the discrete Hilbert transform as follows. For fixed ǫ > 0 and two sequences Γ := {γ n } n and Σ :=

{σ n } n satisfying |γ n -σ n | = ǫ, and a = (a n ) n , (H Γ,Σ (a)) n := j a j γ j -σ n .
According to [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF]Lemma 1]), H Γ,Σ is bounded from l p (w n ) into itself if and only if (w n ) n satisfies the discrete Muckenhoupt condition Note that if 0 ∈ Λ, then the corresponding factor in (iii) reduces to z. In order to not complicate the notation we shall assume in all what fallows that 0 ∈ Λ which we can do without loss of generality (for instance, by shifting the sequence). We are now in a position to state the Lyubarski-Seip theorem [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF]Theorem 1].

(A p ) sup k∈Z n>0 1 n k+n j=k+1 w j 1 n k+n j=k+1 w -1/(p-1) j p-1 < ∞.
Theorem 2. (Lyubarskii-Seip). Let Λ ⊂ C, τ > 0 and 1 < p < ∞.
The following assertions are equivalent.

(1) R Λ is an isomorphism from P W p τ onto l p e -pτ |Im(λ)| (1 + |Im(λ)|) ; (2) Λ satisfies (LS) τ,p . Remark 3. The condition (iv) can be replaced by the condition (iv) ′ (iv)' There is a relatively dense subsequence Γ = (γ n ) n ⊂ Λ such that the sequence

(|S ′ (γ n )| p ) n satisfies the discrete Mucken- houpt condition (A p ).
The aim of this paper is to generalize the Lyubarskii-Seip result to finite unions of Carleson sequences. In the case of Hardy spaces, this problem has been solved by Vasyunin [START_REF] Vasyunin | Traces of bounded analytic functions on finite unions of Carleson sets[END_REF] and Hartmann [START_REF] Hartmann | Une approche de l'interpolation libre généralisée par la théorie des opérateurs et caractérisations des traces H p |Λ[END_REF] and involves divided differences.

As mentioned previously, in the case p = 2 the Fourier transform allows to express our main result Theorem 17 in terms of bases of exponentials in L 2 thereby generalizing a result by Avdonin and Ivanov [2,Theorem 3]. This paper is organized as follows. The next section will be devoted to divided differences. Section 3 deals with N-Carleson sequences. We will state our main result after some technical constructions in the fourth section. For an easier reading, we have postponed the proofs of Section 4 to the fifth section. Finally, in the last section we will discuss the necessity of the N-Carleson condition with an appropriate definition of the trace P W p τ |Λ.

A final word on notation. If δ is a metric on Ω, we will denote by D δ (x, η) the ball (relatively to δ) with center x ∈ Ω and radius η > 0, and diam δ (E) the δ-diameter of E. We shortly write diam(E) and D (x, η) when δ is the Euclidian distance. If ω = (ω n ) n≥1 is a sequence of strictly positive numbers and 1 ≤ p < ∞, we denote by l p (ω) or l p (ω n ) the space

l p (ω) := a = (a n ) n≥1 : n≥1 |a n | p ω n < ∞ .

Divided Differences

Divided differences appear in many results about interpolation or bases of exponentials (see e.g. [START_REF] Vasyunin | Traces of bounded analytic functions on finite unions of Carleson sets[END_REF], [START_REF] Hartmann | Une approche de l'interpolation libre généralisée par la théorie des opérateurs et caractérisations des traces H p |Λ[END_REF], [START_REF] Bruna | A note on interpolation in the Hardy spaces of the unit disc[END_REF] or [START_REF] Avdonin | Exponential Riesz bases of subspaces and divided differences[END_REF]). Here we will give the definitions and some properties that we will need later on. We recall that the (non-normalized) Blaschke factors in a half-plane C ± a are given by b

±,a µ (z) = z -µ z -µ -2ia
.

(The formula is actually the same for the upper and the lower halfplane). The associated pseudohyperbolic distance will be denoted by ρ ±,a (z, µ) := b ±,a µ (z) . For C + , we will write b µ = b +,0 µ and use ρ for ρ +,0 and ρ -,0 . The definitions and properties below are stated and proved in C + but are obviously valid for any half-plane C ± a . Definition 4. Let Γ := {µ i : 1 ≤ i ≤ |Γ| < ∞} ⊂ C + . For a finite set a = {a i } 1≤i≤|Γ| , we define the sequence of (pseudohyperbolic) divided differences of a relatively to Γ as follows

∆ 0 Γ (a i ) := a i , ∆ 1 Γ (a i , a j ) := a j -a i b µ i (µ j ) , and 
∆ k Γ (a i 1 , ..., a i k+1 ) := ∆ k-1 Γ (a i 1 , ..., a i k-1 , a i k+1 ) -∆ k-1 Γ (a i 1 , ..., a i k ) b µ i k (µ i k+1 )
.

We will need to estimate the divided differences when Γ lies in a compact set K ⊂ C + and a = {f (µ) : µ ∈ Γ} for f an analytic function bounded in K. Here K is supposed to be the closure of a non empty open connected set. By f ∈ H ∞ (K) we mean that f is holomorphic in the interior of K and

f ∞,K := sup z∈K |f (z)| < ∞.
Lemma 5. Suppose that Γ lies in a compact set K with the properties mentioned above, and assume that there exists η > 0 such that ρ(Γ, ∂K) ≥ η. Then, for each function f ∈ H ∞ (K), we have

∆ j Γ f (µ (j+1) ) ≤ 2 η j j k=0 1 1 -k 2M f ∞,K where µ (j+1) = (µ 1 , ..., µ j+1 ) and f µ (j+1) = (f (µ 1 ), ..., f (µ j+1 )) . Proof. Set A j := z ∈ K : ρ(z, ∂K) ≥ j 2N η , 0 ≤ j ≤ N -1.
We show by induction over j that for every z ∈ A j ,

∆ j Γ f (µ (j) , z) ≤ c j f ∞,K with c j = 2 η j j k=0 1 1 -k 2M .
Since Γ ⊂ A N -1 ⊂ ... ⊂ A 1 ⊂ A 0 , the result will follow. The claim is obviously true for j = 0. Now, the function

z → ∆ j+1 Γ f µ (j+1) , z
is holomorphic on A j+1 and by the maximum principle and the definition of divided differences, we have for z ∈ A j+1 , (2.1)

∆ j+1 Γ f µ (j+1) , z ≤ sup ξ∈∂A j+1 ∆ j Γ f µ (j) , ξ -∆ j Γ f (µ (j+1) ) ρ(ξ, µ j+1 ) . Let ξ ∈ ∂A j+1 . It is possible to find a point ζ ∈ ∂K such that ρ(ζ, ξ) = j + 1 2N η
and so, since µ j+1 ∈ Γ and ρ(Γ, ∂K) ≥ η, we have, by the triangle inequality,

(2.2) ρ(ξ, µ j+1 ) ≥ ρ(ζ, µ j+1 ) -ρ(ξ, ζ) ≥ η 1 - j + 1 2N .
From (2.1), (2.2) and the induction hypothesis, we finally obtain

∆ j+1 Γ f (µ (j+1) , ξ) ≤ 2 η 1 1 -j+1 2N c j f ∞,K
which gives the required estimate.

The next lemma will be important in the sequel; we can define a rational Newton type interpolating function which interpolates the values {a(µ) : µ ∈ Γ} on Γ. Lemma 6. The holomorphic function

P Γ,a (z) := |Γ| k=1 ∆ k-1 Γ a(µ (k) ) k-1 l=1 b µ l (z) satisfies P Γ,a (µ) = a(µ), µ ∈ Γ.
The proof is quite straightforward (see also [7, p.80]).

Remark 7. Divided differences with respect to pseudohyperbolic metric can be found in [START_REF] Bruna | A note on interpolation in the Hardy spaces of the unit disc[END_REF][START_REF] Hartmann | Une approche de l'interpolation libre généralisée par la théorie des opérateurs et caractérisations des traces H p |Λ[END_REF][START_REF] Vasyunin | Traces of bounded analytic functions on finite unions of Carleson sets[END_REF]. We will also need euclidian divided differences:

0 Γ := a i , 1 Γ (a i , a j ) := a j -a i µ j -µ i ,
and

k Γ a i 1 , .., a i k+1 := k-1 Γ a i 1 , .., a i k-1 , a i k+1 -k-1 Γ (a i 1 , .., a i k ) µ k+1 -µ k . 3. N-Carleson sequences Definition 8. Let N ≥ 1 be a natural number. A sequence Λ ⊂ C ± a is called a N-Carleson sequence if it is possible to find a partition Λ = N i=1 Λ i
such that, for every i = 1, ..., N, the sequence Λ i satisfies the Carleson (1.1) condition in C ± a . Note that the number N is not uniquely defined.

Let us make a link between the N-Carleson condition and the Generalized Carleson condition, also called Carleson-Vasyunin condition (see e.g. [START_REF] Nikolskii | A treatise on the shift operator[END_REF] and references therein). The following result has originally been stated in D (see [START_REF] Hartmann | Une approche de l'interpolation libre généralisée par la théorie des opérateurs et caractérisations des traces H p |Λ[END_REF]Proposition 3.1]) but can easily be translated to any half-plane C ± a . Proposition 9. Let Λ be a sequence of complex numbers, lying in C ± a . The following assertions are equivalent (i) Λ is N-Carleson in C ± a ; (ii) There exists δ > 0 and a sequence of Blaschke products

(B n ) n≥1 such that sup n deg B n ≤ N, Λ = n σ n , with σ n := {λ ∈ C ± a : B n (λ) = 0} and (B n ) n≥1 satisfies the Generalized Carleson condition (3.1) |B(z)| > δ inf n≥1 |B n (z)| , z ∈ C ± a ,
where B denotes the Blaschke product associated to Λ.

Observe that if Λ satisfies (ii), then, for (λ, µ) ∈ σ n × σ m (n = m), we have ρ (σ n , σ m ) ≥ δ and thus inf n =m ρ (σ n , σ m ) ≥ δ > 0.
Remark 10. The subsets σ n can for instance be obtained as intersections τ ǫ n ∩ Λ where τ ǫ n are the connected components of L(B, ǫ) := {z : |B(z)| < ǫ} and ǫ is small enough. Moreover, choosing ǫ in a suitable way, it is possible to assume that the pseudohyperbolic diameter of σ n is arbitrarily small.

Proposition 11. Let Λ = {λ n : n ≥ 1} be an N-Carleson sequence in C ± a .
There exists η > 0 such that every connected component of n≥1 D ρ (λ n , η) admits at most N elements. Remark 12. We can deduce from the previous proposition that if Λ is N-Carleson in C ± a (or equivalently satisfies condition (ii) of Proposition 9), it is possible to construct a sequence of rectangles of C ± a defined by

R n = Rect (z n , L n , l n ) = x + iy ∈ C ± a : |x -x n | ≤ L n 2 , |y -y n | ≤ l n 2
with L n , l n > 0 and z n = x n +iy n . These rectangles satisfy the following properties:

(3.2) σ n ⊂ R n , n ≥ 1; 
(3.3) L n ≍ l n ≍ |y n -a| ≍ d (∂R n , R + ia) , n ≥ 1; 
(3.4)

0 < inf n≥1 ρ (σ n , ∂R n ) ≤ sup n≥1 λ∈σn ρ (λ, ∂R n ) < ∞;
and finally, since the diameter of σ n can be chosen arbitrarily small by Remark 10, we can suppose the R n disjoints and even (3.5) inf

n =k ρ (R n , R k ) > 0.
Let Λ be N-Carleson in C ± a and 1 < p < ∞. From Proposition 9, we can write

Λ = n≥1 σ n ,
with in particular |σ n | ≤ N. We will construct divided differences relatively to σ n . We set

σ n = {λ n,k : 1 ≤ k ≤ |σ n |} and λ (k) n = (λ n,1 , ..., λ n,k ) .
We choose, in an arbitrarily way, λ n,0 in σ n and introduce, for a = (a (λ)

) λ∈Λ ∈ C Λ , a X p ±a (Λ) :=   n≥1 |Im(λ n,0 ) -a| |σn| k=1 ∆ k-1 σn a λ (k) n p   1 p
and the space

X p ±a (Λ) := a ∈ C Λ : a X p ±a (Λ) < ∞ . Observe that for every λ ∈ σ n , 1 ≍ |Im (λ) -a| / |Im (λ n,0
) -a| and so the definition of X p ±a (Λ) does not depend on the choice of λ n,0 . The following result was originally stated in D (see [START_REF] Hartmann | Une approche de l'interpolation libre généralisée par la théorie des opérateurs et caractérisations des traces H p |Λ[END_REF]) but it is not hard to check that it holds in C ± a . The reader will find details in [6, p. 92]. Theorem 13. (Hartmann). Let Λ be N-Carleson in C ± a and 1 < p < ∞. Then, R Λ is continuous and surjective from H p (C ± a ) onto X p ±a (Λ).

Main Result

Let Λ be a sequence in the complex plane. In this section we assume that there is an integer N ≥ 1 such that for every a ∈ R, the sequence

Λ ± a := Λ ∩ C ± a
is N-Carleson in the corresponding half-plane. Note that the partitions discussed in the previous section were adapted to sequences in a half-plane. Here, we will start discussing a "right" partition of Λ taking into account the fact that Λ lies in the whole complex plane 4.1. An adapted partition. From our above discussions it is possible to write

Λ ± a = n≥1 σ ± n,a , where B ±,a σ ± n,a n
satisfies the generalized Carleson condition in the cor-

responding half-plane C ± a (B ±,a σ ± n,a
being the Blaschke product in C ± a vanishing on σ ± n,a ). To simplify the notation, we will omit a if a = 0 and write

σ n := σ + n+1 , n ≥ 0 σ - n , n < 0 .
The reader might notice that σ + n and σ - m can come very close for certain values of n and m. This issue will be fixed below. Let us distinguish the sets of points close to the real axis and the ones far away from it. Let us fix ǫ > 0 for all what follows. We can assume that

ρ 0 := sup n∈Z diam ρ (σ n ) < ǫ 2 .
(Observe that ρ 0 is well defined by the Generalized Carleson condition).

Next introduce

M ǫ,∞ := {n ∈ Z : σ n ∩ {|Im(z)| < ǫ} = ∅} , Λ ǫ,∞ := n∈Mǫ,∞ σ n
(corresponding to the points for which the corresponding set σ n does not interset the previous strip) and

Λ ǫ := Λ \ Λ ǫ,∞ .
Notice that Λ ǫ contains the points of Λ lying in the real axis and moreover

Λ ǫ ⊂ {z ∈ C : |Im(z)| < 3ǫ} . Indeed, if λ ∈ Λ ǫ and λ ∈ R, then there is n λ ∈ Z \ M ǫ,∞ such that λ ∈ σ n λ . Hence, it is possible to find µ ∈ σ n λ such that |Im (µ)| < ǫ. It follows that |λ -µ| = |λ -µ| |λ -µ| |λ -µ| ≤ ρ 0 (2 |Im (µ)|) + |λ -µ| ≤ 3 2 ǫ 2 < 3 2 ǫ,
which implies that |Im (λ)| < 5ǫ/2. Now, since Λ ǫ is contained in a strip, parallel to the real axis, of finite width and is N-Carleson in C + -3ǫ , Λ ǫ breaks up into a disjoint union

Λ ǫ = n≥1 σ ′ n with ρ ′ 0 := sup n≥1 diam σ ′ n < ǫ 2
and moreover, for some δ > 0, the subsets

Ω n :=    z ∈ C : λ∈σ ′ n |z -λ| ≤ δ    , n ≥ 1, satisfy (4.1) inf n =m d (Ω n , Ω m ) > 0.
This is possible in view of Remarks 10 and 12. It follows that we can write Λ as the following disjoint union

Λ =   n∈Mǫ,∞ σ n   ∪ n≥1 σ ′ n =: n∈Z τ n .
Now that the partition is done, it is possible to construct divided differences. Since we will need both definitions of divided differences, we set

∆τn := ∆ τn if ∃k s.t. τ n = σ k τn if ∃k s.t. τ n = σ ′ k .
It is now possible to introduce a space of sequences that will be, assuming some hypotheses on Λ, the range of R Λ . Naturally, we write

τ n = {λ n,k : 1 ≤ k ≤ |σ n |} and λ (k) n := (λ n,1 , ..., λ n,k ) .
As previously, we choose, in an arbitrarily way, λ n,0 ∈ τ n , for every n ∈ Z. We define, for 1 < p < ∞,

X p τ,ǫ (Λ) := a = (a(λ)) λ∈Λ : a X p τ,ǫ (Λ) < ∞ , with a p X p τ,ǫ (Λ) := n∈Z (1 + |Im(λ n,0 )|) |τn| k=1 ∆k-1 τn ae ±iτ • λ (k) n p
, and

e ±iτ λ = e iτ λ if λ ∈ τ n , n ∈ N + , e -iτ λ if λ ∈ τ n , n ∈ N -,
where

N + := n ∈ Z : τ n ∩ C + ∪ R = ∅ and N -:= Z \ N + .
(The factor e ±iτ λ does not really matter close to R.) Next proposition will be proved in Section 5.

Proposition 14. If there exists ǫ > 0 such that R Λ is an isomorphism between P W p τ and X p τ,ǫ (Λ) then Λ is relatively dense, i.e. there exists r > 0 such that for every x ∈ R, d (x, Λ) < r.

It follows from the conclusion of the previous proposition that the relative density is necessary. Thus, we will assume in all what follows that Λ is relatively dense:

∃r > 0, ∀x ∈ R, d(x, Λ) < r.
Still relative to the previous partition of Λ, we introduce, for n ≥ 1, the products p n (x) := λ∈τn |x -λ| which permit us to define the function

d N (x) := inf n∈Z p n (x) , x ∈ R.
Remark 15. From the definition of the function d N , we can do the following observations.

• (1) The relative density condition implies that

sup x∈R d N (x) ≤ r + δ ′ 0 N < ∞,
where δ

′ 0 := inf n =m d(σ ′ n , σ ′ m ) > 0. • (2) It is clear that, in the definition of d N , the infimum is actu- ally a minimum. So, for each x ∈ R, there is n x ∈ Z such that d N (x) = p nx (x). It is not difficult to see that inf x∈R inf m =nx p m (x) ≥ δ ′ 0 2 N > 0.
• (3) Using the relative density, a similar reasoning as the one that can be used to show (2) yields that, with an other partition (and in particular with an other choice of ǫ), the function obtained is equivalent to d N .

4.2. The theorem.

Definition 16. Let Λ be N-Carleson in every half-plane and relatively dense. We say that Λ satisfies the conditions (H N ) τ,p (for τ > 0 and

1 < p < ∞) if • (i) The limit S(z) := lim R→∞ |λ|<R 1 - z λ
exists and defines an entire function of exponential type τ .

• (ii) The function x → |S(x)| d N (x) p satisfies the (continuous) Muck- enhoupt condition (A p ).
The reader would notice that, in view of Remark 15-(3), the definition of the conditions (H N ) τ,p do no depend on the partition of Λ.

Theorem 17. Let N ≥ 1, τ > 0, 1 < p < ∞ and Λ be N-Carleson in every half-plane and relatively dense (for some r > 0). Then, the restriction operator R Λ is an isomorphism from P W p τ onto X p τ,r (Λ) if and only if Λ satisfies (H N ) τ,p . Remark 18. We will see in the following that (H N ) τ,p -(ii) can be replaced by (ii) ′ , which is

• (ii) ′ There exists a subsequence Γ = {γ n : n ≥ 1} ⊂ Λ, still relatively dense, such that, if σ γn is the set containing γ n , the sequence      |S ′ (γ n )| p λ∈σγ n λ =γn |γ n -λ| p      n≥1 satisfies the discrete Muckenhoupt condition (A p ).
It is clear that for N = 1, d 1 (x) = d(x, Λ) and (H 1 ) τ,p with the Carleson condition and the relative density corresponds exactly to the (LS) τ,p conditions. The proof of Theorem 17 will be done in Section 5.

Remark 19. The choice of ǫ = r in our construction ensures that, for every x ∈ R, τ nx = σ ′ nx and permits us to avoid tedious considerations but the conclusion or Theorem 17 is still true with any choice of ǫ > 0.

We will discuss below the necessity of the N-Carleson condition in Theorem 24. In Theorem 17, the definition of the range of R Λ definitely depends on the partition of Λ which is possible because of the N-Carleson condition. In Section 6, we will construct a space without the a priori assumption that Λ is N-Carleson in every halfplane.

Proofs

Proof of Proposition 14.

Proof. Let us suppose to the contrary that there exists a real sequence {x j } j≥1 and a sequence of positive numbers {r j } j≥1 such that r j → ∞, j → ∞ and B(x j , r j ) ∩ Λ = ∅.

We consider the functions of P W p τ defined by

f j (z) := sin τ (z -x j ) τ (z -x j ) , z ∈ C, j ≥ 1.
Since R Λ is an isomorphism, we obtain that

1 ≍ f j p p ≍ R Λ f j p X p
τ,ǫ (Λ) . We will show that R Λ f j p X p τ (Λ) -→ 0, j → ∞, which implies the required contradiction. From the definition, we have

R Λ f j p X p τ,ǫ (Λ) = n≥1 (1 + |Im (λ n,0 )|) |τn| k=1 ∆k-1 τn f j e ±iτ • λ (k) n p .
Using Lemme 5 (see [6, p. 95] for details), we can see that, for every n ≥ 1 and every

1 ≤ k ≤ |τ n |, ∆k-1 τn f j e ±iτ • λ (k) n p 1 |λ n,0 -x j | p , which implies R Λ f j p X p τ,ǫ (Λ) n≥1 1 + |Im (λ n,0 )| |λ n,0 -x j | p .
On the other hand, p > 1 and so we can find α > 0 such that p -α > 1.

Recall that |λ n,0x j | ≥ r j and let us write

R Λ f j p X p τ,ǫ (Λ) 1 r α j n≥1 1 + |Im (λ n,0 )| |λ n,0 -x j | p-α .
We split this sum in two parts, writing {λ n,0 :

n ≥ 1} = A + ∪ A -, where A + ⊂ C + ∪ R ⊂ C + -1 2 and A -⊂ C -⊂ C - 1 2 
.

Since r j → ∞, j → ∞, we obtain |λ n,0x j | ≍ |λ n,0x j ± i|. It follows that the functions

g ± : z → 1 z -x j ± i ∈ H p-α C ± ∓ 1 2 . Now, A ± is Carleson in C ± ∓ 1 2
, thus

λ∈A ± 1 + |Im (λ)| |λ -x j ± i| p-α = λ∈A ± 1 + |Im (λ)| |g ± (λ)| p-α g p-α H p-α C ± ∓ 1 2
1.

We finally obtain that

R Λ f j p X p τ,ǫ (Λ) 1 r α j → 0, j → ∞,
which is the required contradiction and ends the proof.

5.2.

Proof of Theorem 17. The proof of Theorem 17 follows the main ideas of Lyubarskii and Seip's paper but needs an important technical work to characterize this more general case.

5.2.1.

Paley-Wiener Spaces. We will need some well known facts about Paley-Wiener spaces that we recall here. First, we have the Plancherel-Polyà inequality (see e.g. [START_REF] Levin | Lectures on entire functions[END_REF] or [18, p. 95]). It follows that for every f ∈ P W p τ , the function z → e iτ z f (z) belongs to H p + . It also follows that translation is an isomorphism from P W p τ onto itself. The second fact is a pointwise estimate; there exists a constant C = C(p) such that for every f ∈ P W p τ , we have (5.1)

|f (z)| ≤ C f p (1 + |Im(z)) -1 p e τ |Im(z)| , z ∈ C.

Necessary conditions.

Let us do the construction of subsection 4.1 with ǫ = r and suppose that R Λ is an isomorphism between P W p τ and X p τ,ǫ (Λ). The necessity of (H N ) -(i) can be shown exactly as in [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF] and so we do not prove it here. We first show that the condition (ii) ′ is necessary. Then, with a technical lemma, adapted from [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF], we prove that (ii) ′ implies (ii).

Since R Λ is bijective, for each λ ∈ Λ, there is a unique function

f λ ∈ P W p τ such that f λ (µ) = 1, if µ = λ 0, if µ = λ .
As in [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF], it can be shown that f λ only vanishes on Λ \ {λ} and that f λ is of exponential type τ (if its type was τ ′ < τ then considering the function e i(τ -τ ′ )(•-λ) f λ , we would obtain a contradiction with the injectivity of R Λ ). Moreover, z → (zλ) f λ (z) is a function of the Cartwright Class C vanishing exactly on Λ (see e.g. [START_REF] Levin | Lectures on entire functions[END_REF] for definition and general results on C). Hence, since S is also of exponential type τ ,

S(z) = c λ (z -λ) f λ (z), z ∈ C, or f λ (z) = S(z) S ′ (λ) (z -λ)
.

For each n ≥ 1, the holomorphic function

g n : z → S(z) λ∈σ ′ n (z -λ)
does not vanish in Ω n (see Formula 4.1). Moreover, choosing λ

′ n,0 ∈ σ ′ n , g n (λ n,0 ) = S ′ λ ′ n,0 λ∈σ ′ n λ =λ n,0 λ ′ n,0 -λ .
Hence, it follows from the maximum and the minimum principle that inf ξ∈∂Ωn S(ξ)

λ∈σ ′ n (ξ -λ) ≤ S ′ λ ′ n,0 λ∈σ ′ n λ =λ n,0 λ ′ n,0 -λ ≤ sup ξ∈∂Ωn S(ξ) λ∈σ ′ n (ξ -λ) .
From the intermediate values theorem, we deduce the existence of a point θ n ∈ ∂Ω n such that

(5.2) |S(θ n )| = δ S ′ (λ ′ n,0 ) λ∈σ ′ n λ =λ n,0 λ ′ n,0 -λ =: δω n .
Let us consider now a subsequence Γ := (γ n ) n≥1 of λ ′ n,0 : n ≥ 1 which is still relatively dense and such that

inf n≥1 (Re (γ n+1 ) -Re (γ n )) > 0.
We define σ γn as the set containing γ n . The sequence Θ := (θ n ) ≥1 denotes the previous θ n , corresponding to γ n , and for n ≥ 1, we set

ω n := S ′ (γ n ) λ∈σγ n λ =γn (γ n -λ) so that |S (θ n )| = δω n .
We show that the discrete Hilbert transform H Γ,Θ is bounded from l p (ω) into itself. Indeed, let (a n ) n≥1 be a finite sequence of l p (ω). Then, the sequence

a(λ) := a n S ′ (γ n ) , if λ = γ n 0 , if λ ∈ Λ \ Γ belongs to X p τ (Λ) because, if γ k = λ ′ n,0 = λ n,|σγ n | is choosen as the "last" point of σ ′ n , ∆k-1 σn ae iτ • λ (k) n = 0, k < |σ n | and ∆|σn|-1 σn ae iτ • λ (|σn|) n = a n S ′ (λ ′ n,0 ) e -τ Im λ ′ n,0 λ∈σ ′ n λ =λ ′ n,0 λ -λ ′ n,0
.

Thus, from (5.2), we obtain, observing that 1 + Im(λ

′ n,0 ) and e iτ λ , λ ∈ σ ′ n , are comparable to a constant since σ ′ n is close to R, a p X p τ (Λ) = n 1 + Im(λ ′ n,0 ) ∆|σ ′ n |-1 σ ′ n ae iτ • λ (|σ ′ n |) n p ≍ n        a n S ′ (λ ′ n,0 ) λ∈σ ′ n λ =λ ′ n,0 λ ′ n,0 -λ        p = n ω p n |a n | p . (5.3) So, let f ∈ P W p τ be the (unique) solution of the interpolation problem f |Λ = a. Notice that, since R Λ is an isomorphism onto X p τ (Λ), then (5.4) f p p a p X p τ (Λ) .
This function is of the form f (z) = j a j S(z) z-γ j and so, with (5.2) we have

n |f (θ n )| p = n j a j S (θ n ) θ n -γ j = n |S (θ n )| j a j θ n -γ j
and, from the construction of Θ, we obtain (5.5)

n |f (θ n )| p = δ p n ω p n H Γ,Θ ((a j ) j≥1 ) n p .
On the other hand, the Polyà inequality (see [START_REF] Levin | Lectures on entire functions[END_REF]Lecture 20]), and the inequalities (5.4) and ( 5 Lemma 22. Suppose x ∈ R and Re(γ n ) ≤ x ≤ Re(γ n+1 ). Then, there exists an α = α(x) ∈ [0, 1] such that

ω α n ω 1-α n+1 ≍ |S(x)| d N (x) ,
uniformly with respect to x ∈ R.

Assuming this lemma to hold, (iii) follows from (iii) ′ and the inequality t α s 1-α ≤ t + s, t, s > 0 and α ∈ [0, 1] (we still refer to [START_REF] Gaunard | Problèmes d'Interpolation dans les Espaces de Paley-Wiener et Applications en Théorie du Contrôle[END_REF] for details).

Proof. For x ∈ [Re(γ n ), Re(γ n+1 )], we set N(x) := n : d(σ ′ n , x) < ǫ and Λ(x) :=   n∈N (x) σ ′ n   ∪ σ γn ∪ σ γ n+1 .
Notice that σ γn and σ γ n+1 may be subsets of n∈N (x) σ ′ n . Observe also that since Λ is a finite union of Carleson sequences, we have

sup x∈R |N(x)| < ∞.
For α ∈ [0, 1], we want to show that ϑ ≍ 1, where

ϑ := ω α n ω 1-α n+1 d N (x) |S(x)| ,
and x ∈ Λ (this is not restrictive since the expression extends continuously to Λ). From the definition of S, we have that

S ′ (λ) = - 1 λ µ∈Λ µ =λ 1 - λ µ , λ ∈ Λ.
In order to not overcharge notation, all infinite products occurring below will be understood as symmetric limits of finite products:

λ∈Λ a (λ) = lim R→∞ |λ|≤R a (λ) .
Thus,

ϑ =        1 γn λ∈Λ\{γn} 1 -γn λ α 1 γ n+1 λ∈Λ\{γ n+1 } 1 -γ n+1 λ 1-α d N (x) λ∈Λ 1 -x λ λ∈σγ n \{γn} |λ -γ n | α λ∈σγ n+1 \{γ n+1 } |λ -γ n+1 | 1-α        . For λ ∈ Λ \ {γ n , γ n+1 }, 1 -γn λ α 1 -γ n+1 λ 1-α 1 -x λ = |λ -γ n | α |λ -γ n+1 | 1-α |x -λ| .
Note also that for the remaining two points γ n , γ n+1 we have:

1 γn 1 -γn γ n+1 α 1 γ n+1 1 -γ n+1 γn 1-α 1 -x γn 1 -x γ n+1 = |γ n+1 -γ n | α |γ n -γ n+1 | 1-α |γ n -x| |γ n+1 -x| .
Now, we split ϑ in two products ϑ = Π 1 (x) • Π 2 (x) corresponding essentially to zeros in Λ(x) and zeros in Λ \ Λ(x) (d N (x) appearing in Π 1 ):

Π 1 (x) : = λ∈Λ(x)\{γn} |λ -γ n | α λ∈Λ(x)\{γ n+1 } |λ -γ n+1 | 1-α d N (x) λ∈Λ(x) |λ -x| λ∈σγ n \{γn} |λ -γ n | α λ∈σγ n+1 \{γ n+1 } |λ -γ n+1 | 1-α = λ∈Λ(x)\σγ n |λ -γ n | α λ∈Λ(x)\σγ n+1 |λ -γ n+1 | 1-α d N (x) λ∈Λ(x)
|λ -x| and

Π 2 (x) := λ∈Λ\Λ(x) |λ -γ n | α |λ -γ n+1 | 1-α |λ -x| .
We can write

Π 1 (x) =     λ∈σγ n+1 |λ -γ n | α λ∈σγ n |λ -γ n+1 | 1-α d N (x) σγ n ∪σγ n+1 |x -λ|     ×    Λ(x)\(σγ n ∪σγ n+1 ) |λ -γ n | α |λ -γ n+1 | 1-α |x -λ|   
and notice that if λ ∈ Λ(x) \ σ γn ∪ σ γ n+1 , then λ ∈ σ ′ l for a suitable l ∈ N(x), so that

1 d(σ γn , σ ′ l ) ≤ |λ -γ n | ≤ 2ρ ′ 0 + 2ǫ 1
and, in view of Remark 21, for λ ∈ σ γn and µ ∈ σ γ n+1 , we have

|λ -γ n+1 | ≍ 1 and |µ -γ n | ≍ 1.
These three relations imply that

Π 1 (x) ≍ d N (x) λ∈Λ(x)
|x -λ| . Now, let n x be such that d N (x) = p nx (x) (we refer to Remark 15).

Clearly

n x ∈ N(x). Note also that for λ ∈ σ ′ m , m ∈ N(x), we have |λ -x| ≤ d σ ′ m , x + diam σ ′ m ≤ ǫ + ρ ′ 0 . Hence 1 ǫ + ρ ′ 0 |N (x)|-1 ≤ d N (x) λ∈Λ(x) |x -λ| = 1 λ∈Λ(x)\σn x |λ -x| ≤ 2 δ ′ 0 N •(|N (x)|-1)
and, from the end of Remark 15, we obtain that

Π 1 (x) ≍ 1.
The relation Π 2 (x) ≍ 1 is shown exactly in the same way as in [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF], using the N-Carleson condition. The lemma is proved. 5.2.3. Sufficient conditions. We show the converse of the theorem in two parts; first, the injectivity of R Λ and then its surjectivity.

Let f ∈ P W p τ such that f (λ) = 0, λ ∈ Λ. We want to show that f ≡ 0. Let us introduce φ := f /S. It can be shown that φ is an entire function of exponential type 0 (see [6, pp. 96-98] for details). The idea of the proof, given by Lyubarskii and Seip in [START_REF] Lyubarskii | Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (A p ) condition[END_REF], is to bound φ by a constant on the imaginary axis and to use a Phragmen-Lindelöf theorem to obtain that φ is a constant. Then, for integrability reasons, the only possible value for the constant will be zero.

We will proceed as follows: since φ is analytic, it is bounded on the compact [-2iǫ, 2iǫ]. In order to bound φ on iR \ [-2iǫ, 2iǫ], we will use a lower estimate for S in a certain area of C. Let us introduce

A n := {z ∈ C : |Im(z)| ≥ 2ǫ, ρ (λ n,0 , z) < 2ρ 0 < ǫ} , n ∈ Z.

We begin to show that for

z ∈ C + 2ǫ ∪ C - -2ǫ \ ( n A n ), (5.7) |S(z)| e τ |Im(z)| (|Im(z)|) 1 q (1 + |z|) -1 . Indeed, let us introduce S 1 (z) := (S/B ǫ ) (z), where B ǫ (z) := λ∈Λǫ c λ z -λ z -λ + 3iǫ , is the Blaschke product in C + -3
2 ǫ associated to Λ ǫ , and c λ is the unimodular normalizing constant which ensures the convergence of the Blaschke product (we do not need the explicit value here). Let x ∈ R. Observe that for n ≥ 1 and λ ∈ σ ′ nx , we have

x -λ = |x -λ| ≤ ǫ + diam σ ′ nx ≤ ǫ + ρ ′ 0 1.

Hence,

xλ + 3iǫ ≍ 1.

It follows from these inequalities that

  λ∈σ ′ nx x -λ x -λ + 3iǫ   ≍ d N (x). Writing |B ǫ (x)| =   λ∈σ ′ nx x -λ x -λ + 3iǫ     λ∈Λǫ\σ ′ nx x -λ x -λ + 3iǫ   and using the fact that Λ ǫ is N-Carleson in C + -3
2 ǫ , we have then that (5.8)

|B ǫ (x)| ≍ d N (x),
and so x → |S 1 (x)| p satisfies (A p ).

In particular, the function z → e iτ z S 1 (z) z+i = e iτ z S(z) Bǫ(z+i) belongs to H p + and the function z → e iτ z S 1 (z) is a function of N + , the Smirnov Class in the upper half-plane (for definition and general results, see e.g. [15, A.4]). Hence, we can write

S 1 (z) = e -iτ z B 1 (z)G 1 (z), z ∈ C + ,
where B 1 is the Blaschke product associated to Λ + \ Λ ǫ and G 1 is an outer function in C + (observe that e iτ • S 1 cannot contain any inner singular factor). Thus, x → |G 1 (x)| p satisfies (A p ) or equivalently, x → |G 1 (x)| -q satisfies (A q ), with 1 p + 1 q = 1. So, it follows from properties of functions satisfying Muckenhoupt's (A p ) condition, that

φ G 1 : z → 1 G 1 (z)(z + i) ∈ H q +
and, from well known estimates in H q + , we get

|φ G 1 (z)| 1 (Im(z)) 1 q 
, and so, for

z ∈ C + , 1 G 1 (z) (1 + |z|) (Im(z)) -1 q .
Moreover, because of the N-Carleson condition of Λ + \ Λ ǫ , we have that

|B 1 (z)| 1, z ∈ C + \ n≥0 A n
and so we do have the lower bound for S 1 stated in (5.7). We notice that |S (z)| ≍ |S 1 (z)|, Im(z) > 2ǫ and so we have the same bound for S in C + 2ǫ . A similar reasonning gives us the estimate in C - -2ǫ . Using now (5.1) and (5.7), we have for

z ∈ C + 2ǫ ∪ C - -2ǫ \ ( n A n ), |φ(z)| = f (z) S(z) (1 + |z|) e τ |Im(z)| |Im(z)| 1 q e τ |Im(z)| (1 + |Im(z)|) 1 p ≍ (1 + |z|) |Im(z)| 1 q (1 + |Im(z)|) 1 p =: ψ(z).
We notice then that if

A n ∩ iR = ∅, then A n ⊂ S ± := z ∈ C ± : Im(z) Re(z) < η ,
where η is a suitable constant. Note that S ± are Stolz angles in C ± at x = 0. Since A n is far from R and has uniformly bounded pseudohyperbolic diameter, every A n hitting the imaginary axis will be in the Stolz angle S + or S -. Obviously, there is some M > 0 such that for every z ∈ C ± ±2ǫ ∩ S ± , we have

|ψ(z)| ≤ M.
In particular, |φ(z)| ≤ M for z ∈ ∂A n and by the maximum principle,

|φ(iy)| ≤ M for iy ∈ A n ∩ iR.
Hence, φ is uniformly bounded on iR and it follows, by a Phragmen-Lindelöf principle that φ ≡ K, and f = KS. Let us now show that K = 0. Because x → |S 1 (x)| p satisfies (A p ) we have

ˆ|S 1 (x)| p = ∞
and, applying the Plancherel-Polyà inequality, we also have

ˆ|S 1 (x + 2iǫ)| p = ∞ but |S (x + 2iǫ)| ≍ |S 1 (x + 2iǫ)|, so ˆ|S 1 (x + 2iǫ)| p = ∞.
We apply again the Plancherel-Polyà inequality to obtain

ˆ|S (x)| p = ∞.
From the fact that f ∈ P W p τ , we have by definition that f ∈ L p and since f = φS = KS, the only possibility is K = 0 and so f ≡ 0, which ends the proof of the injectivity of R Λ . Now, we can show the last part of the proof.

Let us consider a finite sequence a = (a (λ)) λ∈Λ and the solution of the interpolation problem f (λ) = a (λ), λ ∈ Λ, given by

f (z) = λ∈Λ a(λ) S(z) S ′ (λ)(z -λ)
.

Since the sum is finite, f is an entire function of type at most τ . We want to split this sum according to the localization of the points of Λ.

More precisely, we recall that we have the decomposition Λ = n∈Z τ n and we have already introduced

N + = n ∈ Z : τ n ∩ C + ∪ R = ∅ and N -= Z \ N + .
We set

Λ + := n∈N + τ n and Λ -:= n∈N - τ n = Λ \ Λ + . (Observe that since diam (τ n ) < ǫ 2 , we have Λ + ⊂ C + -ǫ 2 
). Now, we can write

f = f + + f -, with f ± (z) := λ∈Λ ± a(λ) S(z) S ′ (λ)(z -λ) = n∈N ± λ∈τn a(λ) S(z) S ′ (λ)(z -λ) .
We want to estimate, separately, (5.9) inf f ±g p : g ∈ P W p τ , g|Λ = 0 . Here we will only consider f + , the method is the same for f -. In the following, β will be the Blaschke product associated to

Λ + -ǫ := Λ ∩ C + -ǫ β(z) = λ∈Λ + -ǫ c λ z -λ z -λ + 2iǫ , z ∈ C + -ǫ ,
where again c λ is a suitable normalizing factor. For z ∈ C + -ǫ , we write S(z) = e -iτ z β(z)G(z). Observe that β(0) = λ∈Λ c λ λ λ-2iǫ (recall that we have assumed 0 ∈ Λ). Thus, we can write

G(z) = e iτ z S(z)β(z) -1 = e iτ z λ∈Λ λ -z λ λ∈Λ + -ǫ c λ z -λ + 2iǫ z -λ = β(0) -1 e iτ z λ∈ Λ 1 - z λ , with Λ := Λ \ Λ + -ǫ ∪ Λ + -ǫ -2iǫ ⊂ C - -ǫ . The function G is outer in C + -ǫ . As in (5.8), we obtain |β(x)| ≍ d N (x).
In particular, we have |G(x)| p ∈ (A p ). Let then be η such that ǫ 2 < η < ǫ. Since Λ is the union (not necessarily disjoint) of two N-Carleson sequences in C - -ǫ , and in particular Im λ + iη ≤ ηǫ < 0, λ ∈ Λ, (which implies in particular that every real x is far from Λ), we obtain that

|G(x -iη)| = e τ η |G(x)|   λ∈ Λ x -λ -iη x -λ   ≍ |G(x)|.
So x → |G(xiη)| p also satisfies the Muckenhoupt condition (A p ). According to the Plancherel-Polyà inquality, it is possible to estimate (5.9) on the axis {Im(z) = -η}.

By duality arguments (see [19, p. 576] or [6, p. 94]), we need to estimate

sup h∈H q (C + -η ) h q =1 N(h), with N(h) : = λ∈Λ + a(λ) S ′ (Λ) ˆG(x -iη)h(x -iη) x -iη -λ dx = λ∈Λ + a(λ) S ′ (λ) H( Gh )(λ + iη)
where z → G(z) = G(z -iη) is an outer function in C + and the function z → h(z) = h(ziη) belongs to H q + . In order to compute S ′ (λ), let us recall that where we recall that H denotes the Hilbert transform (see 1.2 for definition) the expression becomes

S(z) = e -iτ z β(z)G(z), z ∈ C + -η . For λ ∈ τ n , n ∈ N + , we have S ′ (λ) = c λ e -iτ λ λ -λ + 2iǫ G(λ) β b ǫ λ (λ),
N(h) = n∈N + λ∈τn α(λ)ψ(λ + iη) µ =λ b ǫ µ (λ) λ -λ + 2iǫ .
Writing

N + = N ǫ ∪ N ∞ , with N ǫ := {n ∈ N + : τ n ∩ {|Im(z)| < ǫ} = ∅} ,
we set, with the help of the functions of Lemma 6,

P τn,α (z) := |τn| k=1 ∆ k-1 τn α λ (k) n k-1 l=1 b λ n,l (z), n ∈ N ∞ , P τn,α (z) := |τn| k=1 k-1 τn α λ (k) n k-1 l=1 (z -λ n,l ) , n ∈ N ǫ and setting τn := τ n + iη Q τn,ψ (z) := |τn| k=1 ∆ k-1 τn (ψ(λ n,1 + iη, ..., λ n,k + iη)) k-1 l=1 b λ n,l +iη (z).
We notice that

N(h) = n∈N + λ∈τn P τn,α (λ)Q τn,ψ (λ + iη) µ =λ b ǫ µ (λ) λ -λ + 2iǫ .
Recall now that τ n ⊂ R n , where (R n ) n are the disjoint rectangles (constructed here in the half-plane C + -η so that in particular satisfying d (∂R n , Riη) ≍ l n ≍ L n ) introduced in Remark 12. (Note also that here we have that • λλ + 2iǫ .

Λ + ⊂ C + -ǫ 2 and in particular, Λ + is far from R -iη). Then, if Γ n := ∂R n , the function z → h n (z) := P τn,α (z)Q τn,ψ (z + iη) β(z)

It follows that

N(h) = 1 2iπ n∈N + ˆΓn P τn,α (z) Q τn,ψ (z + iη) β dz .
Obviously b λ n,l (z) ≤ 1. Observe also that by condition (3.5) of Remark 12 for z ∈ Γ n , n ∈ N ǫ , we have that |zλ n,l | is bounded by a fixed constant. Hence for every n ∈ N + ,

|P τn,α | |τn| k=1 ∆k-1 τn α λ (k) n . Also |Q τn,ψ | |τn| k=1 ∆ k-1 τn (ψ(λ n,1 + iη, ..., λ n,k + iη)) ,
and we obtain that

N(h) n∈N +   ˆΓn dz β(z)   |τn| k=1 ∆k-1 τn (α)     |τn| l=1 ∆ l-1 τn (ψ)     .
For z ∈ Γ n , we see that

|β(z)| =   λ∈Λ + \τn z -λ z -λ + 2iǫ   • λ∈τn z -λ z -λ + 2iǫ =: Π 1 (z) • Π 2 (z). Since Λ + is N-Carleson in C + -ǫ , it follows from the fact that R n is "far" from τ k , k = n that Π 1 (z) ≍ 1
and from the fact that R n is "far" from τ n that

Π 2 (z) ≍ 1.
Hence, choosing arbitrarily λ n,0 ∈ τ n , the construction of R n gives ˆΓn dz β(z)

ˆΓn |dz| Im(λ n,0 ) + η 1 + |Im (λ n,0 )| .
Applying Hölder's inequality, we obtain

N(h)   n∈N + (1 + Im(λ n,0 )) |τn| k=1 ∆k-1 τn e iτ • a p   1 p ×   n∈N + Im(λ n,0 + iη) |τn| k=1 ∆ k-1 τn (ψ) q   1 q
. Now, notice that by the Muckenhoupt condition on | G| -q and thus the boundedness of H on

H q + 1 G q := f ∈ N + : f |R ∈ L q 1 G q ,
(N + denotes the Smirnov class) we get that ψ ∈ H q + and ψ q h

H q + = 1. But, since n∈N + τn = Λ + + iη is in fact N-Carleson in C + η-ǫ 2 ⊂ C + and ψ ∈ H q + , Theorem 13 implies that   n∈N + Im(λ n,0 + iη) |τn| k=1 ∆ k-1 τn (ψ) q   1 q ψ H q + h H q + = 1.
Finally, we obtain

N(h)   n∈N + (1 + Im(λ n,0 )) |τn| k=1 ∆k-1 τn e iτ • a p   1 p = a X p τ,ǫ (Λ) ,
which ends the proof.

About the N-Carleson condition

It is clear that the definition of X p τ,ǫ (Λ) depends on the N-Carleson hypothesis, and more precisely for the construction of the groups τ n . In this last section, we show that in a certain way, the N-Carleson condition is necessary.

It will be convenient to introduce the distance function

δ(z, ξ) := |z -ξ| 1 + z -ξ , z, ξ ∈ C,
which expresses that locally we deal with Euclidian geometry close to the real axis and pseudohyperbolic geometry far away from the real axis (see e.g. [17, page 715]). Let Λ = {λ n } n≥1 be a sequence of complex numbers. Let N ≥ 1 be an integer and η ∈ 0, 1 2 . For λ ∈ Λ, we define D λ,η := {z ∈ C : δ(λ, z) < η} , N λ := {µ λ,i : 1 ≤ i ≤ N} ⊂ Λ as the set of N closest neighboors of λ (including in particularλ) with respect to the distance δ. Then we set

σ λ := D λ,η ∩ N λ , n λ := |σ λ | ≤ N.
Note that the set N λ , and consequently σ λ , is not unique. It is now natural to introduce the space (for 1 < p < ∞)

X p τ (Λ, N) := a = (a(λ)) λ∈Λ : a X p τ (Λ,N ) < ∞ , where a p X p τ (Λ,N ) := λ∈Λ (1 + |Im(λ)|) n λ k=1 ∆k-1 σ λ ae ±iτ • µ (k) p with ∆σ λ = ∆ σ λ , if σ λ ∩ {z ∈ C : |Im(z)| < 1} = ∅ σ λ , if not and e ±iτ µ = e iτ µ , if µ ∈ σ λ and σ λ ∩ {z ∈ C : Im (z) ≥ 0} = ∅ e -iτ µ , otherwise . 
Remark 23. It can be shown that if Λ ∩ C ± a is N-Carleson in the corresponding half-plane, for each a ∈ R, then this norm is equivalent to the previously norm • X p τ,ǫ (Λ) (for every ǫ > 0) defined in the above section. For the proof, we refer to [7, pp. 36-38].

The result is the following one.

Theorem 24. If R Λ is an isomorphism from P W p τ onto X p τ (Λ, N), then for every a ∈ R, Λ ∩ C ± a is N ′ -Carleson in the corresponding half-plane, with N ′ ≤ N.
The proof is in two parts. We begin by showing that if R Λ is such an isomorphism, then Λ ± a is N ′ -Carleson for some N ′ ∈ N. This only requires the boundedness of R Λ . We first notice that by the Plancherel-Polyà theorem (Proposition 20) the map

τ a : P W p τ → P W p τ f → f (• + i (1 + |a|)
is an isomorphism and so RΛ := R Λ • τ a is still an isomorphism. Obviously, RΛ = R Λ, where

Λ := Λ + i (1 + |a|) .
Note that for λ ∈ Λ + a , with the notations of Lemma 6,

|a λ | p e -pIm(λ) = P σ λ ,e ±iτ • a ≤ n λ k=1 ∆k-1 σ λ ae ±iτ • µ (k) p and so X p τ Λ, N injects into l p 1 + Im( λ) e -p|Im( λ)| so that R Λ : P W p τ → l p 1 + Im( λ) e -p|Im( λ)|
is bounded. We set Λ+ a := Λ + a + i (1 + |a|) and reintroduce the inner function I τ (z) = exp (2iτ z). We have mentioned in the beginning of the paper that P W p τ is isomorphic to

K p I τ , so R Iτ Λ+ a := R Λ+ a K p Iτ : K p Iτ → L p µ Λ+ a is bounded, where µ Λ+ a := λ∈ Λ+ a Im( λ)δ λ.
In order to show that Λ ± a is N ′ -Carleson, it is sufficient to show that µ Λ+ a is a Carleson measure for H p + . Since in particular Λ+ a ⊂ C + 1 , it is possible to find ǫ ∈ (0, 1) such that Λ+ a ⊂ L (I τ , ǫ) := z ∈ C + : |I τ (z)| < ǫ . Now, from a result of Treil and Volberg (see [START_REF] Treil | Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator[END_REF] or [START_REF] Aleksandrov | A simple proof of a theorem of Volberg and Treil on the embedding of coinvariant subspaces of the shift operator[END_REF]), the boundedness of R I τ Λ+ a implies that (6.1) sup

I µ Λ+ a (ω I ) m(I) < ∞,
where the supremum is taken over all the intervals of finite length such that the Carleson window ω I constructed on I statisfies

ω I ∩ L(I τ , ǫ) = ∅.
Observe that L (I τ , ǫ) is in the upper half plane C + b , b = log (1/ǫ), so that if the length of the Carleson window is less than b, then we have ω I ∩ L(I τ , ǫ) = ∅. Hence, ω I ∩ Λ+ a = ∅ and so µ Λ+ a (ω I ) = 0. It follows that (6.1) is true for all finite length intervals I, which is equivalent to the fact that µ Λ+ a is a Carleson measure or also that Λ+ a is N ′ -Carleson and hence Λ + a in the corresponding half-plane. Considering the map s :

P W p τ → P W p τ f → f (-•)
which is also an isomorphism, we will also have the result for Λ - a . Now, we want to prove that N ′ ≤ N. In the following, if Λ + a is (N + k) -Carleson, we write

Λ + a = n≥1 τ k n ,
where the groups τ k n come from the Generalized Carleson condition, and so it is possible to assume that

diam δ τ k n < η 4 
(which in particular implies that τ k n ⊂ D λ,η ) and

γ := inf n =m δ τ k n , τ k m > 0.
We need the following lemma and its corollary. For technical reasons, let us assume (without loss of generality) that Λ + a ⊂ C + 1 so that we can deal with the pseudohyperbolic metric and the corresponding divided differences.

Lemma 25. If R Λ is an isomorphism from P W p τ onto X p τ (Λ, N) and Λ + a is (N + k + 1) -Carleson, k ≥ 0, then it is possible to find ϑ > 0 such that every τ k+1 n with τ k+1 n = N + k + 1 satifies diam ρ τ k+1 n > ϑ.

Proof. Let us suppose to the contrary that we can find a subsequence (τ j ) of (τ k+1 n ) such that |τ j | = N + k + 1 and diam ρ (τ j ) → 0, j → ∞. We set τj = {λ j i : i = 0, .., N + k}. Let us now introduce the sequence a j = (a j (λ)) λ∈Λ defined by a j (λ) := 0, λ = λ j N +k , and (Observe that we only consider in the sum the points containing λ j N +k in their neighborhood.)

We have to evaluate this expression. Take λ ∈ M j . We recall that n λ = |σ λ |. Note also that for every 1 ≤ l ≤ n λ , the divided difference ∆ l-1 σ λ a j e ±iτ • λ (l) will be equal either to 0 or to where Ω l = {λ j i : i = 0, . . . , N + k -1} \ ω l,1 are subsets of τj . The last of the above inequalities comes from the observation that Ω l contains at least:

N + k -|ω l,1 | ≥ N + k -(n λ -1) ≥ N + k -(N -1) = k + 1 ≥ 1
points. We deduce that a j ∈ X p τ (Λ, N) and that its norm is uniformly bounded. Now, since R Λ is onto, there is f j ∈ P W p τ such that f j |Λ = a j and f j P W p τ a j X p τ (Λ,N )

1.

Setting f j := e iτ • f j , it follows from the Plancherel-Polyà inequality that f j ∈ H p + and since Λ + a is (N + k + 1) -Carleson in C + , Theorem (13) implies in particular that Im(λ j N +K ) ∆ N +k τj f j λ j (N +k+1) p f j 1.

But by construction, we have Im(λ j N +K ) ∆ N +k τj f j λ j (N +k+1) p = 1 max i =N +k ρ λ j N +k , λ j i which tends to ∞, j → ∞ because diam ρ τj tends to 0, j → ∞, which gives the required contradiction.

The following corollary to the previous lemma allows us to end the proof of our theorem. I would like to thank Andreas Hartmann for his very helpful and permanent support during this research and, more generally, from the beginning of my thesis.

  l p (|Im (λ n ) -a|) := u = (u n ) n≥1 : n≥1 |Im (λ n ) -a| |u n | p < ∞ ,we can state their result as follows.If Λ = {λ n : n ≥ 1} ⊂ C ± a , then H p C ± a |Λ = l p (|Im (λ n ) -a|) if and only if Λ satisfies the Carleson condition (1.1) inf λ∈Λ µ∈Λ µ =λ λµ λµ -2ia > 0.

Definition 1 .

 1 A sequence Λ ⊂ C satisfies the condition (LS) τ,p for τ > 0 and 1 < p < ∞, if the following set of conditions hold: (i) ∀a ∈ R, Λ ∩ C ± a satisfies the Carleson condition (1.1); (ii) The sequence is relatively dense: ∃r > 0, ∀x ∈ R, d(x, Λ) := inf λ∈Λ |x -λ| < r; (iii) The limit S(z) = lim R→∞ |λ|<R 1 -z λ exists and defines an entire function of exponential type τ ; (iv) The function x → |S(x)| d(x,Λ) p satisfies (A p ).

Proposition 20 .

 20 (Plancherel-Polyà).Let f ∈ P W p τ and a ∈ R. Then, ˆ+∞ -∞ |f (x + ia)| p dx ≤ e τ p|a| f p p .

Remark 21 .

 21 It follows from the weak density condition ((H N ) -(i)), the Genralized Carleson condition (3.1) on B σγ n n and the growth of the sequence (Re (γ n )) n that we have Re(γ n+1 ) -Re (γ n ) ≤ 3ǫ. This implies that δ ′ 0 ≤ |γ nγ n+1 | ≤ 4ǫ. Now, in order to prove (iii), we use the following lemma, adapted from [12, Lemma 2].

  . Using that G(λ) = G(λ + iη), and settingψ := H( Gh ) G and α(λ) := a(λ)e iτ λ , λ ∈ Λ + ,

is a meromorphic function in •R

 in n with simple poles at λ ∈ τ n . Thus, the residue theorem implies thatˆΓn h n (z)dz = 2iπ λ∈τn Res(h n , λ)and Res(h n , λ) = P τn,α (λ)Q τn,ψ (λ + iη)

a

  a j (λ j N +k ) := e τ Im(λ j N+k ) = λ ∈ Λ + a : λ j N +k ∈ σ λthe set of the points of Λ + a close to λ j N +k . Since diam ρ (τ j ) < η 4 and λ j N +k ∈ τj we have for every λ ∈ τj that λ j N +k ∈ σ λ , i.e. τj ⊂ M j . So, let B j := M j \ τj . Also, since Λ + a is (N + k + 1) -Carleson, j e iτ • µ (l) p .

a j λ j N +k e ±iτ λ j N+k m∈ω l b λ j m λ j N +k ,

 +k where ω l ⊂ σ λ contains l -1 points. Now, ω l = ω l,1 ∪ ω l,2 where ω l,1 = σ λ ∩ τj and ω l,2 are the other points. Note that ω l cannot contain λ j N +k . By assumption, for µ ∈ ω l,2 , |b µ (λ j N +k )| ≥ γ. Hence,

Corollary 26 .

 26 If R Λ is an isomorphism from P W p τ onto X p τ (Λ, N) andΛ + a is (N + k + 1) -Carleson, k ≥ 0, then Λ + a is (N + k) -Carleson. Proof. We write Λ + a = n≥1 τ k+1 n with |τ k+1 n | ≤ N + k + 1.Let us suppose that there are infinitely many n for which we have |τ k+1 n | = N +k+1 and let Z be the set of such n. Because of the previous lemma, we can find ϑ > 0 such that diam ρ (τ k+1 n ) > ϑ for n ∈ Z. Then, for every n ∈ Z, it is possible to writeτ k+1 n = {λ n i : i = 1, . . . , N + k + 1} such that ρ λ i , λ n N +k+1 ≥ ϑ 2 (N + k) , i = 1, . . . , N + k.union of sets σ n with |σ n | ≤ N + k and it can be shown that the sequence of Blascke products (B σn ) n satisfies the Generalized Carleson condition and hence that Λ + a is (N + k) -Carleson.