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Abstract — Assessment of different types of risks is today one of 
the challenges for an Integrated Risks Analysis (IRA) 
methodology. Indeed, whereas technical or environmental risks 
assessments can generally be done by means of statistical way, 
human and organizational considerations are more taken into 
account with the use of expert judgments. These considerations 
lead, from a scientific point of view, to address issues such as how 
the information provided by the experts can be collected and then 
modeled. Thus, this paper aims at reviewing different ways 
needed to express expert knowledge but also different 
frameworks for representing the information collected. These 
two items have to support the full development of the IRA 
methodology. 
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I.  INTRODUCTION 

A. General context 

Currently, industrial systems risks analysis are becoming 
increasingly complex (in the sense of Lemoigne [1]) due to 
their increasing number of components and their interactions 
but also the recognition of the employees and the organization 
acting on these systems. For instance, maintenance or operating 
actions are carried out on a technical system by "operators" in 
organizational, regulatory and environmental contexts. To face 
with this complexity, EDF in partnership with CRAN and 
INERIS (French laboratory and companies) have developed 
jointly an Integrated Risks Analysis (IRA). IRA is well adapted 
for the risks analysis of so-called complex sociotechnical 
systems (e.g. energy production systems) which includes the 
study of the technical, human, organizational and 
environmental components in a same approach. IRA aims at 
taking into account, on the one hand, all the risks associated to 
each area and, on the other hand, all of their interactions. 

B. Principle of Integrated Risks Analysis (IRA) 

IRA methodology aims at taking into account collectively 
the complexity and interdisciplinarity of industrial systems 
subjected to maintenance or operating actions. It is based on a 
representation of the four areas (technical, human, 
organizational, environmental) and their interactions through a 

formalism based on Paté-Cornell and Murphy framework [2], 
presented in [3] and Figure 1. It must guarantee the assessment 
of various issues such as safety and availability of the system 
as well as maintaining this one during its lifetime. The main 
challenges of this methodology are to develop methods and 
tools for the risks analysis of systems subjected to correlated 
risks (technical, environmental, etc.) and having correlated 
influences on the issues defined previously. The main 
objectives of this methodology are: (1) prioritizing different 
types of risks, (2) helping the choice of prevention or 
mitigation barriers to reduce these risks and (3) contributing to 
their better control. A part of the knowledge necessary for this 
risks analysis is extracted from expert’s judgments. 

 

Figure 1.  Conceptual framework of IRA methodology 

C. Highlighting issues of the problem of uncertainty 

The use of expert’s judgment in risks analysis is an open 
scientific issue in many areas such as in nuclear, chemical or 
aerospace [4]. It is used for supporting assessments when data 
are insufficient or inappropriate. As noted by [5], they are now 
considered as another type of scientific data and numerous 
tools and methods have been developed to process them in the 
last decades [5], [6].  

Risks assessment phase is a critical phase in the IRA 
approach to ensure consistent results and to allow use of these 
results by an analyst. It is therefore necessary to ensure the best 
possible assessment of the various elements of the IRA to 
correctly handle the uncertainties; naturally present with this 
type of methodology. Previous works on characterization and 



propagation of uncertainty in the IRA has been presented in 
[7]. In the IRA context, if the assessment of technical or 
environmental risks can generally be achieved through the use 
of statistical distributions (based on data of experience 
feedback, e.g. the modeling of flows and temperatures in the 
environmental area), assessment of risks of human area 
(degradation or non degradation of human indicators, 
characterizing the human level in IRA) and organizational area 
(presence/absence of pathogenic organizational factors 
characterizing the organizational level in IRA) are achieved, in 
most of cases, through the use of expert judgments. These 
expert judgments can also be used to assess risks and 
phenomenon for which there is a weak or no experience 
feedback (e.g. emerging phenomenon). 

In the IRA methodology, the collect of expert judgments is 
currently formalized via elicitation grids [3] which constrain 
the expert to choose only a single value from a pre-defined list 
of possible values. In that way a first objective of this paper is 
addressing the estimation of risks by expert judgment on two 
items: (a) how to collect and model the expert’s knowledge in a 
less biased way and (b) how to implement tools to collect and 
handle expert judgments. 

 However, different methods for collecting expert 
judgments (elicitation supports, constraints, etc.) involve 
information of different natures (unique values, intervals, etc.) 
leading to use different theoretical modeling frameworks. Thus 
the second objective of the paper is to highlight different 
possible types of expression of expert knowledge and the ways 
of processing the data accordingly. 

Different types of expression of expert knowledge are 
presented in relation to different frameworks needed for 
modeling the uncertainty on the data expressed. The goal is 
then to be able to identify a suitable framework to represent 
each form of knowledge to contribute to increase the accuracy 
and the correctness of calculations, results and thus the future 
decisions. For supporting all the objectives previously defined, 
the paper is structured as follows. Section II will focus on 
illustrating different frameworks for modeling uncertainty that 
can correspond to the problems outlined above. Then, section 
III will focus on the implementation of these frameworks (on a 
basic pattern of the IRA) with regards to possible modes of 
expert knowledge. Finally, conclusions will be proposed on the 
basis of these different simulations and some research 
directions will be presented (section IV).  

II. UNCERTAINTY MODELING FRAMEWORKS 

The processing of uncertainties is now a challenge for 
many companies in the field of risks analysis such as 
mentioned in [8] and [9]. It is due to the growth and 
development of production systems and the corresponding 
needs of methods for their analysis. 

The goal of this section is not to compare different 
frameworks of modeling uncertainty but to introduce the 
different frameworks that will be used in the application 
section of this paper. The comparisons between several 
theoretical frameworks for modeling uncertainty were already 
the subject of numerous exchanges and debates in general 
[10], [11] or more specifically for systems analyses [12]. 

A. A typology of uncertainties 

A clear distinction between two types of uncertainties 
exists: the random uncertainty due to natural variability of a 
physical phenomenon and the epistemic uncertainty due to the 
imprecise or incomplete character of the information or due to 
a lack of knowledge [13], [14]. Thus, epistemic uncertainty 
includes some concepts like imprecision, partial or total 
ignorance and incompleteness. 

Although the probability theory is generally used to deal 
with problems of uncertainty, new uncertainty modeling 
frameworks were introduced in the last decades [12] as the 
interval theory [15], the evidence theory [16], [17], etc. Their 
goal is to better handle the different types of uncertainty, 
naturally present when using expert judgments. It is the reason 
why these modeling frameworks can be used to manipulate the 
data from expert judgments. 

B. Probability theory 

Probability theory is the usual framework for representation 
of uncertainty. It is based on a well-defined axiomatic. On a 
space of q possible events Ω = {H1,..., Hq}, a probability value 
p is associated with all possible events Hi such as p : Ω → [0,1] 
(under the constraint of additivity ∑ p(Hi) = 1). Hypotheses Hi 
are mutually exclusive and exhaustive. An expert may give his 
opinion by choosing a hypothesis Hi (such as p(Hi) = 1) or 
translates his uncertainty by providing a probability less than 1 
on a hypothesis Hi. The additivity constraint imposes that the 
result of 1-p(Hi) is uniformly divided on the other Hj (j≠i). 
Thus, even if the expert did not express an opinion on Hj, a 
probability is affected. Incompleteness cannot be processed 
because the assumptions are exhaustive. Total ignorance, 
which is expressed by the principle of maximum entropy [18] 
or the principle of indifference (also called principle of 
insufficient reason) [19], is realized by affecting a uniform 
probability distribution on all possible Hi such as P(Hi) =  1/|Ω| 
∀ i = 1,…,n where |Ω| = q. Unfortunately, there is no 
difference of representation between objective equiprobability 
and total ignorance. 

C. Interval theory 

Proposed by Moore in 1966 [15], the interval theory deals 
only with the problem of imprecision. The value of a variable X 
can be poorly known and it is possible to determine with 
certainty that it is in a closed and bounded interval [X1;X2]. This 
interval can be seen as a set of possible values and used as a set 
or as a couple of bounds and handled with an appropriate 
arithmetic. This arithmetic corresponds to the extension of the 
conventional arithmetic operators to handle intervals. For 
example, let’s consider three intervals noted [a], [b] and [c] 
with bounds [a1,a2], [b1,b2] and [c1,c2]. It comes: 

[c] = [a] + [b] then c1 = a1+b1 and c2 = a2+b2  

[c] = [a] - [b]  then c1 = a1-b2 and c2 = a2-b1  

[c] = [a] * [ b] then c1 = min(a1 * b1;a1 * b2;a2 * b1;a2 * b2) 

                       c2 = max(a1 * b1;a1 * b2;a2 * b1;a2 * b2)  

Imprecision in the knowledge of the values of a real 
variable can be extended to the treatment of probabilities by 
taking into account the suitable axioms. 



D. Evidence theory 

The evidence theory, introduced by Dempster [16] and then 
developed by Shafer [17], has several meanings. In its initial 
model, the evidence theory offers two dual measures called 
belief (Bel) and plausibility (Pls). Bel characterizes the degree 
of credibility on a hypothesis Hi. Pls characterizes the quantity 
of belief that would not contradict the hypothesis Hi. From a 
space of q possible events (which are exhaustive and exclusive) 
Ω = {H1,...,Hq}, it exists a mass assignment function on the 
powerset 2Ω such as m : 2Ω → [0,1]. There are also functions to 
represent equivalently information by masses m, belief Bel or 
plausibility Pls distributions. The expert can thus express a 
partial ignorance by allocating a mass m different to 0 on a 
subset of Ω and total ignorance by allocating a mass m on Ω 
such as m(Ω) = 1 (least commitment principle). It is also 
possible to express the incompleteness by allocating a mass 
different different from 0 on the empty set Ø (m(Ø) ≠ 0.) If the 
mass allocation assignment is such that the sum of masses is 
equal to 1 and the masses are distributed only on Hi then the 
information is probabilistic. 

Each framework has pros and cons and induced different 
alternatives to model the information provided by the experts. 
The probability framework is well founded but constraint and 
may bias collected information by introducing more knowledge 
than expressed. Other frameworks are flexible but must be 
handled carefully to provide useable information. In the next 
section, we propose to connect different types of expert 
knowledge with these frameworks to represent the information 
provided. 

III.  APPLICATIONS AND DISCUSSIONS 

A. Model used for tests 

The risks model used to unify knowledge of the four areas 
in the IRA methodology is based on Bayesian networks (as 
explain in [3]). To illustrate this section with some simulations 
results, we are focusing to an elementary pattern of one of 
these Bayesian networks. In that way the pattern presented in 
Figure 2 describes a part of the relationship between human 
and technical components in the IRA methodology as they are 
defined in [20]. The relationship between items De 
(Delegation) and Ai (Aids) and the preparation phase (P) of an 
operating or maintenance action will serve as a study case for 
this paper. 

 

Figure 2.  Pattern of IRA model 

Items can be either {Present} (delegation or aids are well 
done) or {Damaged} (delegation or aids are not well done). 
Preparation phase will be either {Efficient} or { Inefficient}.  

Items have a direct influence on the state of the preparation 
phase P. Indeed, we understand easily that an improper 
delegation or a lack of aids will affect the efficiency of the 
preparation phase. These influences (identified as weak, as 
defined in [3]) are characterized by two factors, called 
influencing factors (here αDe -P and αAi-P). 

For the purpose of the study, we will focus only on the 
assessment of item De by expert judgment according to the 
different types of knowledge presented in section II.A. Let’s 
consider that we know perfectly the prior distribution of item 
Ai. It is thus modeled by a probability distribution. Finally, in 
order to compare different simulations presented in this section, 
we consider numerical conditions defined in Figure 2. The 
prior distribution on the modalities {Efficient} and {Inefficient} 
of preparation phase P corresponds to the fact that even though 
Delegation and Aids are {Present}, there is always a risk of 
inefficiency of the preparation phase of the studied action. 

A quantification method (presented in [3]) allows to take 
into account the influence of the items (here De and Ai) on the 
efficiency of the phase (here P). When one or more items are 
{ Damaged}, their total influence is given by the product of 
their influencing factors as illustrated in table I. 

TABLE I.  RELATIONS BETWEEN DE, AI AND P 

De Ai 
P 

{Efficient} {Inefficient} 

{ Present}  { Present}  0.99 0.01 

{ Present} { Damaged} 0.99 * αAi-P 1-0.99 * αAi-P 

{ Damaged}  { Present}  0.99 * αDe-P 1-0.99 * αDe-P 

{ Damaged} { Damaged} 0.99 * αDe-P * αAi-P 1-0.99 * αDe-P * αAi-P 

B. Simulations 

During the elicitation step, the experts must express their 
knowledge according to a proposed frame of discernment of 
the studied variable. However, this frame of discernment refers 
to an underlying theoretical framework that offers more or less 
flexibility to take into account different forms of knowledge 
expression (which may be imperfect or not) and the associated 
level of uncertainty. 

For each framework, we study four types of knowledge 
expression: 

• Hard evidence: the expert is able to choose with 
certainty one modality of the item De. 

• Soft evidence: the expert encodes his knowledge by 
attributing a prior distribution on the item De. 

• Imprecision: the expert partially ignores the 
distribution on the modalities of De. 

• Total ignorance: the expert totally ignores the 
repartition on the two modalities of De. 

Expert 
judgment           De Ai 

P 

αDe-P = 0.5 αAi -P = 0.5 



1) Probabilistic framework: Let’s consider the 
probabilistic framework for a first analysis. The space of 
possible modalities for item De is defined such as Ω = 
{ Present, Damaged}. Now let’s consider that the expert is just 
allowed to choose only a single modality among all possible 
modalities: 

• If the expert is able to choose one modality without 
difficulty then the information and the level of 
certainty of the expert are correctly encoded in the 
elicitation frame of discernment.  

• If the expert is not sure, he is constrained to choose 
among the modalities the one which corresponds well 
to his opinion or the less risky for him. The frame of 
discernment forces a false certainty and transforms the 
expert judgment. An unknown bias is introduced. 

If we consider a hard evidence on modality {Present} for 
item De and code the information in a Bbayesian network 
according to Figure 2, the resulting probability distribution on 
the efficiency of the phase P is P(P = { Efficient}) = 0.965 and 
P(P = {Inefficient}) = 0.035. 

Now let’s introduce an evidence on the ineffeciency of the 
preparation phase such as P(P = {Inefficient}) = 1 and analyze 
possible items distributions of De and Ai (diagnostic phase). 
Item Ai takes P(Ai = { Present}|P = { Inefficient})  = 0.273. 
Posterior distribution of De is the same as its prior distribution 
1/0 (the expert is sure; the Bayesian network cannot revise the 
prior distribution). 

Consider now that the proposed frame of discernment 
allows the elicitation of a probability distribution. The expert 
can encode a soft evidence in betting 1 on relevant modality 
(hard evidence). If he is not quite sure, he will bet less than 1 
on modality which seemed most likely. The other modality will 
receive the complement (characterizing its uncertainty). Thus, 
by encoding a distribution 0.7/0.3 on the item De, we find that 
P(P = {Efficient}) = 0.820 and  P(P  = {Inefficient}) = 0.180. 

By providing a hard evidence on the preparation phase such 
as P(P = {Inefficient}) = 1, we find the following results on 
items De and Ai: 

P(De = { Present}|P = { Inefficient})  = 0.135 

P(Ai = { Present}|P = { Inefficient})  = 0.839 

Now consider a problem of precision of the expert in 
assessing P(De = { Damaged}) such as P(De = { Damaged}) ∈ 
[0.7, 0.8]. Indeed, if the expert partially ignores the value of the 
distribution, he wants to choose an interval but he is constraint 
to choose a single value. Consider that he chooses the 
following distribution: 0.75/0.25. By encoding a 0.75/0.25 
distribution, the posterior distribution for preparation phase P is 
P(P ={Efficient}) = 0.845 and P(P = { Inefficient}) = 0.155.  

Let’s introduce an evidence such as P(P = {Inefficient}) = 1 
to analyze the distributions of items De and Ai. The Bayesian 
network provides the following results:    

P(De = { Present}|P = { Inefficient})   = 0.168 

P(Ai = { Present}|P = { Inefficient})  = 0.818      

If the expert totally ignores what to bet, the indifference 
principle [18] involves a bet balanced between the two 
modalities {Present} and {Damaged} of De. This 
characterization of total ignorance may be confused with 
objective equiprobability. As previously, encoding can be done 
in a Bayesian network. By encoding a 0.5/0.5 distribution for 
item De, the resulting distribution on the preparation phase P is 
P(P = {Efficient}) = 0.724 and P(P = {Inefficient}) = 0.276. 

2) Intervals theory: Let’s now consider the interval theory. 
The space of possible modalities for the item De is the same as 
for the probabilistic framework: Ω={Present, Damaged}.  

If the expert is confident about the occurrence of a 
modality, he provides a hard evidence [1;1]/[0;0] on the 
modalities {Present} and {Damaged}. We are in the previous 
probabilistic case. It is also true if the expert chooses 
[0.7;0.7]/[0.3;0.3] for the soft evidence case. The results are the 
same as those presented in the previous sub-section for the 
probabilistic case. 

Now, let’s consider a problem of precision of the expert in 
assessing the soft evidence for item De, e.g. the following 
intervals on the modalities {Present} and {Damaged}: 
[0.7;0.8]/[0.2;0.3]. The resulting distribution on the efficiency 
of the preparation phase is P(P = {Efficient}) ∈ [0.820;0.869] 
and P(P = {Inefficient}) ∈ [0.131;0.180]. 

 By providing a hard evidence P(P = {Inefficient}) = 1, we 
obtain the following imprecise distributions on De and Ai: 

        P(De = { Present}|P = { Inefficient}) ∈ [0.135;0.212] 

 P(Ai = { Present}|P = { Inefficient})  ∈ [0.788;0.839]  

The case of total ignorance is associated with an 
assignment of the intervals [0;1] / [0;1] on the two modalities 
{ Present} and {Damaged} of item De. Thus, we find the 
following intervals for the preparation phase P: 

P(P = {Efficient}) ∈ [0.483;0.965]  

P(P = { Inefficient}) ∈ [0.035;0.517] 

Let’s introduce an hard evidence on P. We find the same 
prior and posterior distribution on item De ([0;1] / [0;1]) and 
the simulation provides the following imprecise result for item 
Ai: P(Ai = { Present}|P = { Inefficient})  ∈ [0.273;0.927].  

3) Evidence theory: Now let’s study the evidence theory 
framework to deal with the different knowledge that can be 
expressed by an expert. The expert can now express his 
opinion with reference to the following powerset Ω defined by 
Ω = {Present, Damaged, {Present, Damaged}}.  

• If the expert is confident about the occurrence of a 
modality, he introduces a hard evidence with a mass 
of 1 on {Present} or { Damaged}. It is addressing a 
probabilistic case where distribution presented in 
III.B.1. are found. 

• If the expert chooses the soft evidence 0.7/0.3 without 
epistemic uncertainty (m({ Present, Damaged}) = 0), 
the situation is Bayesian and the probabilistic results 
of III.B.1. are found. 



• Next, if the expert partially ignores the value of the 
distribution, it chooses, for example, this distribution: 
m({ Present}) = 0.7, m({ Damaged}) = 0.2 and 
m({ Present, Damaged}) = 0.1. Then it comes: 

Bel({ Efficient}) = 0.820 Pls({ Efficient}) = 0.869 

Bel({ Inefficient}) = 0.131 Pls({ Inefficient}) = 0.180 

• If the expert totally ignores the prior distribution on 
De, the least commitment principle implies to select 
m({ Present, Damaged}) = 1. Then it comes: 

Bel({ Efficient}) = 0.483  Pls({ Efficient}) = 0.965 

Bel({ Inefficient}) = 0.035 Pls({ Inefficient}) = 0.527 

4) Results analysis: Two observations can be underlined 
from the simulations presented in this section: (a) on the 
ability of each modeling frameworks proposed in section II.B. 
to represent different types of expert knowledge and, (b) on 
the influence of the type of collection of the expert judgment 
on the final results and their accuracy. 

With adaptation of their basic concepts to different types of 
knowledge, probability theory, interval theory and evidence 
theory allow to encode different types of knowledge (Table II). 
However, they are not always the most adapted to the 
expression of particular knowledge as the imprecision or partial 
ignorance. Indeed, they provide different results for these types 
of knowledge. This difference corresponds to the bias induced 
by the needed adaptation of these frameworks to represent the 
different types of knowledge. 

Table III and IV summaries the results obtained for each 
simulation and diagnosis according to the mode of expression 
of the expert and the modeling framework. 

TABLE II.  CODING OF  DE ACCORDING TO THE MODE OF EXPRESSION ON 
THE EXPERT AND THE MODELING FRAMEWORK 

Knowledge
expression De 

Modeling framework 

Probability 
theory 

Interval 
theory 

Evidence 
theory 

Hard 
evidence 

{ Present} 1 [1;1] 1 

{ Damaged} 0 [0;0] 0 

{ Present, Damaged} - - 0 

Soft 
evidence 

{ Present} 0.7 [0.7;0.7] 0.7 

{ Damaged} 0.3 [0.3;0.3] 0.3 

{ Present, Damaged} - - 0 

Imprecision 
or partial 
ignorance 

{ Present} 0.75 [0.7;0.8] 0.7 

{ Damaged} 0.25 [0.2;0.3] 0.2 

{ Present, Damaged} - - 0.1 

Total 
ignorance 

{ Present} 0.5 [0;1] 0 

{ Damaged} 0.5 [0;1] 0 

{ Present, Damaged} - - 1 

The form of expert judgment collection has an influence on 
the results of the simulations.  

Indeed, reconsider simulations of section III in the case 
where the expert knows that "the occurrence of modality 
{ Present} of the item De is between 0.7 and 0.8". The way 
used for collecting this knowledge will influence the results of 
simulations and diagnosis. Indeed: 

• If it is asked to the expert to select only one modality 
(hard evidence), he will express his knowledge by 
setting, for example, occurrence of {Present} of De as 
being equal to 1 because it is the most likely of the two 
modalities. 

TABLE III.  POSTERIOR DISTRIBUTION ON P ACCORDING TO THE MODE OF EXPRESSION OF THE EXPERT AND THE MODELING FRAMEWORK 

Modeling framework P 
Knowledge expression 

Hard evidence Soft evidence Imprecision Total ignorance 

Probability theory 
{ Efficient} 0.965 0.820 0.845 0.724 

{ Inefficient} 0.035 0.180 0.155 0.276 

Intervals theory 
{ Efficient} 0.965 0.820 [0.820;0.869] [0.483;0.965] 

{ Inefficient} 0.035 0.180 [0.131;0.180] [0.035;0.517] 

Evidence theory 

Bel({ Efficient}) 0.965 0.820 0.820 0.483 

Pls({ Efficient}) 0.965 0.820 0.869 0.965 

Bel({ Inefficient}) 0.035 0.180 0.131 0.035 

Pls({ Inefficient}) 0.035 0.180 0.180 0.517 

TABLE IV.  DIAGNOSIS ON DE AND AI ACCORDING TO THE MODE OF EXPRESSION OF THE EXPERT AND THE MODELING FRAMEWORK 

Modeling 
framework Modalities 

De|P = {Inefficient} Ai|P = {Inefficient} 

Hard evidence Soft evidence Imprecision Total ignorance Hard evidence Soft evidence Imprecision Total ignorance 

Probability 
theory 

{ Present} 1 0.135 0.168 0.063 0.273 0.839 0.818 0.886 

{ Damaged} 0 0.865 0.362 0.937 0.727 0.161 0.182 0.114 

Intervals 
theory 

{ Present} 1 0.135 [0.135;0.212] [0;1] 0.273 0.839 [0.788;0.865] [0.273;0.927] 

{ Damaged} 0 0.865 [0.788;0.865] [0;1] 0.727 0.161 [0.161;0.212] [0.073;0.727] 

Evidence 
theory 

Bel({ Present }) 1 0.135 0.135 0 0.273 0.839 0.788 0.273 

Pls({ Present }) 1 0.135 0.212 1 0.273 0.839 0.839 0.927 

Bel({ Damaged }) 0 0.865 0.788 0 0.727 0.161 0.161 0.073 

Pls({ Damaged }) 0 0.865 0.865 1 0.727 0.161 0.212 0.727 



• If he has the opportunity to express his knowledge on 
the two modalities but without accepting imprecision 
(soft evidence), he will allocate 0.7 and 0.3 values 
respectively to the occurrence of the modalities 
{ Present} and {Damaged} of De because he is 
confident to have at worst 0.7 for modality {Present}. 

• If he is able to express the imperfection of his 
knowledge (partial ignorance) about the exact value of 
the {Present} modality of De, he will indicate that the 
value is located between 0.7 and 0.8. 

Although these three types of collection of expert 
knowledge are related to the same assessment, we observed 
significant differences in results as shown in section III.B. and 
Table III (both in simulation and diagnosis). It depending on 
the type of collection of expert knowledge and on the 
framework used to modeling the expert knowledge. Thus, by 
imposing a form of collection of expert judgments (as is done 
now), it certainly retrieves the expert knowledge but there is a 
risk of losing a part of the imperfect expert knowledge by 
forcing him too strictly. Moreover, working on unique values 
(e.g. in the case of total ignorance) when there are intervals 
may present a possibility of error or bias in the final results. 
The intervals and bounds obtained by using other frameworks 
provide information about the potential error or bias. 

IV.  CONCLUSION 

This paper highlighted different forms of expert’s 
knowledge but also their expression, the associated data and 
modeling frameworks to represent them. Expert’s knowledge 
may be expressed in various ways according to the type of 
knowledge on the element to assess as well as the frame of 
discernment used for the collection of the knowledge. In [3], 
the authors have considered that the expert is guided with only 
one possible choice among pre-defined values in elicitation 
grids. In some cases, this type of collection of expert judgment 
is not the most suitable to ensure a consistent representation of 
knowledge owned by the expert. Indeed, by imposing a 
particular expression form of expert judgment, the risk is to 
force the expression of his knowledge and bias the results. It is 
then most useable not to force the expression of the expert 
knowledge but to be able to handle various imperfections of his 
knowledge. Indeed, if the probability theory is the reference 
framework for modeling knowledge and random uncertainty, if 
there is a part of epistemic uncertainty (imprecision, partial or 
total ignorance, etc.), it will be better to choose other 
frameworks to model the knowledge. Frameworks like 
intervals theory or evidence theory allow a best representation 
of the expert knowledge thanks to more appropriate semantics. 
It will help the knowledge modeling without bias on expert 
knowledge. It will also contribute to limiting the uncertain 
nature of the information collected. Moreover, that will ensure 
more consistent results. In addition, being able to represent 
different types of knowledge thanks to different uncertainty 
modeling frameworks will make IRA methodology more 
generic and adaptable to different studies and expressions of 
possible expert judgments. Therefore, it will reduce the number 
of additional errors in IRA model. Indeed, expert knowledge 
expression can take different from an assessment to another 
and from an expert to another. Future works will be focused at 

implementing tools helping the expression of expert’s 
judgment. They will help to collect at best the knowledge of 
the experts. It may include guides, questionnaire or charts (for 
example, to quantify the influencing factors between 
organizational and human areas). In order to validate 
industrially works presented in this paper, it will be required to 
implement them on a full study on a real industrial application.  
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