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Abstract — Assessment of different types of risks is todayne of
the challenges for an Integrated Risks Analysis (IR)
methodology. Indeed, whereas technical or environméal risks
assessments can generally be done by means of statal way,
human and organizational considerations are more ten into
account with the use of expert judgments. These csiderations
lead, from a scientific point of view, to addressssues such as how
the information provided by the experts can be coficted and then
modeled. Thus, this paper aims at reviewing differen ways
needed to express expert knowledge but also differe
frameworks for representing the information colleced. These
two items have to support the full development of He IRA
methodology.
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. INTRODUCTION

A. General context

Currently, industrial systems risks analysis areob@ng
increasingly complex (in the sense of Lemoigne i to
their increasing number of components and the&rautions
but also the recognition of the employees and tigargzation
acting on these systems. For instance, mainter@reggerating
actions are carried out on a technical system lpgrators” in
organizational, regulatory and environmental cotsteXo face
with this complexity, EDF in partnership with CRABInd
INERIS (French laboratory and companies) have dpes
jointly an Integrated Risks Analysis (IRA). IRAvgll adapted
for the risks analysis of so-callecomplex sociotechnical
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formalism based on Paté-Cornell and Murgiramework [2],
presented in [3] and Figure 1. It must guaranteeagsessment
of various issues such as safety and availabifitthe system
as well as maintaining this one during its lifetimidne main
challenges of this methodology are to develop nu=thand
tools for the risks analysis of systems subjecteddrrelated
risks (technical, environmental, etc.) and havirgyrelated
influences on the issues defined previously. Theinma
objectives of this methodology are: (1) prioritigimifferent
types of risks, (2) helping the choice of prevemtior
mitigation barriers to reduce these risks and @itributing to
their better control. A part of the knowledge neaesg for this
risks analysis is extracted from expert’s judgments
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Figure 1. Conceptual framework of IRA methodology
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C. Highlighting issues of the problem of uncertainty
The use of expert's judgment in risks analysisrisopen

systems (e.g. energy production systems) which includes thescientific issue in many areas such as in nucldamical or

study of the technical, human, organizational
environmental components in a same approach. |RAs ait
taking into account, on the one hand, all the ressociated to
each area and, on the other hand, all of theirant®ns.

B. Principle of Integrated Risks Analysis (IRA)

IRA methodology aims at taking into account coilesty
the complexity and interdisciplinarity of industriaystems
subjected to maintenance or operating actions. lhiased on a
representation of the four areas (technical,
organizational, environmental) and their interatsidghrough a

andaerospace [4]. It is used for supporting assessmnemén data

are insufficient or inappropriate. As noted by fbley are now
considered as another type of scientific data amchemous

tools and methods have been developed to processiththe

last decades [5], [6].

Risks assessment phase is a critical phase in Ride |
approach to ensure consistent results and to alkawof these
results by an analyst. It is therefore necessagnsure the best
possible assessment of the various elements oiRAeto

humargorrectly handle the uncertainties; naturally pnéseith this
type of methodology. Previous works on charactéamaand



propagation of uncertainty in the IRA has been gméxd in
[7]. In the IRA context, if the assessment of tecah or
environmental risks can generally be achieved gindhe use  gyists: therandom uncertainty due to natural variability of a
of statistical distributions (based on data of eWme nhysical phenomenon and thgistemic uncertainty due to the
feedback,e.g. the modeling of flows and temperatures in theimprecise or incomplete character of the inforntato due to
environmental area), assessment of risks of hum@a a 5 jack of knowledge [13], [14]. Thus, epistemic erainty

(degradation or non degradation of human indicator§yciudes some concepts like imprecision, partial total

A. Atypology of uncertainties
A clear distinction between two types of unceriemt

characterizing the human level in IRA) and orgatiizel area
(presence/absence of pathogenic organizational orfact
characterizing the organizational level in IRA) ahieved, in
most of cases, through the use of expert judgmértisse

ignorance and incompleteness.

Although the probability theory is generally useddeal
with problems of uncertainty, new uncertainty maugl

expert judgments can also be used to assess ristts aframeworks were introduced in the last decades f2the
phenomenon for which there is a weak or no expegien interval theory [15], the evidence theory [16], [1&€tc. Their

feedback €.g. emerging phenomenon).

In the IRA methodology, the collect of expert judgms is
currently formalized via elicitation grids [3] wiicconstrain
the expert to choose only a single value from adefened list
of possible values. In that way a first objectifahis paper is
addressing the estimation of risks by expert judgnes two
items: (a) how to collect and model the expert'ewdedge in a
less biased way and (b) how to implement toolsoltect and
handle expert judgments.

goal is to better handle the different types of artainty,

naturally present when using expert judgments thé reason
why these modeling frameworks can be used to maigpthe

data from expert judgments.

B. Probability theory

Probability theory is the usual framework for regmetation
of uncertainty. It is based on a well-defined axaimm On a
space ofj possible event® = {H,,..., Hg}, a probability value
p is associated with all possible eveHtsuch ap : Q — [0,1]

However, different methods for collecting expert (Under the constraint of additivify p(H;) = 1). Hypothesest,

judgments (elicitation supports, constraints, etmyolve
information of different natures (unique valuegeimals, etc.)
leading to use different theoretical modeling fraragks. Thus
the second objective of the paper is to highlighterent
possible types of expression of expert knowledgktha ways
of processing the data accordingly.

Different types of expression of expert knowledge a
presented in relation to different frameworks needer
modeling the uncertainty on the data expressed. gda is
then to be able to identify a suitable frameworkreépresent
each form of knowledge to contribute to increagedbcuracy
and the correctness of calculations, results aund the future
decisions. For supporting all the objectives presip defined,
the paper is structured as followSection Il will focus on
illustrating different frameworks for modeling umznty that
can correspond to the problems outlined above. ,Teection
[l will focus on the implementation of these framaks (on a
basic pattern of the IRA) with regards to possilmiedes of
expert knowledge. Finally, conclusions will be ppspd on the
basis of these different simulations and some rekea
directions will be presented (section V).

. UNCERTAINTY MODELING FRAMEWORKS

The processing of uncertainties is now a challefage
many companies in the field of risks analysis suh
mentioned in [8] and [9]. It is due to the growtimda
development of production systems and the correfipgn
needs of methods for their analysis.

The goal of this section is not to compare differen

frameworks of modeling uncertainty but to introdutfee
different frameworks that will be used in the apation

section of this paper. The comparisons between rakve

are mutually exclusive and exhaustive. An expery gige his
opinion by choosing a hypothedi§ (such asp(H)) = 1) or
translates his uncertainty by providing a probabikss than 1
on a hypothesisi,. The additivity constraint imposes that the
result of 1p(H;) is uniformly divided on the othel; (j#i).
Thus, even if the expert did not express an opimiorH;, a
probability is affected. Incompleteness cannot becgssed
because the assumptions are exhaustive. Total agoer
which is expressed by the principle of maximum epyr[18]
or the principle of indifference (also callegrinciple of
insufficient reason) [19], is realized by affecting a uniform
probability distribution on all possibld; such af(H;) = 1/Q]|
i = 1,...n where @ = g. Unfortunately, there is no
difference of representation between objective mgbiability
and total ignorance.

C. Interval theory

Proposed by Moore in 1966 [15], the interval thedegals
only with the problem of imprecision. The valuesofariableX
can be poorly known and it is possible to determivith
certainty that it is in a closed and bounded irgkX;;X;]. This
interval can be seen as a set of possible valuksisad as a set
or as a couple of bounds and handled with an apiptep
arithmetic. This arithmetic corresponds to the esi@n of the
conventional arithmetic operators to handle intistvd=or
example, let's consider three intervals notefj [b] and []
with bounds §y,a;], [b1,b,] and [c;,¢;]. It comes:

[c] = [a] + [b] thenc, = a;+b; andc, = ay+b,
[c] =[a] - [b] thenc,=a;-b, andc,= a,-b;
[c] =[a] * [b] thenc;= min(a;* by;a;* bya,* byjax* by)

Co= max(ay * byay* byay* bya* by)

theoretical frameworks for modeling uncertainty evaiready Imprecision in the knowledge of the values of al rea

the subject of numerous exchanges and debatesnierale variable can be extended to the treatment of pititied by
[10], [11] or more specifically for systems analy$&2]. taking into account the suitable axioms.



D. Evidencetheory

The evidence theory, introduced by Dempster [16] then
developed by Shafer [17], has several meanings Imitial
model, the evidence theory offers two dual measugeded

Items can be eitherPfesent} (delegation or aids are well
done) or Pamaged} (delegation or aids are not well done).
Preparation phase will be eithefficient} or { Inefficient}.

Items have a direct influence on the state of tleparation

belief Bel) and plausibility PIs). Bel characterizes the degree phase P. Indeed, we understand easily that an improper

of credibility on a hypothesid;. Pls characterizes the quantity
of belief that would not contradict the hypothelis From a

delegation or a lack of aids will affect the effincy of the
preparation phase. These influences (identifiedweak, as

space ofj possible events (which are exhaustive and ex@Wsiv defined in [3]) are characterized by two factorslled
Q = {Hy,..,Hg}, it exists a mass assignment function on theinfluencing factors (hereape.p andax;.p).

powerset 2 such asn: 2° — [0,1]. There are also functions to
represent equivalently information by masggeshelief Bel or

For the purpose of the study, we will focus only the

plausibility Pls distributions. The expert can thus express @ssessment of itefBe by expert judgment according to the

partial ignorance by allocating a massdifferent to 0 on a
subset ofQ and total ignorance by allocating a mas®n Q
such asm(Q) = 1 (least commitment principle). It is also
possible to express the incompleteness by allagairmass
different different from O on the empty set(@(d) # 0.) If the
mass allocation assignment is such that the sumasies is
equal to 1 and the masses are distributed onlifathen the
information is probabilistic.

Each framework has pros and cons and induced eiiffer
alternatives to model the information provided bg experts.
The probability framework is well founded but coastt and
may bias collected information by introducing mémrewledge
than expressed. Other frameworks are flexible bustnibe
handled carefully to provide useable informatiam.thhe next
section, we propose to connect different types xped
knowledge with these frameworks to represent tfarnmation
provided.

Ill.  APPLICATIONS ANDDISCUSSIONS

A. Mode used for tests

The risks model used to unify knowledge of the fargas
in the IRA methodology is based on Bayesian neta/qds
explain in [3]). To illustrate this section withree simulations
results, we are focusing to an elementary pattérone of
these Bayesian networks. In that way the patteesgmted in
Figure 2 describes a part of the relationship betweuman
and technical components in the IRA methodologthay are
defined in [20]. The relationship between iteni3e
(Delegation) and\i (Aids) and the preparation pha$® 6f an
operating or maintenance action will serve as dystase for
this paper.

Expert
judgment

Ai
Damaged
0.05

Present

0.93

Efficient
099

Tnefficient

0.01

Figure 2. Pattern of IRA model

different types of knowledge presented in sectioA. ILet's
consider that we know perfectly the prior distribatof item

Ai. It is thus modeled by a probability distributidfinally, in
order to compare different simulations presentatiisisection,
we consider numerical conditions defined in Fig@reThe
prior distribution on the modalitieEfficient} and {Inefficient}

of preparation phade corresponds to the fact that even though
Delegation and Aids arePfesent}, there is always a risk of
inefficiency of the preparation phase of the stddietion.

A quantification method (presented in [3]) alloves thke
into account the influence of the items (hBxeeandAi) on the
efficiency of the phase (hef®. When one or more items are
{Damaged}, their total influence is given by the product of
their influencing factors as illustrated in table |

TABLE . RELATIONS BETWEENDE, Al AND P
) P
De Ai — -
{Efficient} {Inefficient}
{Present} {Present} 0.99 0.01
{Present} | { Damaged} 0.99 * aaip 1-0.99 *opip
{ Damaged} {Present} 0.99 *opep 1-0.99 *apep
{Da!mged} { Da!mged} 0.99 * opep* Opip 1-0.99 *opep * Oap

B. Smulations

During the elicitation step, the experts must egpriheir
knowledge according to a proposed frame of discentnof
the studied variable. However, this frame of diso@nt refers
to an underlying theoretical framework that offersre or less
flexibility to take into account different forms ddhowledge
expression (which may be imperfect or not) andatssociated
level of uncertainty.

For each framework, we study four types of knowkedg
expression:

e Hard evidence: the expert is able to choose with
certainty one modality of the iteBe.

e Soft evidence: the expert encodes his knowledge by
attributing a prior distribution on the itebe.

e Imprecision: the expert partially the

distribution on the modalities @fe.

ignores

e Total ignorance: the expert totally ignores the
repartition on the two modalities Ble.



1) Probabilistic framework: Let's consider the
probabilistic framework for a first analysis. Thease of
possible modalities for itenDe is defined such af2 =

{ Present, Damaged}. Now let’s consider that the expert is jus

allowed to choose only a single modality amongpaksible
modalities:

If the expert totally ignores what to bet, the ffetience
principle [18] involves a bet balanced between ti®
modalities fresent} and {Damaged} of De. This

¢ Characterization of total ignorance may be confuséth

objective equiprobability. As previously, encodicen be done
in a Bayesian network. By encoding a 0.5/0.5 distion for
item De, the resulting distribution on the preparationggtais

« If the expert is able to choose one modality withou P(P = {Efficient}) = 0.724 andP(P = {Inefficient}) = 0.276.

difficulty then the information and the level of
certainty of the expert are correctly encoded & th

elicitation frame of discernment.

» If the expert is not sure, he is constrained toosko
among the modalities the one which corresponds well

to his opinion or the less risky for him. The fraofe

discernment forces a false certainty and transfehes

expert judgment. An unknown bias is introduced.

If we consider a hard evidence on modaliBrdsent} for

2) Intervalstheory: Let's now consider the interval theory.
The space of possible modalities for the itemis the same as
for the probabilistic frameworl@={ Present, Damaged}.

If the expert is confident about the occurrence aof
modality, he provides a hard evidence [1;1]/[0;4} the
modalities fresent} and {Damaged}. We are in the previous
probabilistic case. It is also true if the expetioases
[0.7;0.7]/[0.3;0.3] for the soft evidence case. Tésults are the
same as those presented in the previous sub-séoctiothe

item De and code the information in a Bbayesian networkprobabilistic case.

according to Figure 2, the resulting probabilitgtdbution on
the efficiency of the phadeis P(P = {Efficient}) = 0.965 and
P(P = {Inefficient}) = 0.035.

Now let's introduce an evidence on the ineffecientyhe
preparation phase such R@ = {Inefficient}) = 1 and analyze

possible items distributions de and Ai (diagnostic phase).

Item Ai takesP(Ai = {Present}|P = {Inefficient}) = 0.273

Posterior distribution obe is the same as its prior distribution

1/0 (the expert is sure; the Bayesian network carewise the
prior distribution).

Consider now that the proposed frame of discernment

allows the elicitation of a probability distributio The expert
can encode a soft evidence in betting 1 on releradality

Now, let's consider a problem of precision of thegert in
assessing the soft evidence for itée, eg. the following
intervals on the modalities Pfesent} and {Damaged}:
[0.7;0.8]/[0.2;0.3]. The resulting distribution dhe efficiency
of the preparation phase P = {Efficient}) [ [0.820;0.869]
andP(P = {Inefficient}) [0 [0.131;0.180].

By providing a hard evidend®(P = {Inefficient}) = 1, we
obtain the following imprecise distributions Bre andAi:

P(De = {Present}|P = {Inefficient}) [0 [0.135;0.212]

P(Ai = {Present}|P = {Inefficient}) [01[0.788;0.839]

The case of total

ignorance is associated with an

(hard evidence). If he is not quite sure, he wilt less than 1 assignment of the intervals [0;1] / [0;1] on theotmodalities

on modality which seemed most likely. The other alivg will
receive the complement (characterizing its unaetai Thus,
by encoding a distribution 0.7/0.3 on the it®a we find that
P(P = {Efficient}) = 0.820 andP(P = {Inefficient}) = 0.180.

By providing a hard evidence on the preparatiorsplsich

as P(P = {Inefficient}) = 1, we find the following results on

itemsDe andAi:
P(De = {Present}|P = {Inefficient}) = 0.135
P(Ai = {Present}|P = {Inefficient}) = 0.839

{Present} and {Damaged} of item De. Thus, we find the
following intervals for the preparation phade

P(P = {Efficient}) O [0.483;0.965]
P(P = {Inefficient}) O [0.035;0.517]

Let's introduce an hard evidence BnWe find the same
prior and posterior distribution on iteBe ([0;1] / [0;1]) and
the simulation provides the following impreciseulegor item
Ai: P(Ai = {Present}|P = {Inefficient}) 0 [0.273;0.927].

3) Evidence theory: Now let's study the evidence theory

Now consider a problem of precision of the expert i famework to deal with the different knowledge thain be

assessin@(De = { Damaged}) such asP(De = { Damaged}) O
[0.7, 0.8]. Indeed, if the expert partially ignotbe value of the
distribution, he wants to choose an interval buisheonstraint
to choose a single value. Consider that he chodises
following distribution: 0.75/0.25. By encoding a7b6/0.25
distribution, the posterior distribution for prepion phas® is
P(P ={Efficient}) = 0.845 andP(P = {Inefficient}) = 0.155.

Let’s introduce an evidence suchR{® = {Inefficient}) = 1
to analyze the distributions of items De and AieTBayesian
network provides the following results:

P(De = {Present}|P = {Inefficient}) = 0.168
P(Ai = {Present}|P = {Inefficient}) = 0.818

expressed by an expert. The expert can now exgesss
opinion with reference to the following powersedefined by
Q = {Present, Damaged, {Present, Damaged}}.

» If the expert is confident about the occurrenceaof
modality, he introduces a hard evidence with a mass
of 1 on {Present} or { Damaged}. It is addressing a
probabilistic case where distribution presented in
[11.B.1. are found.

» If the expert chooses the soft evidence 0.7/0.Bowit
epistemic uncertaintyn{({ Present, Damaged}) = 0),
the situation is Bayesian and the probabilistialtes
of lll.B.1. are found.



CODING OF DE ACCORDING TO THE MODE OF EXPRESSION ON

+ Next, if the expert partially ignores the valuetbé ~ TABLEIL
THE EXPERT AND THE MODELING FRAMEWORK

distribution, it chooses, for example, this diaitibn:

m({Present}) = 0.7, m({ Damaged_}) = 0.2 and Modeling framework
m({ Present, Damaged}) = 0.1. Then it comes: l;zg\r/gsgigﬁ De Probability | Interval | Evidence
Bel({ Efficient}) = 0.820 PIs({ Efficient}) = 0.869 theory theory theory
Bel({ Inefficient}) = 0.131 PIs({Inefficient}) = 0.180 Hard {Present} ! [1:1] L
If the expert totally ignores the prior distributi@n evidence {Dameged ° 09 0
De, the least commitment principle implies to sele¢ {Present, Damagedy _ § 0
m({ Present, Damaged}) = 1. Then it comes: Soft {Present} 0.7 [0.7.0.7] 07
Bel({ Efficient}) = 0.483 Pls({ Efficient}) = 0.965 evidence | {Dameoed 08 |30 93
! I _ o ! I _ o { Present, Damaged} - - 0
Bel({ Inefficient}) = 0.035 PIs({Inefficient}) = 0.527 imprecision { Present} 0.75 [0.7,0.8] 0.7
4) Results analysis: Two observations can be underlineg ©r partial {Damaged} 0.25 [0.2,0.3] 0.2
from the simulations presented in this section: ¢a) the 19norance 1 { present, Damaged} - - 0.1
ability of each modeling frameworks proposed irtisecl|.B. {Present} 0.5 [0:1]
to represent different types of expert knowledgd, §b) on i ggrt:r'me { Damaged} 0.5 [0:1]
the influence of the type of collection of the estgadgment 9 {Present, Damaged} . . 1

on the final results and their accuracy. ] ] ]
The form of expert judgment collection has an ieflce on

With adaptation of their basic concepts to différgpes of  the results of the simulations.
knowledge, probability theory, interval theory aadidence ] ) ) ) )
theory allow to encode different types of knowle@§eble I1). Indeed, reconsider simulations of section Il ire tbase
However, they are not always the most adapted @ thwhere the expert knows that "the occurrence of fityda
expression of particular knowledge as the imprenisir partial ~ {Present} of the item De is between 0.7 and 0.8". The way
ignorance_ Indeed, they provide different resutstiiese types U_SGd fOf Collectlng this k_nOWIedge will influendeetresults of
of knowledge. This difference corresponds to thestihduced —Simulations and diagnosis. Indeed:

g%fg;:nﬁ;geesdoa;dkirg@tlsgg(e)f these frameworks tesept the « If it is asked to the expert to select only one aiityl
' (hard evidence), he will express his knowledge by
Table Il and IV summaries the results obtained dach setting, for example, occurrence d¥rgsent} of De as
simulation and diagnosis according to the modexpfession being equal to 1 because it is the most likelyhef tvo
of the expert and the modeling framework. modalities.
TABLE lll. POSTERIOR DISTRIBUTION ONP ACCORDING TO THE MODE OF EXPRESSION OF THE EXPERT ANBIH MODELING FRAMEWORK
Modeling framework P - Knpwledge expres.3|.on -
Hard evidence | Soft evidence | Imprecision Total ignorance
. { Efficient} 0.965 0.820 0.845 0.724
Probability theory —
{Inefficient} 0.035 0.180 0.155 0.276
{ Efficient} 0.965 0.820 [0.820;0.869]  [0.483;0.965
Intervals theory —
{Inefficient} 0.035 0.180 [0.131;0.180]  [0.035;0.517
Bel ({ Efficient}) 0.965 0.820 0.820 0.483
) PIs({ Efficient}) 0.965 0.820 0.869 0.965
Evidence theory —
Bel ({ Inefficient}) 0.035 0.180 0.131 0.035
PIs({ Inefficient}) 0.035 0.180 0.180 0.517
TABLE IV. DIAGNOSIS ONDE AND Al ACCORDING TO THE MODE OF EXPRESSION OF THE EXPERT AND EMODELING FRAMEWORK
Modeling Modalities De|P = {Inefficient} Ai|P = {Inefficient}
framework Hard evidence | Soft evidence | Imprecision | Total ignorance | Hard evidence | Soft evidence | Imprecision Total ignorance
Probability { Present} 1 0.135 0.168 0.063 0.273 0.839 0.818 0.886
theory { Damaged} 0 0.865 0.362 0.937 0.727 0.161 0.182 0.114
Intervals { Present} 1 0.135 [0.135;0.212] [0;1] 0.273 0.839 [0.78886] | [0.273;0.927]
theory { Damaged} 0 0.865 [0.788;0.865] [0;1] 0.727 0.161 [0.16212] | [0.073;0.727]
Bel({ Present }) 1 0.135 0.135 0 0.273 0.839 0.788 0.273
Evidence | Pls({Present}) 1 0.135 0.212 1 0.273 0.839 0.839 0.927
theory Bel ({ Damaged }) 0 0.865 0.788 0 0.727 0.161 0.161 0.073
PIs({ Damaged }) 0 0.865 0.865 1 0.727 0.161 0.212 0.727




* If he has the opportunity to express his knowledge

confident to have at worst 0.7 for modalifyrgsent}.

 If he is able to express the imperfection of his

knowledge (partial ignorance) about the exact value
the {Present} modality of De, he will indicate that the
value is located between 0.7 and 0.8.

implementing tools helping the expression of expert
the two modalities but without accepting impreaisio judgment. They will help to collect at best the wtedge of
(soft evidence), he will allocate 0.7 and 0.3 value the experts. It may include guides, questionnaireharts (for
respectively to the occurrence of the modalitiesexample, to quantify the influencing factors betaee
{Present} and {Damaged} of De because he is organizational and human areas). In order to vaida
industrially works presented in this paper, it vaél required to
implement them on a full study on a real indusiapblication.

(1

Although these three types of collection of expertl?

knowledge are related to the same assessment, servel

significant differences in results as shown in isectll.B. and

Table 11l (both in simulation and diagnosis). Itpé&ding on
the type of collection of expert knowledge and dre t
framework used to modeling the expert knowledgeusT tby

imposing a form of collection of expert judgmenss (s done
now), it certainly retrieves the expert knowledgg there is a
risk of losing a part of the imperfect expert knedgde by
forcing him too strictly. Moreover, working on unig values
(e.g. in the case of total ignorance) when there arenmats

may present a possibility of error or bias in thmalf results.

The intervals and bounds obtained by using ottendworks
provide information about the potential error casi

V. CONCLUSION

This paper highlighted different forms of expert's
knowledge but also their expression, the associdédd and
modeling frameworks to represent them. Expert'swkadge
may be expressed in various ways according to ythe bf
knowledge on the element to assess as well asrahge fof
discernment used for the collection of the knowteda [3],
the authors have considered that the expert issduidth only
one possible choice among pre-defined values fritaion
grids. In some cases, this type of collection gfezkjudgment
is not the most suitable to ensure a consisteméseptation of
knowledge owned by the expert. Indeed, by imposing
particular expression form of expert judgment, tisk is to
force the expression of his knowledge and biagéhalts. It is
then most useable not to force the expression efetkpert
knowledge but to be able to handle various impé&das of his
knowledge. Indeed, if the probability theory is tteference
framework for modeling knowledge and random undetyaif
there is a part of epistemic uncertainty (impreeisipartial or
total ignorance, etc.), it will be better to choosther

(3]

(4]

(5]

(6]
(7]

8l

(9]

[10]

[11]

[12]

[13]

frameworks to model the knowledge. Frameworks like14]

intervals theory or evidence theory allow a beptesentation
of the expert knowledge thanks to more appropsateantics.
It will help the knowledge modeling without bias emxpert
knowledge. It will also contribute to limiting thencertain
nature of the information collected. Moreover, thét ensure
more consistent results. In addition, being ablerepresent
different types of knowledge thanks to differentcertainty
modeling frameworks will make IRA methodology more
generic and adaptable to different studies andesspyns of
possible expert judgments. Therefore, it will regltite number
of additional errors in IRA model. Indeed, experbwledge
expression can take different from an assessmeandther
and from an expert to another. Future works wilfdmused at
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