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DIVIDED DIFFERENCES & RESTRICTION

OPERATOR ON PALEY-WIENER SPACES PW p
τ FOR

N−CARLESON SEQUENCES

FRÉDÉRIC GAUNARD

Abstract. We study the restriction operator RΛ, f 7→ (f(λ))λ∈Λ

defined on Paley-Wiener spaces PW p
τ (1 < p < ∞), where Λ is a

sequence of complex numbers. Lyubarskii and Seip gave necessary
and sufficient conditions for RΛ to be an isomorphism between
PW p

τ and some weighted lp space, involving Carleson’s and Muck-
enhoupt’s (Ap) conditions. Here, we deal with N−Carleson se-
quences (finite unions of disjoint Carleson sequences) and use the
methods of Lyubarskii and Seip to give necessary and sufficient
conditions for RΛ to be an isomorphism between PW p

τ and some
space of sequences, constructed with the help of divided differences.
For p = 2, this caracterization coincides with a result of Avdonin
and Ivanov on Riesz bases of divided differences of exponentials in
L2(0, τ).

1. Introduction

Let X be a Banach space of analytic functions on a domain Ω, and
Λ ⊂ Ω a sequence of complex numbers. The restriction operator RΛ

associated to Λ is defined on X by RΛf := (f(λ))λ∈Λ. We want to
describe the range of RΛ, that we will denote by X|Λ, and to study
its injectivity. This problem is of course related with interpolation in
X . The central result was shown by Carleson [Ca58] for X = H∞ the
Hardy space of bounded holomorphic functions on the unit disk, and
Λ ⊂ D. By definition, X|Λ ⊂ l∞, but Carleson showed that

H∞|Λ = l∞ ⇐⇒ Λ ∈ (C)

where

(C) inf
λ∈Λ

∏

µ∈Λ
µ6=λ

|bµ(λ)| > 0.
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1



Divided differences and restriction operator on Paley-Wiener spaces 2

Here, bµ(z) =
|µ|
µ

µ−z
1−µz

denotes the Blaschke factor (of the unit disc) as-

sociated to µ. Three years later, Shapiro and Shields [SS61] generalized
this result to X = Hp, 1 ≤ p ≤ ∞,

Hp|Λ = lp(1− |λ|2) ⇐⇒ Λ ∈ (C).

Of course, these results are still true in the Hardy spaces of the upper
half-plane where the weight (1− |λ|2) becomes Im(λ). In the Hardy
space, it is obvious that RΛ cannot be injective : if Λ is a Blaschke
sequence (this is the case in particular when Λ is a Carleson sequence),
then for every h ∈ Hp, the function Bh, where

B =
∏

λ∈Λ

bλ

is the Blaschke product associated to Λ, is still in Hp and also vanishes
on Λ.
Let us turn to the situation in half-planes. We will say that a se-

quence Λ lying in a half-plane

C
+
a := {z ∈ C : Im(z) > a} or C−

a := {z ∈ C : Im(z) < a} (a ∈ R)

satisfies the Carleson condition (C) if

inf
λ∈Λ

∏

µ∈Λ
µ6=λ

∣

∣

∣

∣

λ− µ

λ− µ− 2ia

∣

∣

∣

∣

> 0.

The Hardy spaces associated with the half-planes C
± := C

±
0 will be

denoted by Hp
±.

We consider now the Paley-Wiener spaces PW p
τ which consist of all

entire functions of exponential type at most τ satisfying

‖f‖pp =

ˆ +∞

−∞

|f(t)|pdt <∞.

Writing F the Fourier transform, it is well known in the case p = 2,
PW 2

τ = FL2(−τ, τ) ≃ L2(−τ, τ). These spaces are connected with
so-called model spaces. More precisely, we recall that H∞

+ denotes the
Hardy space of bounded analytic functions in the upper half-plane and
that an inner function I is a function of H∞

+ such that

|I(x)| = 1 a.e x ∈ R.

The model space Kp
I is defined by Kp

I := Hp
+ ∩ IHp

−. It can be shown
that PW p

τ ≃ Kp
Iτ

with Iτ (z) := exp(2iτz). For more details, see e.g.
[Ni02b] or [Se04]. So PW p

τ can be seen as a subspace of the Hardy space
of the upper half plane Hp

+(modulo analytic continuation in the lower
half-plane). This point of view permits to make a link with the results
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of Hrushev, Nikolski and Pavlov [HNP81] about bases of exponentials
(

eλt
)

λ∈Λ
in L2(−τ, τ), assuming that Λ ⊂ C+

η := {z ∈ C : Im(z) > η},
where η is some real number. Minikin managed to get rid of this
restriction ([Mi92]).
The technics in [HNP81] are based on the invertibility of a certain

Toeplitz operator TIτB, and a criterion of invertibility for Toeplitz oper-
ators is known. This is the theorem of Widom-Devinatz for p = 2 (see
[Ni02a, B4.3.1]) and Rochberg ([Ro77]) for 1 < p < ∞ and involves
the Muckenhoupt condition (Ap) (or equivalently the Helson-Szeg con-
dition for p = 2).
With a different method, Luybarskii and Seip [LS97] gave necessary

and sufficient conditions for RΛ to be an isomorphism (with Λ lying
in the whole complex plane) between PW p

τ and the weighted space
lp
(

e−pτ |Im(λ)| (1 + |Im(λ)|)
)

. Their proof is based on the boundedness
of the Hilbert transform in certain weighted Hardy space.
The Hilbert transform H is defined by

Hf(z) =

ˆ +∞

−∞

f(t)

t− z
dt.

It is known (see e.g [HMW73] and [Gar81]) that, if w > 0, H is bounded
from the weighted space

Lp(w) :=

{

f meas. on R :

ˆ

R

|f |pwdm <∞

}

into itself, if and only if w satisfies the Muckenhoupt (Ap) condition

(Ap) sup
I

(

1

|I|

ˆ

I

w

)(

1

|I|

ˆ

I

w− 1

p−1

)
p

p−1

<∞,

where the supremum is taken over all intervals of finite length. More-
over, if f ∈ Lp(R), 1 < p < ∞, we deduce from properties of Hardy
spaces of the upper half-plane (see e.g. [Ko80, p. 116]) that Hf = P+f ,
where P+ denotes the Riesz projection from L2 onto H2

+. In [LS97], the
authors also introduce the discrete Hilbert transform as follows. For
fixed ǫ > 0 and two sequences Γ := {γn}n and Σ := {σn}n satisfying
|γn − σn| = ǫ, and a = (an)n,

(HΓ,Σ (a))n :=
∑

j

aj
γj − σn

.
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It is proved in the same paper that HΓ,Σ is bounded from lp(wn) into
itself if and only if (wn)n satisfies the discrete Muckenhoupt condition

(Ap) sup
k∈Z
n>0

(

1

n

k+n
∑

j=k+1

wj

)(

1

n

k+n
∑

j=k+1

w
−1/(p−1)
j

)p−1

<∞.

We are now in a position to state Lyubarskii and Seip’s result. We
say that a sequence Λ ⊂ C satisfies the (LS) conditions (Λ ∈ (LS)) if
the four following conditions are fulfilled

• (i) ∀a ∈ R, Λ ∩ C±
a satisfies the Carleson condition in the cor-

responding half-plane;
• (ii)The sequence is weakly dense: ∃r > 0, ∀x ∈ R,

d(x,Λ) := infλ∈Λ |x− λ| < r;

• (iii) The limit

S(z) = lim
R→∞

∏

|λ|<R

(

1−
z

λ

)

exists and defines an entire function of exponential type τ ;

• (iv) The function x 7→
(

|S(x)|
d(x,Λ)

)p

satisfies (Ap).

The condition (iv) can be replaced by the condition (iv)′

• (iv)′ There is a subsequence Γ = (γn)n ⊂ Λ, satisfying (ii), such
that the sequence |S ′ (γn)|

p satisfies the discrete Muckenhoupt
condition (Ap).

Note that if 0 ∈ Λ, then the corresponding factor in (iii) is just z. In
order not to complicate the notation we shall assume in all what fallows
that 0 6∈ Λ which we can do without loss of generality (for instance, by
shifting the sequence).
We can now state Lyubarski and Seip’s theorem.

Theorem 1. ([LS97, Theorem 1])
Let Λ ⊂ C. The following assertions are equivalent.
(1) RΛ is an isomorphism between PW p

τ and the weighted lp space
lp
(

e−pτ |Im(λ)| (1 + |Im(λ)|)
)

;
(2) Λ ∈ (LS).

The aim of this paper is to replace the Carleson condition in (i) by the
N−Carleson condition and to describe the range of RΛ, using results
of Hartmann ([Ha96b]) about N−Carleson sequences and interpolation
in Hardy spaces, involving divided differences.
This paper is organized as follows. The next section will be devoted

to divided differences, the following section will deal with N−Carleson



Divided differences and restriction operator on Paley-Wiener spaces 5

sequences. We will state and prove our main result (Theorem 14) in the
fourth section. Finally, in the last section we will discuss the necessity
of the N−Carleson condition with an appropriate definition of the trace
PW p

τ |Λ.
A final word on our notation. If σ and τ are two disjoint subsets,

the union will be denoted by σ ⊎ τ . If δ is a metric, we will denote
by diamδ(E) the δ−diameter of E and shortly diam(E) when δ is the
Euclidian distance.

2. Divided Differences

Divided differences appear in many results about interpolation or
bases of exponentials (see e.g. [Va84], [Ha96b], [BNO96] or [AI01]).
We give here the definition and some properties that we will need in
the following. We recall that the (non-normalized) Blaschke factors of
a half-plane C±

a are given by

b±,aµ (z) =
z − µ

z − µ− 2ia
.

(They are actually the same for the upper and the lower half-plane).
The associated pseudohyperbolic distance will be denoted by

ρ±,a(z, µ) :=
∣

∣b±,aµ (z)
∣

∣ .

For C+, we will write bµ = b+,0µ and use ρ for ρ+,0 and ρ−,0.
Notice that, in order to simplify to the notation, we keep the same

notation bµ as already introduced for the disk and we hope that it will
be clear from the context which one we have in mind. The same will
be true for the definition of divided differences.
Let Γ := {µi : 1 ≤ i ≤ |Γ| <∞} ⊂ C+. For a finite set a = {ai}1≤i≤|Γ|,

we can construct the sequence of (pseudohyperbolic) divided differences
of a relatively to Γ as follows

∆0
Γ(ai) := ai, ∆1

Γ(ai, aj) :=
aj − ai
bµi(µj)

,

and

∆k
Γ(ai1 , ..., aik+1

) :=
∆k−1

Γ (ai1 , ..., aik−1
, aik+1

)−∆k−1
Γ (ai1 , ..., aik)

bµik (µik+1
)

.

The following properties will be usefull in the next sections. The first
lemma gives us the expression of the divided differences of a product,
in terms of sums of products of divided differences.
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Lemma 2. We have

∆j−1
Γ

(

ai1bi1 , ..., aijbij
)

=

j−1
∑

l=0

∆l
Γ

(

ai1 , .., ail+1

)

∆j−l−1
Γ

(

bil+1
, ..., bij

)

.

For the proof, we refer to [BNO96] where the computation is done
in D, but the proof remains valid in C+.
We will also need estimates of the divided differences when Γ lies in

a compact set K and a = {f(µ) : µ ∈ Γ} for f an analytic function
bounded in K. Here K is supposed to be the closure of a non void
open connected set. Then, we say that f ∈ H∞(K) if f is holomorphic
in K and

‖f‖∞,K := sup
z∈K

|f(z)| <∞.

We have the following lemma.

Lemma 3. Suppose that Γ lies in a compact set K with the proper-
ties mentioned above, and assume that there exists η > 0 such that
ρ(Γ, ∂K) ≥ η. Then, for each function f ∈ H∞(K), we have

∣

∣∆j
Γ

(

f(µ(j+1))
)∣

∣ ≤

(

2

η

)j j
∏

k=0

(

1

1− k
2M

)

‖f‖∞,K

where

µ(j+1) = (µ1, ..., µj+1) and f
(

µ(j+1)
)

= (f(µ1), ..., f(µj+1)) .

Proof. Let us introduce

Aj :=

{

z ∈ K : ρ(z, ∂K) ≥
j

2N
η

}

, 0 ≤ j ≤ N − 1.

We show by induction over j that for every z ∈ Aj,
∣

∣∆j
Γ

(

f(µ(j), z)
)∣

∣ ≤ cj ‖f‖∞,K

with the right coefficient cj . Since Γ ⊂ AN−1 ⊂ ... ⊂ A1 ⊂ A0, the
result will follow. The claim is obviously true for j = 0 since A0 = K
and f ∈ H∞(K). Now, the function

z 7→ ∆j+1
Γ

(

f
(

µ(j), z
))

is holomorphic on Aj+1 and by the maximum principle and the defini-
tion of divided differences, we have for z ∈ Aj+1,
(2.1)
∣

∣∆j+1
Γ

(

f
(

µ(j+1), z
))∣

∣ ≤ sup
ξ∈∂Aj+1

∣

∣

∣

∣

∣

∆j
Γ

(

f
(

µ(j), ξ
))

−∆j
Γ

(

f(µ(j+1))
)

ρ(ξ, µj+1)

∣

∣

∣

∣

∣

.
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Let ξ ∈ ∂Aj+1. It is possible to find a point ζ ∈ ∂K such that

ρ(ζ, ξ) =

(

j + 1

2N

)

η

and so, since µj+1 ∈ Γ and ρ(Γ, ∂K) ≥ η, we have, by the triangle
inequality,

(2.2) ρ(ξ, µj+1) ≥ ρ(ζ, µj+1)− ρ(ξ, ζ) ≥ η

(

1−
j + 1

2N

)

.

From (2.1), (2.2) and the induction hypothesis, we finally obtain

∣

∣∆j+1
Γ

(

f(µ(j+1), ξ)
)∣

∣ ≤
2

η

(

1

1− j+1
2N

)

cj ‖f‖∞,K

which gives the required estimate. �

The next lemma will be very important in the sequel; we can define
a rational Newton type interpolating function which interpolates the
values {a(µ) : µ ∈ Γ} on Γ.

Lemma 4. The holomorphic function

PΓ,a(z) :=

|Γ|
∑

k=1

∆k−1
Γ

(

a(µ(k))
)

k−1
∏

l=1

bµl(z)

satisfies

PΓ,a(µ) = a(µ), µ ∈ Γ.

The proof is quite straightforward (see also [Ha96a, p.80]).

Remark 5. Divided differences with respect to the pseudohyperbolic
metric can be found in [BNO96, Ha96b, Va84] but we can also find
other divided differences, based on the euclidian metric. This is what
is done in [AI01] where euclidian divided differences are defined by

�0
Γ := ai, �1

Γ (ai, aj) :=
aj − ai
µj − µi

,

and

�k
Γ

(

ai1 , .., aik+1

)

:=
�k−1

Γ

(

ai1 , .., aik−1
, aik+1

)

−�k−1
Γ (ai1 , .., aik)

µk+1 − µk
.

It is possible to see that, if Γ lies in a strip parrallel to the real axis,
then the pseudohyperbolic and the euclidian divided differences are
equivalent.
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3. N−Carleson sequences

We now deal with N−Carleson sequences, i.e with disjoint unions of
N Carleson sequences, N being a natural number. Let us make a link
between the N−Carleson condition and the Generalized Carleson con-
dition (CG), also called Carleson-Vasyunin condition (see e.g. [Ni86]
and references therein). The following result has originally been stated
in D.

Proposition 6. ([Ha96b, Proposition 3.1])
Let Λ be a sequence of complex numbers, lying in C+. The following

assertions are equivalent
(i) Λ =

⊎N
i=1 Λ

i, with Λi ∈ (C) ;
(ii) There exists a δ > 0 and a sequence of disjoint subsets {σn}n≥1,

Λ =
⊎

n≥1 σn, |σn| ≤ N , such that, if B (resp. Bn) denotes the Blaschke
product associated to Λ (resp. σn), then the sequence (Bn)n≥1 satisfies
the Generalized Carleson condition (CG)

(3.1) |B(z)| > δ inf
n≥1

|Bn(z)| , z ∈ C
+.

When (Bn)n satisfies (3.1), we write (Bn)n ∈ (CG).

Remark 7. The subsets σn can for instance be obtained as intersections
τ ǫn ∩ Λ for ǫ small enough, where τ ǫn are the connected components of
L(B, ǫ) := {z : |B(z)| < ǫ}. Choosing ǫ in a suitable way, it is possible
to assume that the pseudohyperbolic diameter of σn is arbitrarily small.

Remark 8. If Λ is N−Carleson in C+, and so we have the previous
decomposition Λ =

⊎

n σn, it is possible to find a sequence (Rn)n of
rectangles of C+ such that

• (i) σn ⊂ Rn;
• (ii) if ln and Ln denote the length and width of Rn, we have
Ln ≍ ln;

• (iii) d(∂Rn,R) ≍ ln;
• (iv) the following estimates hold

0 < inf
n≥1

ρ(σn, ∂Rn) ≤ sup
n≥1
λ∈σn

ρ (λ, ∂Rn) <∞.

Moreover, since the diameter of σn can be chosen arbitrarily
small by the preceding remark, we can suppose the Rn disjoints
and even

inf
n 6=k

d (Rn, Rk) > 0.
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Results of Vasyunin ([Va84]), for p = ∞, and Hartmann ([Ha96b]), for
1 < p < ∞, describe Hp|Λ for N−Carleson sequences, using divided
differences contructed on σn.

Theorem 9. ([Ha96b, Va84])

Let Λ =
⋃N
i=1 Λ

i,Λi ⊂ D, Λi ∈ (C) and 1 ≤ p ≤ ∞. There exists
a decomposition Λ =

⋃

n≥1 σn such that supn≥1 |σn| ≤ N , and if we
choose definitely λn,0 ∈ σn (n ≥ 1) , then

Hp|Λ = Xp(Λ) :=
{

a = (a(λ))λ∈Λ : ||a||Xp(Λ) <∞
}

where, for 1 < p <∞,

‖a‖Xp(Λ) :=







∑

n≥1

(

1− |λn,0|
2
)

|σn|
∑

k=1

∣

∣∆k−1
σn (a(λn,1, ..., λn,k))

∣

∣

p







1

p

,

and

||a||X∞(Λ) := sup
n≥1

|σn|
∑

k=1

∣

∣∆k−1
σn (a(λn,1, ..., λn,k))

∣

∣ .

Let us translate this result to the upper half-plane. If Λ ⊂ C+ is
N−Carleson and can be written as the union of σn. For each n, let

λn,0 be any point from σn and write λ
(j)
n = (λn,1, .., λn,j). We introduce

the space

Xp
+(Λ) :=







a = (a(λ))λ∈Λ :
∑

n≥1

Im(λn,0)

|σn|
∑

k=1

∣

∣∆k−1
σn

(

a
(

λ(k)n

))∣

∣

p
<∞







.

Corollary 10. Under the above hypotheses, we have

Hp
+|Λ = Xp

+(Λ).

Proof. We introduce the conformal mapping

γ : D → C+

z 7→ i1+z
1−z

and set Λ̃ := γ−1(Λ). Observe that γ conserves the pseudohyperbolic
metric and hence the (CG) condition and so, we deduce from Theorem
9 that

Hp|Λ̃ = Xp(Λ̃) = X̃p
+(Λ),

where

X̃p
+(Λ) :=







a = (a(λ))λ∈Λ :
∑

n≥1

Im(λn,0)

|λn,0 + i|2

|σn|
∑

k=1

∣

∣∆k−1
σn

(

a(λ(k)n

)∣

∣

p
<∞







.
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Since (see e.g. [Ko80, p. 118])

f ∈ Hp ⇐⇒

(

z 7→
f ◦ γ−1(z)

(z + i)
2

p

∈ Hp
+

)

,

it is enough to show
(

(a(λ)(λ+ i)
2

p

)

λ∈Λ
∈ X̃p

+(Λ) ⇐⇒ (a(λ))λ∈Λ ∈ Xp
+(Λ),

which follows directly from Lemmas 2 and 3. �

4. Main Result

Let Λ be a sequence in the complex plane. In this section we will
always assume that there is some integer N ≥ 1 such that for every
a ∈ R, the sequence Λ±

a := Λ∩C±
a is N−Carleson in the corresponding

half-plane. In particular, it will be possible to write

Λ±
a =

⊎

n≥1

σ±
n,a,

where
(

B±,a

σ±n,a

)

n
satisfies the generalized Carleson condition in the cor-

responding half-plane C±
a (B±,a

σ±n,a
being the Blaschke product in C±

a van-

ishing on σ±
n,a). To simplify the notation, we will omit a if a = 0 and

write

σn :=

{

σ+
n , n ≥ 0
σ−
n , n < 0

.

The reader might notice that σ+
n and σ−

m can come very close for certain
values of n and m. This issue will be fixed below. Let us distinguish
the sets of points close to the real axis and the ones far away from it.
More precisely, for ǫ > 0, we set

Mǫ := {n ∈ Z : σn ∩ {|Im(z)| < ǫ} 6= ∅} and Mǫ,∞ := Z \Mǫ,

Λǫ,∞ :=
⊎

n∈Mǫ,∞

σn

and

Λǫ := Λ \ Λǫ,∞.

Notice that Λǫ is in the strip {z ∈ C : |Im(z)| < ǫ} which is in general
not true for

⋃

n∈Mǫ
σn. Now, since Λǫ is still N−Carleson in C

+
−2ǫ , Λǫ

breaks up into a disjoint union

Λǫ =
⊎

n≥1

σ
′

n
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such that the sequence of Blaschke products
(

B+,−2ǫ

σ′n

)

n≥1
∈ (GC) in

C
+
−2ǫ. So,

Λ =





⊎

n∈Mǫ,∞

σn



 ⊎

(

⊎

n≥1

σ′
n

)

=:
⊎

n∈Z

τn.

We will need both definitions of divided differences.

∆̃τn :=

{

∆τn if ∃k s.t. τn = σk
�τn if ∃k s.t. τn = σ

′

k

.

It is now possible to introduce a space of sequences that will be, as-
suming some hypotheses on Λ, the range of RΛ. Choosing arbitrarily
λn,0 ∈ τn, n ∈ Z, we define, for 1 < p <∞,

Xp
τ (Λ) :=

{

a = (a(λ))λ∈Λ : ‖a‖Xp
τ (Λ)

<∞
}

,

with

‖a‖p
Xp

τ (Λ)
:=
∑

n∈Z

(1 + |Im(λn,0)|)

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn

(

ae±iτ ·
(

λ(k)n

))

∣

∣

∣

p

,

and

e±iτλ =

{

eiτλ if λ ∈ τn, n ∈ N+,
e−iτλ if λ ∈ τn, n ∈ N−,

where

N+ :=
{

n ∈ Z : τn ∩
(

C
+ ∪ R

)

6= ∅
}

and

N− := Z \N+.

(The factor e±iτλ does not really matter close to R.) We will need
some well known facts about Paley-Wiener spaces that we recall here.
First, we have the Plancherel-Polya inequality (see e.g. [Le96] or [Se04,
p. 95]).

Proposition 11. Let f ∈ PW p
τ and a ∈ R. Then,

ˆ +∞

−∞

|f(x+ ia)|pdx ≤ eτp|a| ‖f‖pp .

It follows that for every f ∈ PW p
τ , the function z 7→ eiτzf(z) belongs

to Hp
+. It also follows that translation is an isomorphism from PW p

τ

onto itself. The second fact is a pointwise estimate; there exists a
constant C = C(p) such that for every f ∈ PW p

τ , we have

(4.1) |f(z)| ≤ C ‖f‖p (1 + |Im(z))−
1

p eτ |Im(z)|, z ∈ C.
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For a sequence Λ whose restrictions to every half-plane isN−Carleson,
and n ∈ Z, with corresponding decomposition Λ =

⊎

n∈Z τn, we intro-
duce the products pn(x) :=

∏

λ∈τn
|x− λ| and we define the function

dN(x) := inf
n∈Z

pn(x), x ∈ R.

We will say that Λ satisfies (HN) if the following three conditions are
fulfilled

• (i) The sequence is weakly dense: there is some ǫ0 > 0 such
that d(x,Λ) < ǫ0, for every x ∈ R.

In all what follows we will do the previous decomposition with ǫ = ǫ0:

Λ = Λǫ0 ⊎ Λǫ0,∞

and suppose (which is possible in view of the Remark 7) that

max (ρ0, ρ
′
0) <

ǫ0
2

where
ρ0 := sup

n∈Z
diamρ (σn)

and
ρ

′

0 := sup
n≥1

diam
(

σ
′

n

)

,

which are both finite in view of the (GC) condition and the fact that the
pseudohyperbolic diameter of σ

′

n in C
+
−2ǫ is equivalent to its Euclidian

diameter close to R.

• (ii) The limit

S(z) := lim
R→∞

∏

|λ|<R

(

1−
z

λ

)

exists and defines an entire function of exponential type τ .

• (iii) The function x 7→
(

|S(x)|
dN (x)

)p

satisfies the (continuous) Muck-

enhoupt condition (Ap).

We will see in the following that (iii) can be replaced by (iii)′, which
is

• (iii)′ The sequence












|S ′(λn,0)|
∏

λ∈σ′n
λ 6=λn,0

|λn,0 − λ|













n≥1

satisfies the discrete Muckenhoupt condition (Ap).
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It is clear that for N = 1, d1(x) = d(x,Λ) and (H1) with the Carleson
condition corresponds exactly to the (LS) conditions.

Remark 12. In the construction of the sets τn, it is actually possible to
assume that for some δ > 0, the sets

Ωn :=







z ∈ C :
∏

λ∈σ′n

|z − λ| ≤ δ







, n ≥ 1

satisfy

inf
n 6=m

d (Ωn,Ωm) > 0.

(Cf. also Remarks 7 and 8, in particular 8(iv).)

Remark 13. The weak density condition (HN)− (i) implies that

sup
x∈R

dN(x) <∞.

Clearly, in the definition of dN , the infimum is actually a minimum.
Also, by the (GC) condition, we have

δ
′

0 := inf
n 6=m

d(σ
′

n, σ
′

m) > 0,

and so, for each x ∈ R, there is nx ≥ 1 such that dN(x) = pnx
(x) and

we can also notice that

inf
x∈R

inf
m6=nx

pm(x) ≥

(

δ
′

0

2

)N

> 0.

Indeed, for x ∈ R and m 6= nx, if pm(x) <
(

δ
′

0

2

)N

then, there is some

λ1 ∈ σm such that

|x− λ1| <
δ
′

0

2
,

and so, for λ ∈ nx, we have

|x− λ| ≥ |λ− λ1| − |x− λ1| ≥ δ
′

0 −
δ
′

0

2
=
δ
′

0

2

and it follows that

pm(x) ≥ pnx
(x) ≥

(

δ
′

0

2

)N

from the infimum property of nx. This contradiction gives the required
estimate.

It is now possible to state our main result.
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Theorem 14. Let N ≥ 1 and Λ be a sequence of complex numbers
such that, for every a ∈ R, Λ±

a is N−Carleson in the corresponding
half-plane. Then, RΛ is an isomorphism from PW p

τ onto Xp
τ (Λ) if and

only if Λ satisfies (HN).

We will discuss below the necessity of the N−Carleson condition in
Theorem 17. It requires a different approach to the definition of the
trace which relies here on the decomposition Λ =

⊎

n τn coming from
the N−Carleson condition.

4.1. Necessary conditions. The necessity of (i) and (ii) can be shown
exactly as in [LS97] and so we omit it here. We show that the condi-
tion (iii)′ is necessary for RΛ to be an isomorphism between PW p

τ and
Xp
τ (Λ). Then, with a technical lemma, adapted from [LS97], we prove

that (iii)′ implies (iii).
Since RΛ is onto, for each λ ∈ Λ, there is a unique function fλ ∈ PW p

τ

such that

fλ(µ) =

{

1, if µ = λ
0, if µ 6= λ

.

As in [LS97], it can be shown that fλ only vanishes on Λ \ {λ}. More-
over, z 7→ (z − λ) fλ(z) is a function of the Cartwright Class C vanish-
ing exactly on Λ (see e.g. [Le96] for definition and general results on
C). Hence, S(z) = cλ (z − λ) fλ(z), z ∈ C, or

fλ(z) =
S(z)

S ′(λ) (z − λ)
.

For each n ≥ 1, the holomorphic function

gn : z 7→
S(z)

∏

λ∈σ′n

(z − λ)

does not vanish in Ωn (see Remark 12). Moreover, choosing λ
′

n,0 ∈ σ
′

n,

gn(λn,0) =
S ′
(

λ
′

n,0

)

∏

λ∈σ′n
λ 6=λn,0

(

λ
′

n,0 − λ
) .

Hence, it follows from the maximum and the minimum principle that

inf
ξ∈∂Ωn

∣

∣

∣

∣

∣

∣

∣

S(ξ)
∏

λ∈σ′n

(ξ − λ)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S ′
(

λ
′

n,0

)

∏

λ∈σ′n
λ 6=λn,0

(

λ
′

n,0 − λ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ sup
ξ∈∂Ωn

∣

∣

∣

∣

∣

∣

∣

S(ξ)
∏

λ∈σ′n

(ξ − λ)

∣

∣

∣

∣

∣

∣

∣

.
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From the intermediate values theorem, we deduce the existence of a
point θn ∈ ∂Ωn such that

(4.2) |S(θn)| = δ

∣

∣S ′(λ
′

n,0)
∣

∣

∏

λ∈σ′n
λ 6=λn,0

∣

∣λ
′

n,0 − λ
∣

∣

=: δωn.

Setting Γ :=
(

λ
′

n,0

)

n≥1
and Θ := (θn)≥1, we show that the discrete

Hilbert transform HΓ,Θ is bounded from lp(ω) into itself. Indeed, let
(an)n≥1 be a finite sequence of lp(ω). Then, the sequence

a(λ) :=

{

anS
′(λ

′

n,0) , if λ = λ
′

n,0

0 , if λ ∈ Λ \
⋃

n≥1

{

λ
′

n,0

}

belongs to Xp
τ (Λ) because, if λ

′

n,0 is choosen as the “last” point of σ
′

n,

∆̃k−1
σn

(

aeiτ ·
(

λ(k)n

))

= 0, k < |σn|

and
∣

∣

∣
∆̃|σn|−1
σn

(

aeiτ ·
(

λ(|σn|)n

))

∣

∣

∣
=

∣

∣anS
′(λ

′

n,0)
∣

∣ e
−τ

∣

∣

∣
Im

(

λ
′

n,0

)
∣

∣

∣

∏

λ∈σ′n
λ 6=λ

′
n,0

∣

∣λ− λ
′

n,0

∣

∣

.

Thus, from (4.2), we obtain, observing that 1 +
∣

∣Im(λ
′

n,0)
∣

∣ and
∣

∣eiτλ
∣

∣,

λ ∈ σ
′

n, are comparable to a constant since σ
′

n is close to R,

‖a‖p
Xp

τ (Λ)
=

∑

n

(

1 +
∣

∣

∣
Im(λ

′

n,0)
∣

∣

∣

) ∣

∣

∣
∆̃

|σ
′
n|−1

σ′n

(

aeiτ ·
(

λ(|σ
′
n|)

n

))∣

∣

∣

p

≍
∑

n















∣

∣anS
′(λ

′

n,0)
∣

∣

∏

λ∈σ′n
λ 6=λ

′
n,0

∣

∣λ
′

n,0 − λ
∣

∣















p

=
∑

n

ωpn |an|
p .(4.3)

So, let f ∈ PW p
τ be the (unique) solution of the interpolation problem

f |Λ = a. Notice that, since RΛ is an isomorphism onto Xp
τ (Λ), then

(4.4) ‖f‖pp . ‖a‖p
Xp

τ (Λ)
.

This function is of the form f(z) =
∑

j aj
S(z)
z−λj,0

and so, with (4.2) we

have

(4.5)
∑

n

|f(θn)|
p = δp

∑

n

ωpn

∣

∣

∣

(

HΓ,Θ((aj)j≥1)
)

n

∣

∣

∣

p

.
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On the other hand, the Polya inequality (see [Le96, Lecture 20]), and
the inequalities (4.4) and (4.3) give

(4.6)
∑

n

|f(θn)|
p
. ‖f‖pp . ‖a‖p

Xp
τ (Λ)

.
∑

n

ωpn |an|
p .

From (4.5) and (4.6), we deduce that HΓ,Θ is bounded from lp(ωp) into
itself. The Lemma 1 of [LS97] allows us to conclude that the weight
(ωpn)n≥1 satisfies the discrete Muckenhoupt condition (Ap). Notice that

we do not have exactly the required condition
∣

∣θn − λ
′

n,0

∣

∣ = δ. However,

since supn≥1 diam
(

σ
′

n

)

< ∞ and
∏

|λ− θn| = δ, it is easy to see that
∣

∣θn − λ
′

n,0

∣

∣ ≍ 1 and this is enough for the lemma to remain valid. Now,
in order to prove (iii), we use the following lemma, adapted from [LS97,
Lemma 2]. For technical reasons, we set γ := (γn)n∈Z in a way such
that {γn : n ∈ Z} = Γ and Re (γn) ≤ Re (γn+1). We then define σγn to
be the σ

′

n such that γn ∈ σγn and wn will denote

|S ′(γn)|
∏

λ∈σγn
λ 6=γn

|λ− γn|
.

(The sequence (wn)n is a permutation of the sequence (ωn)n).

Remark 15. It follows from the weak density condition ((HN)−(i)), the
(GC) condition on

(

Bσγn

)

n
and the growth of the sequence (Re (γn))n

that we have Re(γn+1)− Re (γn) ≤ 4ǫ0. This implies that

δ
′

0 ≤ |γn − γn+1| ≤ 5ǫ0.

Lemma 16. Suppose x ∈ R and Re(γn) ≤ x ≤ Re(γn+1). Then, there
exists an α = α(x) ∈ [0, 1] such that

wαnw
1−α
n+1 ≍

|S(x)|

dN(x)
,

uniformly with respect to x ∈ R.

Assuming this lemma to hold, (iii) follows directly from (iii)′ and
the inequality tαs1−α ≤ t + s, t, s > 0 and α ∈ [0, 1].

Proof. For x ∈ [Re(γn),Re(γn+1)], we set N(x) :=
{

n : d(σ
′

n, x) < ǫ0
}

and

Λ(x) :=





⊎

n∈N(x)

σ
′

n



 ∪ σγn ∪ σγn+1
.
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Notice that σγn and σγn+1
may be subsets of

⊎

n∈N(x) σ
′

n. Observe also
that since Λ is a finite union of Carleson sequences, we have

sup
x∈R

|N(x)| <∞.

For α ∈ [0, 1], we want to show that ϑ ≍ 1, where

ϑ :=
wαnw

1−α
n+1dN(x)

|S(x)|
,

and x 6∈ Λ (this is not restrictive since the expression extends continu-
ously to Λ). From the definition of S, we have that

S ′(λ) = −
1

λ

∏

µ∈Λ
µ6=λ

(

1−
λ

µ

)

, λ ∈ Λ.

In order to not overcharge notation, all infinite products occurring be-
low will be understood as symmetric limits of finite products.
Thus,

ϑ =















∣

∣

∣

∣

∣

1
γn

∏

λ∈Λ\{γn}

(

1− γn
λ

)

∣

∣

∣

∣

∣

α ∣
∣

∣

∣

∣

1
γn+1

∏

λ∈Λ\{γn+1}

(

1− γn+1

λ

)

∣

∣

∣

∣

∣

1−α

dN(x)

∏

λ∈Λ

(

1− x
λ

)
∏

λ∈σγn\{γn}

|λ− γn|
α ∏

λ∈σγn+1
\{γn+1}

|λ− γn+1|
1−α















.

For λ ∈ Λ \ {γn, γn+1},

∣

∣1− γn
λ

∣

∣

α ∣
∣1− γn+1

λ

∣

∣

1−α

∣

∣1− x
λ

∣

∣

=
|λ− γn|

α |λ− γn+1|
1−α

|x− λ|
.

Note also that for the remaining two points γn, γn+1 we have:

∣

∣

∣

1
γn

(

1− γn
γn+1

)∣

∣

∣

α ∣
∣

∣

1
γn+1

(

1− γn+1

γn

)∣

∣

∣

1−α

∣

∣

∣

(

1− x
γn

)(

1− x
γn+1

)∣

∣

∣

=
|γn+1 − γn|

α |γn − γn+1|
1−α

|γn − x| |γn+1 − x|
.

Now, we split ϑ in two products ϑ = Π1(x) · Π2(x) corresponding
essentially to zeros in Λ(x) and zeros in Λ \ Λ(x) (dN(x) appearing in
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Π1):

Π1(x) : =

∏

λ∈Λ(x)\{γn}

|λ− γn|
α ∏

λ∈Λ(x)\{γn+1}

|λ− γn+1|
1−α dN(x)

∏

λ∈Λ(x)

|λ− x|
∏

λ∈σγn\{γn}

|λ− γn|
α ∏

λ∈σγn+1
\{γn+1}

|λ− γn+1|
1−α

=

∏

λ∈Λ(x)\σγn

|λ− γn|
α ∏

λ∈Λ(x)\σγn+1

|λ− γn+1|
1−α dN(x)

∏

λ∈Λ(x)

|λ− x|

and

Π2(x) :=
∏

λ∈Λ\Λ(x)

(

|λ− γn|
α |λ− γn+1|

1−α

|λ− x|

)

.

We can write

Π1(x) =









∏

λ∈σγn+1

|λ− γn|
α ∏

λ∈σγn

|λ− γn+1|
1−α dN(x)

∏

σγn∪σγn+1

|x− λ|









×







∏

Λ(x)\(σγn∪σγn+1)

|λ− γn|
α |λ− γn+1|

1−α

|x− λ|







and notice that if λ ∈ Λ(x) \
(

σγn ∪ σγn+1

)

, then λ ∈ σl′ for a suitable
l ∈ N(x), so that

1 . d(σγn , σ
′

l) ≤ |λ− γn| ≤ 2ρ
′

0 + 2ǫ0 . 1

and, in view of Remark 15, for λ ∈ σγn and µ ∈ σγn+1
, we have

|λ− γn+1| ≍ 1 and |µ− γn| ≍ 1.

These three relations imply that

Π1(x) ≍
dN(x)
∏

λ∈Λ(x)

|x− λ|
.

Now, let nx be such that dN(x) = pnx
(x) (we refer to Remark 13).

Clearly nx ∈ N(x). Note also that for λ ∈ σ
′

m, m ∈ N(x), we have
|λ− x| ≤ d

(

σ
′

m, x
)

+ diam
(

σ
′

m

)

≤ ǫ0 + ρ
′

0. Hence

1
(

ǫ0 + ρ
′

0

)|N(x)|−1
≤

dN(x)
∏

λ∈Λ(x)

|x− λ|
=

1
∏

λ∈Λ(x)\σnx

|λ− x|
≤

(

2

δ
′

0

)N ·(|N(x)|−1)
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and, from the end of Remark 13, we obtain that

Π1(x) ≍ 1.

The relation

Π2(x) ≍ 1

is shown exactly in the same way as in [LS97], using the N−Carleson
condition. The lemma is proved. �

4.2. Sufficient conditions. We show the converse of the theorem in
two parts; first, the injectivity of RΛ and then its surjectivity.

4.2.1. Injectivity of RΛ. Let f ∈ PW p
τ such that f(λ) = 0, λ ∈ Λ. We

want to show that f ≡ 0. Let us introduce φ := f/S. It can be shown
that φ is an entire function of exponential type 0. The idea of the proof,
given by Lyubarskii and Seip in [LS97], is to bound φ by a constant on
the imaginary axis and to use a Phragmen-Lindelf theorem to obtain
that φ is a constant. Then, for integrability reasons, the only possible
value for the constant will be zero.
We will proceed as follows: since φ is analytic, it is bounded on the

compact [−2iǫ0, 2iǫ0]. In order to bound φ on iR \ [−2iǫ0, 2iǫ0], we will
use a lower estimate for S in a certain area of C. Let us introduce

An := {z ∈ C : |Im(z)| ≥ 2ǫ0, ρ (λn,0, z) < 2ρ0 < ǫ0} , n ∈ Z.

We begin to show that for z ∈
(

C
+
2ǫ0 ∪ C

−
−2ǫ0

)

\ (
⋃

nAn),

(4.7) |S(z)| & eτ |Im(z)| (|Im(z)|)
1

q (1 + |z|)−1 .

Indeed, let us introduce

Bǫ0(z) :=
∏

λ∈Λǫ

(

cλ
z − λ

z − λ+ 3iǫ0

)

and S1(z) := (S/Bǫ0) (z), z ∈ C
+,

where Bǫ0 is the Blaschke product in C
+
− 3

2
ǫ0
, and cλ is the unimodular

normalizing constant which ensures the convergence of the Blaschke
product (we do not need the explicit value here). Let x ∈ R. Observe
that for n ≥ 1 and λ ∈ σ

′

nx
, we have

∣

∣x− λ
∣

∣ = |x− λ| ≤ ǫ0 + diam
(

σ
′

nx

)

≤ ǫ0 + ρ
′

0 ≤ 3
ǫ0
2
.

Hence,
3

2
ǫ0 ≤

∣

∣x− λ+ 3iǫ0
∣

∣ ≤ 5ǫ0.
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It follows from these inequalities that




∏

λ∈σnx

∣

∣

∣

∣

x− λ

x− λ+ 3iǫ0

∣

∣

∣

∣



 ≍ dN(x).

Writing

|Bǫ0(x)| =





∏

λ∈σnx

∣

∣

∣

∣

x− λ

x− λ+ 3iǫ0

∣

∣

∣

∣









∏

λ∈Λǫ0
\σnx

∣

∣

∣

∣

x− λ

x− λ+ 3iǫ0

∣

∣

∣

∣





and using the fact that Λǫ0 is N−Carleson in C
+
− 3

2
ǫ
, we have then that

(4.8) |Bǫ0(x)| ≍ dN(x),

and so x 7→ |S1(x)|p ∈ (Ap).

In particular, the function z 7→ eiτz S1(z)
z+i

= eiτz S
Bǫ0

(z+i)
belongs to

Hp
+ and the function z 7→ eiτzS1(z) is a function of N+, the Smirnov

Class in the upper half-plane (for definition and general results, see e.g.
[Ni02a, A.4]). Hence, we can write

S1(z) = e−iτzB1(z)G1(z), z ∈ C
+,

where B1 is the Blaschke product associated to Λ+ \ Λǫ0 and G1 is
an outer function in C+. Thus, x 7→ |G1(x)|p ∈ (Ap) or equivalently,
x 7→ |G1(x)|−q ∈ (Aq), with

1
p
+ 1

q
= 1. So, it follows from properties

of functions satisfying Muckenhoupt’s (Ap) condition, that

z 7→
1

G1(z)(z + i)
∈ Hq

+

and we can write
1

G1(z)(z + i)
=

1

2iπ

ˆ

R

1

G1(t)(t+ i)

dt

t− z

from where we get for z ∈ C+,
∣

∣

∣

∣

1

G1(z)

∣

∣

∣

∣

. (1 + |z|) (Im(z))−
1

q .

Moreover, because of the N−Carleson condition of Λ+ \ Λǫ0, we have
that

|B1(z)| & 1, z ∈ C
+ \

(

⋃

n≥0

An

)

and so we do have the lower bound for S1 stated in (4.7). We notice
that |S(z)| ≍ |S1(z)|, Im(z) > 2ǫ0 and so we have the same bound for
S in C

+
2ǫ0

. A similar reasonning gives us the estimate in C
−
−2ǫ0

.
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Using now (4.1) and (4.7), we have for z ∈
(

C
+
2ǫ0 ∪ C

−
−2ǫ0

)

\ (
⋃

nAn),

|φ(z)| =

∣

∣

∣

∣

f(z)

S(z)

∣

∣

∣

∣

.
(1 + |z|)

eτ |Im(z)| |Im(z)|
1

q

eτ |Im(z)|

(1 + |Im(z)|)
1

p

≍
(1 + |z|)

|Im(z)|
1

q (1 + |Im(z)|)
1

p

=: ψ(z).

We notice then that if An ∩ iR 6= ∅, then

An ⊂ S± :=

{

z ∈ C
± :

∣

∣

∣

∣

Im(z)

Re(z)

∣

∣

∣

∣

< η

}

,

where η is a suitable constant. Note that S± are Stolz angles in C± at
x = 0. Since An is far from R and has uniformly bounded pseudohy-
perbolic diameter, every An hitting the imaginary axis will be in the
Stolz angle S+ or S−. Obviously, there is some M > 0 such that for
every z ∈ C

±
±2ǫ0 ∩ S±, we have

|ψ(z)| ≤M.

In particular, |ψ(z)| ≤M for z ∈ ∂An and by the maximum principle,

|ψ(iy)| ≤M for iy ∈ An ∩ iR.

Hence, φ is uniformly bounded on iR and it follows, by a Phragmen-
Lindelf principle that φ ≡ K. Let us now show that K = 0. Because
x 7→ |S1(x)|p ∈ (Ap) we have

ˆ

|S1(x)|
p = ∞

and, applying the Plancherel-Polya inequality, we also have
ˆ

|S1(x+ 2iǫ0)|
p = ∞

but |S1(x+ 2iǫ0)| ≍ |S(x+ 2iǫ0)|, so
ˆ

|S(x+ 2iǫ0)|
p = ∞.

We apply again the Plancherel-Polya inequality to obtain
ˆ

|S(x)|p = ∞.

From the fact that f ∈ PW p
τ , we have by definition that f ∈ Lp and

since f = φS = KS, the only possibility is K = 0 and so f ≡ 0, which
ends the proof of the injectivity of RΛ. Now, we can show the last part
of the proof.
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4.2.2. Surjectivity of RΛ. Let a be a finitely supported sequence. It
suffices to bound the norm of the solution of the interpolation problem
f(λ) = a(λ), λ ∈ Λ, by a constant times the norm of a in Xp

τ (Λ). The
general case follows from density. Let

f(z) =
∑

λ∈Λ

a(λ)
S(z)

S ′(λ)(z − λ)
.

We want to split this sum in two pieces. We recall that we have the
decomposition Λ =

⊎

n∈Z τn and we have already introduced

N+ =
{

n ∈ Z : τn ∩
(

C
+ ∪ R

)

6= ∅
}

and N− = Z \N+.

We set

Λ+ :=
⊎

n∈N+

τn and Λ− :=
⊎

n∈N−

τn = Λ \ Λ+.

(Observe that since diam (τn) <
ǫ0
2
, we have Λ+ ⊂ C

+
−

ǫ0
2

). Now, we can

write f = f+ + f−, with

f±(z) :=
∑

λ∈Λ±

a(λ)
S(z)

S ′(λ)(z − λ)
=
∑

n∈N±

∑

λ∈τn

a(λ)
S(z)

S ′(λ)(z − λ)

and we will estimate the norm of each sum separately. Here we will
only estimate the norm of f+, the method is the same for f−. In the
following, β will be the Blaschke product associated to Λ+

−ǫ0

β(z) =
∏

λ∈Λ+

−ǫ0

(

cλ
z − λ

z − λ+ 2iǫ0

)

, z ∈ C
+
−ǫ0
,

where again cλ is a suitable normalizing factor. For z ∈ C
+
−ǫ0, we

write S(z) = e−iτzβ(z)G(z), which implies, using β(0) =
∏

λ∈Λ cλ
λ

λ−2iǫ0
(recall that we have assumed 0 6∈ Λ) that

G(z) = eiτzS(z)β(z)−1

= eiτz
∏

λ∈Λ

(

λ− z

λ

)

∏

λ∈Λ+

−ǫ0

(

cλ
z − λ+ 2iǫ0

z − λ

)

= β(0)−1eiτz
∏

λ̃∈Λ̃

(

1−
z

λ̃

)

,

with Λ̃ :=
(

Λ \ Λ+
−ǫ0

)

∪
(

Λ+
−ǫ0 − 2iǫ0

)

. The function G is outer function

in C
+
−ǫ0. As in (4.8), we obtain |β(x)| ≍ dN(x). In particular, we have
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|G(x)|p ∈ (Ap). And, since |eiτzβ(z)| . 1 on every fixed line parallel to
the real axis, it is enough to estimate the Lp norm of

f+
0 (z) :=

∑

n∈N+

∑

λ∈τn

a(λ)
G(λ)

S ′(λ)(z − λ)

instead of the norm of f+. Let η be such that ǫ0
2
< η < ǫ0. Since Λ̃ is a

(not necessarily disjoint) union of two N−Carleson sequences in C
−
ǫ0
2

,

so that in particular Im
(

λ̃+ iη
)

≤ η− ǫ0 < 0 and thus every x ∈ R is

far from Λ̃, we obtain

|G(x− iη)| = eτη |G(x)|





∏

λ̃∈Λ̃

∣

∣

∣

∣

∣

x− λ̃− iη

x− λ̃

∣

∣

∣

∣

∣



 ≍ |G(x)|.

So x 7→ |G(x − iη)|p also satisfies the Muckenhoupt condition (Ap).
According to the Plancherel-Polya inquality, it is possible to estimate
the norm of f+

0 on the axis {Im(z) = −η}.
By duality, we need to estimate

sup
h∈Hq(C+

−η)
‖h‖q=1

N(h),

with

N(h) :=

∣

∣

∣

∣

∣

∑

λ∈Λ+

a(λ)

S ′(Λ)

ˆ

G(x− iη)h(x− iη)

x− iη − λ
dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

λ∈Λ+

a(λ)

S ′(λ)
H(G̃h̃)(λ+ iη)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

λ∈Λ+

a(λ)

S ′(λ)
P+(G̃h̃)(λ+ iη)

∣

∣

∣

∣

∣

,

where z 7→ G̃(z) = G(z−iη) is an outer function in C+and the function

z 7→ h̃(z) = h(z− iη) belongs to Hq
+. In order to compute S ′(λ), let us

recall that

S(z) = e−iτzβ(z)G(z), z ∈ C
+
−η.

For λ ∈ τn, n ∈ N+, we have

S ′(λ) = cλ
e−iτλ

λ− λ+ 2iǫ0
G(λ)

β

bǫ0λ
(λ),
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where bǫ0λ (z) = cλ
z−λ

z−λ+2iǫ0
. Using that G(λ) = G̃(λ+ iη), and setting

ψ :=
P+(G̃h̃)

G̃
and α(λ) := a(λ)eiτλ, λ ∈ Λ+,

the expression becomes

N(h) =

∣

∣

∣

∣

∣

∣

∣

∑

n∈N+

∑

λ∈τn

α(λ)ψ(λ+ iη)
∏

µ6=λ

bǫ0µ (λ)

(

λ− λ+ 2iǫ0
)

∣

∣

∣

∣

∣

∣

∣

.

Writing

N+ = Nǫ0 ⊎N+∞, with Nǫ0 := {n ∈ N+ : τn ∩ {|Im(z)| < ǫ0} 6= ∅} ,

we set, with the help of the functions of Lemma 4,

Pτn,α(z) :=

|τn|
∑

k=1

∆k−1
τn (α(λn,1, ..., λn,k))

k−1
∏

l=1

bλn,l
(z), n ∈ N+∞,

Pτn,α(z) :=

|τn|
∑

k=1

�k−1
τn (α(λn,1, ..., λn,k))

k−1
∏

l=1

(z − λn,l) , n ∈ Nǫ0

and setting τ̃n := τn + iη

Qτ̃n,ψ(z) :=

|τ̃n|
∑

k=1

∆k−1
τ̃n

(ψ(λn,1 + iη, ..., λn,k + iη))

k−1
∏

l=1

bλn,l+iη(z).

We notice that

N(h) =

∣

∣

∣

∣

∣

∣

∣

∑

n∈N+

∑

λ∈τn

Pτn,α(λ)Qτ̃n,ψ(λ+ iη)
∏

µ6=λ

bǫ0µ (λ)

(

λ− λ + 2iǫ0
)

∣

∣

∣

∣

∣

∣

∣

.

Recall now that τn ⊂ Rn, where (Rn)n are the disjoint rectangles
(constructed here in the half-plane C

+
−η so that in particular satis-

fying d (∂Rn,R− iη) ≍ ln ≍ Ln) introduced in Remark 8. (Note also
that here we have that Λ+ ⊂ C

+
−

ǫ0
2

and in particular, Λ+ is far from

{Im(z) = −η}). Then, if Γn := ∂Rn, the function

z 7→ hn(z) :=
Pτn,α(z)Qτ̃n,ψ(z + iη)

β(z)

is a meromorphic function in
◦

Rn with simple poles at λ ∈ τn. Thus,
the residue theorem implies that

ˆ

Γn

hn(z)dz = 2iπ
∑

λ∈τn

Res(hn, λ)
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and

Res(hn, λ) = Pτn,α(λ)Qτ̃n,ψ(λ+ iη)

(

β

bǫ0λ
(λ)

)−1

·
(

λ− λ+ 2iǫ0
)

.

It follows that

N(h) =

∣

∣

∣

∣

∣

∣

1

2iπ

∑

n∈N+

ˆ

Γn

Pτn,αQτ̃n,ψ

β
(z)dz

∣

∣

∣

∣

∣

∣

.

Obviously
∣

∣bλn,l
(z)
∣

∣ ≤ 1. Observe also that by condition (iv) of Remark
8 for z ∈ Γn, n ∈ Nǫ0,∞, we have that |z − λn,l| is bounded by a fixed
constant. Hence for every n ∈ N+,

|Pτn,α| .

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn (α(λn,1, ..., λn,k))

∣

∣

∣
.

Also

|Qτ̃n,ψ| .

|τ̃n|
∑

k=1

∣

∣∆k−1
τ̃n

(ψ(λn,1 + iη, ..., λn,k + iη))
∣

∣ ,

and we obtain that

N(h) .
∑

n∈N+





(
ˆ

Γn

∣

∣

∣

∣

dz

β(z)

∣

∣

∣

∣

)





|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn (α)

∣

∣

∣









|τ̃n|
∑

l=1

∣

∣∆l−1
τ̃n

(ψ)
∣

∣







 .

For z ∈ Γn, we see that

|β(z)| =





∏

λ∈Λ+\τn

∣

∣

∣

∣

z − λ

z − λ+ 2iǫ0

∣

∣

∣

∣



 ·

(

∏

λ∈τn

∣

∣

∣

∣

z − λ

z − λ+ 2iǫ0

∣

∣

∣

∣

)

=: Π1(z) · Π2(z).

Since Λ+ is N−Carleson in C
+
−ǫ0, it follows from the fact that Rn is far

from τk, k 6= n that

Π1(z) ≍ 1

and from the fact that Rn is far from τn that

Π2(z) ≍ 1.

Hence, choosing arbitrarily λn,0 ∈ τn, the construction of Rn gives
ˆ

Γn

∣

∣

∣

∣

dz

β(z)

∣

∣

∣

∣

.

ˆ

Γn

|dz| . Im(λn,0) + η . 1 + |Im (λn,0)| .
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Applying Hlder’s inequality, we obtain

N(h) .





∑

n∈N+

(1 + Im(λn,0))

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn

(

eiτ ·a
)

∣

∣

∣

p





1

p

×





∑

n∈N+

Im(λn,0 + iη)

|τ̃n|
∑

k=1

∣

∣∆k−1
τ̃n

(ψ)
∣

∣

q





1

q

.

Now, notice that by the Muckenhoupt condition on |G̃|−q and thus the
boundedness of H on

Hq
+

(∣

∣

∣

∣

1

G̃

∣

∣

∣

∣

q)

:=

{

f ∈ N+ : f|R ∈ Lq
(∣

∣

∣

∣

1

G̃

∣

∣

∣

∣

q)}

,

we get that ψ ∈ Hq
+ and ‖ψ‖q .

∥

∥

∥
h̃
∥

∥

∥

Hq
+

= 1. But, since

⋃

n∈N+

τ̃n = Λ+ + iη

is in fact N−Carleson in C
+
−

ǫ0
2
+η

⊂ C+ and ψ ∈ Hq
+, Theorem 9 implies

that




∑

n∈N+

Im(λn,0 + iη)

|τ̃n|
∑

k=1

∣

∣∆k−1
τ̃n

(ψ)
∣

∣

q





1

q

. ‖ψ‖Hq
+
.
∥

∥

∥
h̃
∥

∥

∥

Hq
+

= 1.

Finally, we obtain

N(h) .





∑

n∈N+

(1 + Im(λn,0))

|τn|
∑

k=1

∣

∣

∣
∆̃k−1
τn

(

eiτ ·a
)

∣

∣

∣

p





1

p

= ‖a‖Xp
τ (Λ)

,

which ends the proof.

5. About the N−Carleson condition

It is clear that the definition of Xp
τ (Λ) depends on the N−Carleson

hypothesis, and more precisely for the construction of the groups τn.
In this last section, we show that in a certain way, the N−Carleson
condition is necessary.
It will be convenient to introduce the distance function

δ(z, ξ) :=
|z − ξ|

1 +
∣

∣z − ξ
∣

∣
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which expresses that locally we deal with Euclidian geometry close to
the real axis and pseudohyperbolic geometry far away from the real
axis (see e.g. [Se98, page 715]). Let Λ = {λn}n≥1 be a sequence of

complex numbers. Let N ≥ 1 be an integer and η ∈
(

0, 1
2

)

. For λ ∈ Λ,
we define

Dλ,η := {z ∈ C : δ(λ, z) < η} ,

Nλ := {µλ,i : 1 ≤ i ≤ N} ⊂ Λ

as the set of N closest neighboors of λ (including in particularλ) with
respect to the distance δ. Then we set

σλ := DΛ,η ∩Nλ, nλ := |σλ| ≤ N.

Note that the set Nλ, and consequently σλ, is not unique. It is now
natural to introduce the space (for 1 < p <∞)

Xp
τ (Λ, N) :=

{

a = (a(λ))λ∈Λ : ‖a‖Xp
τ (Λ,N) <∞

}

,

where

‖a‖p
Xp

τ (Λ,N)
:=
∑

λ∈Λ

(1 + |Im(λ)|)
nλ
∑

k=1

∣

∣

∣
∆̃k−1
σλ

(

ae±iτ ·
(

µ(k)
))

∣

∣

∣

p

with

∆̃σλ =

{

∆σλ , if σλ ∩ {z ∈ C : |Im(z)| < 1} = ∅

�σλ , if not

and

e±iτµ =

{

eiτµ , if µ ∈ σλand σλ ∩ {z ∈ C : Im (z) ≥ 0} 6= ∅
e−iτµ , otherwise

.

It can be shown that if Λ ∩ C±
a is N−Carleson in the corresponding

half-plane, for each a ∈ R, then this norm is equivalent to the previ-
ously defined norm ‖·‖Xp

τ (Λ)
of the previous section. The result is the

following one.

Theorem 17. If RΛ is an isomorphism from PW p
τ onto Xp

τ (Λ, N),
then for every a ∈ R, Λ ∩ C±

a is N ′−Carleson in the corresponding
half-plane, with N ′ ≤ N .

The proof is in two parts. We begin to show that if RΛ is such
an isomorphism, then Λ±

a is N ′−Carleson for some N ′ ∈ N. This only
requires the boundedness of RΛ. We first notice that by the Plancherel-
Polya theorem (Proposition 11) the map

τa : PW p
τ → PW p

τ

f 7→ f(·+ i (1 + |a|)
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is an isomorphism and so R̃Λ := RΛ ◦ τa is still an isomorphism. Obvi-

ously, R̃Λ = RΛ̃, where Λ̃ := Λ + i (1 + |a|) =:
{

λ̃
}

λ̃∈Λ̃
. Note that for

λ ∈ Λ+
a

|aλ|
p e−pIm(λ) ≤

nλ
∑

k=1

∣

∣

∣
∆̃k−1
σλ

(

ae±iτ ·
(

µ(k)
))

∣

∣

∣

p

and so Xp
τ

(

Λ̃, N
)

injects into lp
((

1 +
∣

∣

∣
Im(λ̃)

∣

∣

∣

)

e−p|Im(λ̃)|
)

so that

RΛ̃ : PW p
τ → lp

((

1 +
∣

∣

∣
Im(λ̃)

∣

∣

∣

)

e−p|Im(λ̃)|
)

is bounded. We set Λ̃+
a := Λ+

a + i (1 + |a|) and reintroduce the inner
function Iτ (z) = e2iτz. We have mentioned in the beginning of the
paper that PW p

τ is isomorphic to Kp
Iτ , so

RIτ
Λ̃+
a
:= RΛ̃+

a

∣

∣

∣
Kp
Iτ

: Kp
Iτ

→ Lp
(

µΛ̃+
a

)

is bounded, where

µΛ̃+
a
:=
∑

λ̃∈Λ̃+
a

Im(λ̃)δλ̃.

In order to show the claim, it is sufficient to show that µΛ̃+
a
is a Carleson

measure for Hp
+. Since in particular Λ̃+

a ⊂ C
+
1 , it is possible to find

ǫ ∈ (0, 1) such that

Λ̃+
a ⊂ L (Iτ , ǫ) :=

{

z ∈ C
+ : |Iτ (z)| < ǫ

}

.

Now, from a result of Treil and Volberg (see [TV95] or [Al97]), the
boundedness of RIτ

Λ̃+
a
implies that

(5.1) sup
I

µΛ̃+
a
(ωI)

m(I)
<∞,

where the supremum is taken over all the intervals of finite length such
that the Carleson window ωI constructed on I statisfies

ωI ∩ L(Iτ , ǫ) 6= ∅.

Observe that L (Iτ , ǫ) is in the upper half plane C
+
b , b = log (1/ǫ), so

that if the length of the Carleson window is less than b, then we have
ωI ∩ L(Iτ , ǫ) = ∅. Hence, ωI ∩ Λ̃+

a = ∅ and so µΛ̃+
a
(ωI) = 0. It follows

that (5.1) is true for all finite length intervals I, which is equivalent to

the fact that µΛ̃+
a
is a Carleson measure or also that Λ̃+

a is N ′−Carleson
and hence Λ+

a in the corresponding half-plane. Considering the map

s : PW p
τ → PW p

τ

f 7→ f (−·)
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which is also an isomorphism, we will also have the result for Λ−
a .

Now, we want to prove that N ′ ≤ N . In the following, if Λ+
a is

(N + k)−Carleson, we write

Λ+
a =

⋃

n≥1

τkn ,

where the groups τkn come from the Generalized Carleson condition,
and so it is possible to assume that

diamδ

(

τkn
)

<
η

4

(which in particular implies that τkn ⊂ Dλ,η) and

γ := inf
n 6=m

δ
(

τkn , τ
k
m

)

> 0.

We need the following lemma and its corollary. For technical reasons,
let us assume (without loss of generality) that Λ+

a ⊂ C
+
1 so that we can

deal with the pseudohyperbolic metric and the corresponding divided
differences.

Lemma 18. If RΛ is an isomorphism from PW p
τ onto Xp

τ (Λ, N) and
Λ+
a is (N + k + 1)−Carleson, k ≥ 0, then it is possible to find η > 0

such that for every subsequence (τ̃j)j of (τk+1
n ) with |τ̃j | = N + k + 1,

we have diamρ(τ̃j) > η.

Proof. Let us suppose to the contrary that we can find a subsequence
(τ̃j) of (τ

k+1
n ) such that |τ̃j | = N + k + 1 and diamρ(τ̃j) → 0, j → ∞.

We set τ̃j = {λji : i = 0, .., N + k}. Let us now introduce the sequence
aj = (aj(λ))λ∈Λ defined by

aj(λ) := 0, λ 66= λjN+k, aj(λjN+k) :=

∏

i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

max
i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

eτ Im(λ
j
N+k)

Im
(

λjN+k

)
1

p

.

Let

Mj :=
{

λ ∈ Λ+
a : λjN+k ∈ σλ

}

.

Since diam (τ̃j) <
η
4
and λjN+k ∈ τ̃j we have for every λ ∈ τ̃j that

λjN+k ∈ σλ. So τ̃j ⊂ Mj . Let Bj := Mj \ τ̃j . Also, since Λ+
a is

(N + k + 1)−Carleson, and thus Dλj
N+k

,η can only contain a uniformly

bounded number of points of Λ+
a , it follows that

sup
j

|Mj | <∞.
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By construction,

∥

∥aj
∥

∥

p

Xp
τ (Λ,N)

=
∑

λ∈Mj

(1 + Im(λ))

nλ
∑

l=1

∣

∣∆l−1
σλ

(

ajeiτ ·
(

µ(l)
))∣

∣

p
.

We have to evaluate this expression. Take λ ∈ Mj . We recall that
nλ = |σλ|. Note also that for every 1 ≤ l ≤ nλ, the divided difference

∣

∣∆l−1
σλ

(

aje±iτ ·
(

λ(l)
))∣

∣

will be equal either to 0 or to
∣

∣

∣

∣

∣

aj
(

λjN+k

)

e±iτλ
j

N+k

∏

m∈ωl

bλjm
(

λjN+k

)

∣

∣

∣

∣

∣

,

where ωl ⊂ σλ contains l − 1 points. Now, ωl = ωl,1 ⊎ ωl,2 where
ωl,1 = σλ ∩ τ̃j and ωl,2 are the other points. Note that ωl cannot

contain λjN+k. By assumption, for µ ∈ ωl,2, |bµ(λ
j
N+k)| ≥ γ. Hence,

nλ
∑

l=1

∣

∣∆l−1
σλ

(

aje±iτ ·
(

λ(l)
))∣

∣

p

≤
nλ
∑

l=1

∏

i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

p

max
i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

p ·
1

Im
(

λjN+k

)
∏

µ∈ωl

∣

∣bµ
(

λjN+k

)∣

∣

p

≤

nλ
∑

l=1

1

γp|ωl,2|

∏

ξ∈Ωl

∣

∣bξ
(

λjN+k

)∣

∣

p

max
i 6=N+k

∣

∣

∣
bλji

(

λjN+k

)

∣

∣

∣

p ·
1

Im
(

λjN+k

)

.
N

Im
(

λjN+K

) ,

where Ωl = {λji : i = 0, . . . , N + k− 1} \ωl,1 are subsets of τ̃j . The last
of the above inequalities comes from the observation that Ωl contains
at least:

N + k − |ωl,1| ≥ N + k − (nλ − 1) ≥ N + k − (N − 1) = k + 1 ≥ 1

points. We deduce that aj ∈ Xp
τ (Λ, N) and that its norm is uniformly

bounded. Now, since RΛ is onto, there is f j ∈ PW p
τ such that f j|Λ = aj

and
∥

∥f j
∥

∥

PW p
τ
.
∥

∥aj
∥

∥

Xp
τ (Λ,N)

. 1.
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Setting f̃ j := eiτ ·f j , it follows from the Plancherel-Polya inequality
that f̃ j ∈ Hp

+ and since Λ+
a is (N + k + 1)−Carleson in C

+, Theorem
(ref:Hartmann) implies in particular that

Im(λjN+K)
∣

∣

∣
∆N+k
τ̃j

(

f̃ j(λj0, ..., λ
j
N+k)

)∣

∣

∣

p

.
∥

∥f j
∥

∥ . 1.

But by construction, we have

Im(λjN+K)
∣

∣

∣
∆N+k
τ̃j

(

f̃ j(λj0, ..., λ
j
N+k)

)∣

∣

∣

p

=
1

max
i 6=N+k

ρ
(

λjN+k, λ
j
i

)

which tends to ∞, j → ∞ because diamρτ̃j tends to 0, j → ∞, which
gives the required contradiction. �

The following corollary to the previous lemma allows us to end the
proof of our theorem.

Corollary 19. If RΛ is an isomorphism from PW p
τ onto Xp

τ (Λ, N) and
Λ+
a is (N + k + 1)−Carleson, k ≥ 0, then Λ+

a is (N + k)−Carleson.

Proof. We write Λ+
a =

⋃

n≥1 τ
k+1
n with |τk+1

n | ≤ N + k + 1. Let us

suppose that there is an infinity of n for which we have |τk+1
n | = N+k+1

and let Z be the set of such n. Because of the previous lemma, we can
find η > 0 such that diamρ(τ

k+1
n ) > η for n ∈ Z. Then, for every

n ∈ Z, it is possible to write τk+1
n = {λni : i = 1, . . . , N + k + 1} such

that

ρ
(

λi, λ
n
N+k+1

)

≥
η

2 (N + k)
, i = 1, . . . , N + k.

It follows that

Λ+
a =

⊎

n 6∈Z

τk+1
n ⊎

(

⊎

n∈Z

τk+1
n \

{

λnN+k+1

}

)

⊎

(

⊎

n∈Z

{

λnn+k+1

}

)

is a disjoint union of sets σn with |σn| ≤ N + k and it can be shown
that the sequence of Blascke products (Bσn)n satisfies the Generalized
Carleson condition and hence that Λ+

a is (N + k)−Carleson. �

I would like to thank Andreas Hartmann for his very helpful and
permanent support during this research and, more generally, from the
beginning of my thesis.
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