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This paper is devoted to studying a nonlinear wave equation with boundary conditions of two-point type. First, we state two local existence theorems and under the suitable conditions, we prove that any weak solutions with negative initial energy will blow up in finite time. Next, we give a sufficient condition to guarantee the global existence and exponential decay of weak solutions. Finally, we present numerical results.

Introduction

In this paper, we consider the following nonlinear wave equation with initial conditions and boundary conditions of two-point type

u tt -u xx + u + λu t = |u| p-2 u, 0 < x < 1, t > 0, (1.1) 
u x (0, t) = -|u(0, t)| α-2 u(0, t) + λ 0 u t (0, t) + h 1 (t)u(1, t) + λ 1 u t (1, t), t > 0, (

-u x (1, t) = -|u(1, t)| β-2 u(1, t) + λ 1 u t (1, t) + h 0 (t)u(0, t) + λ 0 u t (0, t), t > 0, (1.3) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), (1.4) where λ 0 , λ 1 , λ 0 , λ 1 , λ, p are constants and u 0 , u 1 , h 0 , h 1 are given functions satisfying conditions specified later.

The wave equation u tt -∆u = f (x, t, u, u t ), (1.5) with the different boundary conditions, has been extensively studied by many authors, see ( [START_REF] Bergounioux | Mathematical model for a shock problem involving a linear viscoelastic bar[END_REF], [START_REF] Clark | Global classical solutions to the Cauchy problem for a nonlinear wave[END_REF], [START_REF] Long | On the quasilinear wave equation: u tt -∆u + f (u, u t ) = 0 associated with a mixed nonhomogeneous condition[END_REF] - [START_REF] Truong | The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions[END_REF]) and references therein. In these works, many interesting results about the existence, regularity and the asymptotic behavior of solutions were obtained.

In [START_REF] Munoz -Rivera | Exponential decay of non-linear wave equation with a viscoelastic boundary condition[END_REF], J.E. Munoz-Rivera and D. Andrade dealt with the global existence and exponential decay of solutions of the nonlinear one-dimensional wave equation with a viscoelastic boundary condition.

In [START_REF] Santos | Asymptotic behavior of solutions to wave equations with a memory condition at the boundary[END_REF] - [START_REF] Santos | Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary[END_REF], Santos also studied the asymptotic behavior of solutions to a coupled system of wave equations having integral convolutions as memory terms. The main results show that solutions of that system decay uniformly in time, with rates depending on the rate of decay of the kernel of the convolutions.

In [START_REF] Truong | The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions[END_REF], the global existence and regularity of weak solutions for the linear wave equation

u tt -u xx + Ku + λu t = f (x, t), 0 < x < 1, t > 0, (1.6) 
with the initial conditions as in (1.4) and the two-point boundary conditions u x (0, t) = h 0 u(0, t) + λ 0 u t (0, t) + h 1 u(1, t) + λ 1 u t (1, t) + g 0 (t),

-u x (1, t) = h 1 u(1, t) + λ 1 u t (1, t) + h 0 u(0, t) + λ 0 u t (0, t) + g 1 (t), (1.7) were proved, where h 0 , h 1 , h 0 , h 1 , λ 0 , λ 1 , λ 0 , λ 1 , K, λ are constants and u 0 , u 1 , g 0 , g 1 , f are given functions. Furthermore, the exponential decay of solutions were also given there by using Lyapunov's method.

We note more that, the following nonhomogeneous boundary conditions were considered by Hellwig ( [START_REF] Hellwig | Partial differential equations[END_REF], p.151):

   α 01 u(0, t) + α 02 u x (0, t) + α 03 u t (0, t) + β 01 u(1, t) + β 02 u x (1, t) + β 03 u t (1, t) = f 0 (t), α 11 u(0, t) + α 12 u x (0, t) + α 13 u t (0, t) + β 11 u(1, t) + β 12 u x (1, t) + β 13 u t (1, t) = f 1 (t), (1.8) where α ij , β ij , i = 0, 1, j = 1, 2, 3 are constants and f 0 (t), f 1 (t) are given functions.

Let ∆ = α 02 β 12 -α 12 β 02 = 0, (1.8) is transformed into u x (0, t) = h 0 u(0, t) + λ 0 u t (0, t) + h 1 u(1, t) + λ 1 u t (1, t) + g 0 (t),

-u x (1, t) = h 1 u(1, t) + λ 1 u t (1, t) + h 0 u(0, t) + λ 0 u t (0, t) + g 1 (t), (1.9) in which

                           h 0 = 1 ∆ (β 02 α 11 -β 12 α 01 ), h 1 = 1 ∆ (α 02 β 11 -α 12 β 01 ), λ 0 = 1 ∆ (β 02 α 13 -β 12 α 03 ), λ 1 = 1 ∆ (α 02 β 13 -α 12 β 03 ), h 0 = 1 ∆ (α 02 α 11 -α 12 α 01 ), h 1 = 1 ∆ (β 02 β 11 -β 12 β 01 ), λ 0 = 1 ∆ (α 02 α 13 -α 12 α 03 ), λ 1 = 1 ∆ (β 02 β 13 -β 12 β 03 ), g 0 (t) = 1 ∆ (β 12 f 0 (t) -β 02 f 1 (t)), g 1 (t) = 1 ∆ (α 12 f 0 (t) -α 02 f 1 (t)).
(1.10)

The main goal of this paper is to extend some results of [START_REF] Truong | The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions[END_REF]. Motivated by the problem of the exponential decay of solutions for (1.6) -(1.7), we establish a blow up result and a decay result for the general problem (1.1) - (1.4).

In Theorem 3.1, by applying techniques as in [START_REF] Messaoudi | Blow up and global existence in a nonlinear viscoelastic wave equation[END_REF] with some necessary modifications and with some restrictions on the initial data, we prove that the solution of (1.1) -(1.4) blows up in finite time.

In Theorem 4.1, by the construction of a suitable Lyapunov functional we also prove that the solution will exponential decay if the initial energy is positive and small.

The paper consists of five sections. In Section 2, we present some preliminaries and the existence results. The proofs of Theorems 3.1 and 4.1 are done in Sections 3 and 4. Finally, in Section 5 we give numerical results.

Existence and uniqueness of solution

First, we put Ω = (0, 1); Q T = Ω × (0, T ), T > 0 and we denote the usual function spaces used in this paper by the notations

C m Ω , W m,p = W m,p (Ω) , L p = W 0,p (Ω) , H m = W m,2 (Ω) , 1 ≤ p ≤ ∞, m = 0, 1, ... Let •,
• be either the scalar product in L 2 or the dual pairing of a continuous linear functional and an element of a function space. The notation || • || stands for the norm in L 2 and we denote by || • || X the norm in the Banach space X. We call X ′ the dual space of X. We denote by L p (0, T ; X), 1 ≤ p ≤ ∞ for the Banach space of the real functions u : (0, T ) → X measurable, such that

u L p (0,T ;X) = T 0 u(t) p X dt 1/p < ∞ for 1 ≤ p < ∞,
and u L ∞ (0,T ;X) = ess sup 0<t<T u(t) X for p = ∞. Let u(t), u ′ (t) = u t (t), u ′′ (t) = u tt (t), u x (t), u xx (t) denote u(x, t), ∂u ∂t (x, t), ∂ 2 u ∂t 2 (x, t), ∂u ∂x (x, t), ∂ 2 u ∂x 2 (x, t), respectively. On H 1 , we use the following norm v 1 = v 2 + v x 2 1/2
. We have the following lemmas.

Lemma 2.1. v C 0 ([0,1]) ≤ √ 2 v 1 , for all v ∈ H 1 . Lemma 2.2. Let λ 0 , λ 1 > 0 and λ 0 , λ 1 ∈ R, such that λ 0 + λ 1 < 2 √ λ 0 λ 1 . Then λ 0 x 2 + λ 1 y 2 + ( λ 0 + λ 1 )xy ≥ 1 2 µ * x 2 + y 2 , for all x, y ∈ R, (2.1) 
where

µ * = 1 4 -( λ 0 + λ 1 ) 2 + 4λ 0 λ 1 min 1 λ 0 , 1 λ 1 > 0. (2.
2)

The proofs of these lemmas are straightforward. We shall omit the details.

Next, we state two local existence theorems. We make the following assumptions: Suppose that p, α, β, λ, λ 0 , λ 1 , λ 0 , λ 1 ∈ R, are constants satisfying

(A 1 ) p > 2, α > 2, β > 2, λ > 0; (A 2 ) λ 0 , λ 1 > 0, λ 0 , λ 1 ∈ R, with λ 0 + λ 1 < 2 √ λ 0 λ 1 . Let (A 3 ) h i ∈ H 1 (0, T ) , i = 1, 2.
Then we have the following theorem about the existence of a "strong solution". Theorem 2.3. Suppose that (A 1 ) -(A 3 ) hold and the initial data (u 0 , u 1 ) ∈ H 2 × H 1 satisfies the compatibility conditions

u 0x (0) = -|u 0 (0)| α-2 u 0 (0) + λ 0 u 1 (0) + h 1 (0)u 0 (1) + λ 1 u 1 (1), -u 0x (1) = -|u 0 (1)| β-2 u 0 (1) + λ 1 u 1 (1) + h 0 (0)u 0 (0) + λ 0 u 1 (0). (2.3) Then problem (1.1) -(1.4) has a unique local solution u ∈ L ∞ 0, T * ; H 2 , u t ∈ L ∞ 0, T * ; H 1 , u tt ∈ L ∞ 0, T * ; L 2 , u(0, •), u(1, •) ∈ H 2 (0, T * ) , (2.4) 
for T * > 0 small enough.

Remark 2.1.

The regularity obtained by (2.4) shows that problem (1.1) -(1.4) has a unique strong solution

             u ∈ L ∞ 0, T * ; H 2 ∩ C 0 0, T * ; H 1 ∩ C 1 0, T * ; L 2 , u t ∈ L ∞ 0, T * ; H 1 ∩ C 0 0, T * ; L 2 , u tt ∈ L ∞ 0, T * ; L 2 , u(i, •) ∈ H 2 (0, T * ) , i = 0, 1.
(2.5)

With less regular initial data, we obtain the following theorem about the existence of a weak solution.

Theorem 2.4. Suppose that

(A 1 ) -(A 3 ) hold. Let (u 0 , u 1 ) ∈ H 1 × L 2 . Then problem (1.1) -(1.4) has a unique local solution u ∈ C [0, T * ]; H 1 ∩ C 1 [0, T * ]; L 2 , u(i, •) ∈ H 1 (0, T * ) , i = 0, 1, (2.6) 
for T * > 0 small enough.

Proof of Theorem 2.3.

The proof is established by a combination of the arguments in [START_REF] Truong | The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions[END_REF]. It consits of steps 1 -4.

Step 1. The Faedo-Galerkin approximation. Let {w j } be a denumerable base of H 1 . We find the approximate solution of the problem (1.1) - (1.4) in the form

u m (t) = m j=1 c mj (t)w j , (2.7) 
where the coefficient functions c mj , 1 ≤ j ≤ m, satisfy the system of ordinary differential equations

                             u ′′ m (t), w j + u mx (t), w jx + u m (t), w j + λ u ′ m (t), w j + λ 0 u ′ m (0, t) + h 1 (t)u m (1, t) + λ 1 u ′ m (1, t) w j (0) + λ 1 u ′ m (1, t) + h 0 (t)u m (0, t) + λ 0 u ′ m (0, t) w j (1) = |u m | p-2 u m , w j + |u m (0, t)| α-2 u m (0, t)w j (0) + |u m (1, t)| β-2 u m (1, t)w j (1), 1 ≤ j ≤ m, u m (0) = u 0 , u ′ m (0) = u 1 .
(2.8)

From the assumptions of Theorem 2.3, system (2.8) has a solution u m on an interval [0,

T m ] ⊂ [0, T ].
Step 2. The first estimate. Multiplying the j th equation of (2.8) by c ′ mj (t) and summing up with respect to j, afterwards, integrating by parts with respect to the time variable from 0 to t, after some rearrangements and using Lemma 2.2, we get

S m (t) ≤ S m (0) + 2 t 0 |u m (s)| p-2 u m (s), u ′ m (s) ds +2 t 0 |u m (0, s)| α-2 u m (0, s)u ′ m (0, s)ds + 2 t 0 |u m (1, s)| β-2 u m (1, s)u ′ m (1, s)ds -2 t 0 h 1 (s)u m (1, s)u ′ m (0, s)ds -2 t 0 h 0 (s)u m (0, s)u ′ m (1, s)ds, (2.9) 
where

S m (t) = u ′ m (t) 2 + u m (t) 2 1 + 2λ t 0 u ′ m (s) 2 ds + µ * t 0 u ′ m (0, s) 2 + u ′ m (1, s) 2 ds, (2.10) S m (0) = u 1 2 + u 0 2 1 ≡ S 0 . (2.11)
Applying the classical inequalities, we estimate the terms on the right-hand side of (2.9) and obtain

S m (t) ≤ d 0 + d 1 t 0 (S m (s)) p 2 ds + d 2 t 0 (S m (s)) α-1 ds +d 3 t 0 (S m (s)) β-1 ds + d 4 (T ) t 0 S m (s)ds, 0 ≤ t ≤ T m , (2.12) where            d 0 = 2S 0 , d 1 = 4 √ 2 p-1 , d 2 = 1 µ * 2 α+3 , d 3 = 1 µ * 2 β+3 , d 4 (T ) = 32 µ * h 0 2 L ∞ (0,T ) + h 1 2 L ∞ (0,T ) , p 2 > 1, α -1 > 1, β -1 > 1.
(2.13)

Then, by solving a nonlinear Volterra integral equation (based on the methods in [START_REF] Lakshmikantham | Differential and Integral Inequalities[END_REF]), we get the following lemma.

Lemma 2.5. There exists a constant T * > 0 depending on T (independent of m) such that

S m (t) ≤ C T , ∀m ∈ N, ∀t ∈ [0, T * ], (2.14) 
where C T is a constant depending only on T.

Lemma 2.5 allows one to take constant T m = T * for all m.

The second estimate.

First of all, we estimate u ′′ m (0). By taking t = 0 and w j = u ′′ m (0) in (??), we assert

u ′′ m (0) ≤ u 0xx + u 0 + λ u 1 + |u 0 | p-1 = X * 0 . (2.15)
Now, by differentiating (2.8) with respect to t and substituting w j = u ′′ m (t), after integrating with respect to the time variable from 0 to t, using again Lemma 2.2, we have

X m (t) ≤ X m (0) -2 t 0 h 1 (s)u ′ m (1, s) + h ′ 1 (s)u m (1, s) u ′′ m (0, s)ds -2 t 0 h 0 (s)u ′ m (0, s) + h ′ 0 (s)u m (0, s) u ′′ m (1, s)ds +2(α -1) t 0 |u m (0, s)| α-2 u ′ m (0, s)u ′′ m (0, s)ds +2(β -1) t 0 |u m (1, s)| β-2 u ′ m (1, s)u ′′ m (1, s)ds +2(p -1) t 0 |u m (s)| p-2 u ′ m (s), u ′′ m (s) ds, (2.16) 
where

X m (t) = u ′′ m (t) 2 + u ′ m (t) 2 1 + 2λ t 0 u ′′ m (s) 2 ds + µ * t 0 u ′′ m (0, s) 2 + u ′′ m (1, s) 2 ds, (2.17) X m (0) = u ′′ m (0) 2 + u 1 2 1 ≤ X * 0 2 + u 1 2 1 ≡ X 0 . (2.18)
Estimate respectively all the terms on the right-hand side of (2.16) leads to

X m (t) ≤ d T + 2 t 0 X m (s)ds, (2.19) 
where

d T = 2X 0 + 16 µ * (α -1) 2 2 α-2 C α-1 T + (β -1) 2 2 β-2 C β-1 T +(p -1) 2 2 p-1 T C p-1 T + 32C T µ * d T h 0 2 H 1 (0,T ) + h 1 2 H 1 (0,T ) , (2.20) in which d T is a constant verifying the inequality 1 µ * v 2 L ∞ (0,T ) + 2 v ′ 2 L 2 (0,T ) ≤ d T v 2 H 1 (0,T ) , for all v ∈ H 1 (0, T ).
By Gronwall's lemma, it follows from (2.19), that

X m (t) ≤ d T exp(2T ) ≤ C T , ∀t ∈ [0, T * ], (2.21) 
where C T is a constant depending only on T.

Step 3. Limiting process. From (2.10), (2.14), (2.17) and (2.21), we deduce the existence of a subsequence of {u m } still also so denoted, such that

                   u m → u in L ∞ (0, T * ; H 1 ) weakly*, u ′ m → u ′ in L ∞ (0, T * ; H 1 ) weakly*, u ′′ m → u ′′ in L ∞ (0, T * ; L 2 ) weakly*, u m (0, •) → u(0, •) in H 2 (0, T * ) weakly, u m (1, •) → u(1, •) in H 2 (0, T * )
weakly.

(2.22)

By the compactness lemma of Lions ([5], p. 57) and the compact imbedding

H 2 (0, T * ) ֒→ C 1 ([0, T * ]) , we can deduce from (2.22) the existence of a subsequence still denoted by {u m }, such that        u m → u strongly in L 2 (Q T * ) and a.e. in Q T * , u ′ m → u ′ strongly in L 2 (Q T * ) and a.e. in Q T * , u m (i, •) → u(i, •) strongly in C 1 ([0, T * ]) , i = 0, 1.
(2.23)

Using the following inequality

|x| p-2 x -|y| p-2 y ≤ (p -1)M p-2 |x -y| , ∀x, y ∈ [-M, M ], ∀M > 0, ∀p ≥ 2, (2.24) with M = √ 2C T , we deduce from (2.14) that |u m | p-2 u m -|u| p-2 u ≤ (p -1)M p-2 |u m -u| , for all m, (x, t) ∈ Q T * . (2.25)
Hence, by (2.23) 1 , we deduce from (2.25), that 

|u m | p-2 u m → |u| p-2 u strongly in L 2 (Q T * ). ( 2 
                       u ′′ (t), v + u x (t), v x + u(t), v + λ u ′ (t), v + λ 0 u ′ (0, t) + h 1 (t)u(1, t) + λ 1 u ′ (1, t) v(0) + λ 1 u ′ (1, t) + h 0 (t)u(0, t) + λ 0 u ′ (0, t) v(1) = |u| p-2 u, v + |u(0, t)| α-2 u(0, t)v(0) + |u(1, t)| β-2 u(1, t)v(1), for all v ∈ H 1 , u(0) = u 0 , u ′ (0) = u 1 .
(2.27)

On the other hand, we have from (2.22) 1,2,3 , (2.27) 1 that

u xx = u ′′ + u + λu ′ -|u| p-2 u ∈ L ∞ (0, T * ; L 2 ).
(2.28) Thus u ∈ L ∞ (0, T * ; H 2 ) and the existence of the solution is proved completely.

Step 4. Uniqueness of the solution. Let u 1 , u 2 be two weak solutions of problem (1.1) -(1.4), such that

u i ∈ L ∞ 0, T * ; H 2 , u ′ i ∈ L ∞ 0, T * ; L 2 , u ′′ i ∈ L ∞ 0, T * ; L 2 , u i (0, •), u i (1, •) ∈ H 2 (0, T * ) , i = 1, 2.
(2.29)

Then w = u 1 -u 2 verifies                                      w ′′ (t), v + w x (t), v x + w(t), v + λ w ′ (t), v + λ 0 w ′ (0, t) + h 1 (t)w(1, t) + λ 1 w ′ (1, t) v(0) + λ 1 w ′ (1, t) + h 0 (t)w(0, t) + λ 0 w ′ (0, t) v(1) = |u 1 | p-2 u 1 -|u 2 | p-2 u 2 , v + |u 1 (0, t)| α-2 u 1 (0, t) -|u 2 (0, t)| α-2 u 2 (0, t) v(0) + |u 1 (1, t)| β-2 u 1 (1, t) -|u 2 (1, t)| β-2 u 2 (1, t) v(1), for all v ∈ H 1 , w(0) = w ′ (0) = 0.
(2.30)

We take v = w = u 1 -u 2 in (2.30) and integrating with respect to t, we obtain

S(t) ≤ -2 t 0 h 0 (s)w(0, s)w ′ (1, s)ds -2 t 0 h 1 (s)w(1, s)w ′ (0, s)ds +2 t 0 |u 1 (0, s)| α-2 u 1 (0, s) -|u 2 (0, s)| α-2 u 2 (0, s) w ′ (0, s)ds +2 t 0 |u 1 (1, s)| β-2 u 1 (1, s) -|u 2 (1, s)| β-2 u 2 (1, s) w ′ (1, s)ds +2 t 0 |u 1 (s)| p-2 u 1 (s) -|u 2 (s)| p-2 u 2 (s), w ′ (s) ds, (2.31) 
where

S(t) = w ′ (t) 2 + w(t) 2 1 + 2λ t 0 w ′ (s) 2 ds + µ * t 0 |w ′ (0, s)| 2 + |w ′ (1, s)| 2 ds. (2.32) It implies that S(t) ≤ K M t 0 S(s)ds, (2.33) 
where

K M = 32 µ * h 0 2 L ∞ (0,T ) + h 1 2 L ∞ (0,T ) + (α -1) 2 M 2α-4 1 + (β -1) 2 M 2β-4 1 + 2(p -1)M p-2 1 , (2.34) with M 1 = √ 2 u L ∞ (0,T * ;H 1 ) + v L ∞ (0,T * ;H 1 )
. By Gronwall's lemma, it follows from (2.23), that S ≡ 0, i.e., u ≡ v. Theorem 2.3 is proved completely.

Proof of Theorem 2.4.

In order to obtain the existence of a weak solution, we use standard arguments of density.

Let us consider (u 0 , u 1 ) ∈ H 1 × L 2 and let sequences {u 0m } and {u 1m } in H 2 and H 1 , respectively, such that

u 0m → u 0 strongly in H 1 , u 1m → u 1 strongly in L 2 . (2.35)
So {(u 0m , u 1m )} satisfy, for all m ∈ N, the compatibility conditions

u 0mx (0) = -|u 0m (0)| α-2 u 0m (0) + λ 0 u 1m (0) + h 1 (0)u 0m (1) + λ 1 u 1m (1), -u 0mx (1) = -|u 0m (1)| β-2 u 0m (1) + λ 1 u 1m (1) + h 0 (0)u 0m (0) + λ 0 u 1m (0).
(2.36)

Then, for each m ∈ N there exists a unique function u m in the conditions of the Theorem 2.3. So we can verify

                             u ′′ m (t), v + u mx (t), v x + u m (t), v + λ u ′ m (t), v + λ 0 u ′ m (0, t) + h 1 (t)u m (1, t) + λ 1 u ′ m (1, t) v(0) + λ 1 u ′ m (1, t) + h 0 (t)u m (0, t) + λ 0 u ′ m (0, t) v(1) = |u m | p-2 u m , v + |u m (0, t)| α-2 u m (0, t)v(0) + |u m (1, t)| β-2 u m (1, t)v(1), for all v ∈ H 1 , u m (0) = u 0m , u ′ m (0) = u 1m , (2.37) 
and

             u m ∈ L ∞ 0, T * ; H 2 ∩ C 0 0, T * ; H 1 ∩ C 1 0, T * ; L 2 , u ′ m ∈ L ∞ 0, T * ; H 1 ∩ C 0 0, T * ; L 2 , u ′′ m ∈ L ∞ 0, T * ; L 2 , u m (0, •), u m (1, •) ∈ H 2 (0, T * ) .
(2.38) By the same arguments used to obtain the above estimates, we get

u ′ m (t) 2 + u m (t) 2 1 + 2λ t 0 u ′ m (s) 2 ds + µ * t 0 |u ′ m (0, s)| 2 + |u ′ m (1, s)| 2 ds ≤ C T , (2.39) 
∀t ∈ [0, T * ], where C T is a positive constant independent of m and t.

On the other hand, we put w m,l = u m -u l , from (2.37), it follows that

                                 w ′′ m,l (t), v + w m,lx (t), v x + w m,l (t), v + λ w ′ m,l (t), v + λ 0 w ′ m,l (0, t) + h 1 (t)w m,l (1, t) + λ 1 w ′ m,l (1, t) v(0) + λ 1 w ′ m,l (1, t) + h 0 (t)w m,l (0, t) + λ 0 w ′ m,l (0, t) v(1) = |u m | p-2 u m -|u l | p-2 u l , v + |u m (0, t)| α-2 u m (0, t) -|u l (0, t)| α-2 u l (0, t) v(0) + |u m (1, t)| β-2 u m (1, t) -|u l (1, t)| β-2 u l (1, t) v(1), for all v ∈ H 1 , w m,l (0) = u 0m -u 0l , w ′ m,l (0) = u 1m -u 1l .
(2.40)

We take v = w ′ m,l = u ′ m -u ′ l , in (2.40
) and integrating with respect to t, we obtain

S m,l (t) ≤ S m,l (0) -2 t 0 h 1 (s)w m,l (1, s)w ′ m,l (0, s)ds -2 t 0 h 0 (s)w m,l (0, s)w ′ m,l (1, s)ds +2 t 0 |u m (0, s)| α-2 u m (0, s) -|u l (0, s)| α-2 u l (0, s) w ′ m,l (0, s)ds +2 t 0 |u m (1, s)| β-2 u m (1, s) -|u l (1, s)| β-2 u l (1, s) w ′ m,l (1, s)ds +2 t 0 |u m (s)| p-2 u m (s) -|u l (s)| p-2 u l (s), w ′ m,l (s) ds, (2.41) 
where

S m,l (t) = w ′ m,l (t) 2 + w m,l (t) 2 1 + 2λ t 0 w ′ m,l (s) 2 ds + µ * t 0 w ′ m,l (0, s) 2 + w ′ m,l (1, s) 2 ds, (2.42) S m,l (0) = u 1m -u 1l 2 + u 0m -u 0l 2 1 . (2.43) Hence S m,l (t) ≤ 2 u 1m -u 1l 2 + u 0m -u 0l 2 1 + K T t 0 S m,l (s)ds, (2.44) 
where

K T = 2(p -1)M p-2 T + 32 µ * h 1 2 L ∞ (0,T ) + h 0 2 L ∞ (0,T ) + (α -1) 2 M 2α-4 T + (β -1) 2 M 2β-4 T , (2.45) with M T = √ 2C T . By Gronwall's lemma, it follows from (2.44), that S m,l (t) ≤ 2 u 1m -u 1l 2 + u 0m -u 0l 2 1 exp(T K T ), ∀t ∈ [0, T * ] (2.46)
Convergences of the sequences {u 0m }, {u 1m } imply the convergence to zero (when m, l → ∞) of terms on the right hand side of (2.46). Therefore, we get

u m → u strongly in C 0 ([0, T * ]; H 1 ) ∩ C 1 ([0, T * ]; L 2 ), u m (i, •) → u(i, •) strongly in H 1 (0, T * ), i = 0, 1. (2.47)
On the other hand, from (2.39), we deduce the existence of a subsequence of {u m } still also so denoted, such that

                         u m → u in L ∞ (0, T * ; H 1 ) weakly*, u ′ m → u ′ in L ∞ (0, T * ; L 2 ) weakly*, u m (0, •) → u(0, •) in H 1 (0, T * ) weakly, u m (1, •) → u(1, •) in H 1 (0, T * ) weakly, u ′ m (0, •) → u ′ (0, •) in L 2 (0, T * ) weakly, u ′ m (1, •) → u ′ (1, •) in L 2 (0, T * ) weakly.
(2.48)

By the compactness lemma of Lions ([5], p. 57) and the compact imbedding H 1 (0, T * ) ֒→ C 0 ([0, T * ]) , we can deduce from (2.48) 1-4 the existence of a subsequence still denoted by {u m }, such that 

u m → u strongly in L 2 (Q T * ) and a.e. in Q T * , u m (i, •) → u(i, •) strongly in C 0 ([0, T * ]) , i = 0, 1. ( 2 
                      d dt u ′ (t), v + u x (t), v x + u(t), v + λ u ′ (t), v + λ 0 u ′ (0, t) + h 1 (t)u(1, t) + λ 1 u ′ (1, t) v(0) + λ 1 u ′ (1, t) + h 0 (t)u(0, t) + λ 0 u ′ (0, t) v(1) = |u| p-2 u, v + |u(0, t)| α-2 u(0, t)v(0) + |u(1, t)| β-2 u(1, t)v(1), for all v ∈ H 1 , u(0) = u 0 , u ′ (0) = u 1 .
(2.51)

Next, the uniqueness of a weak solution is obtained by using the well-known regularization procedure due to Lions. See for example Ngoc et al. [START_REF] Ngoc | On a nonlinear wave equation associated with the boundary conditions involving convolution[END_REF].

Theorem 2.4 is proved completely.

Remark 2.2. In case 1 < p, α, β ≤ 2, and h 0 , h 1 ∈ L ∞ (0, T ) , (u 0 , u 1 ) ∈ H 1 × L 2 , the integral inequality (??) leads to the following global estimation

S m (t) ≤ C T , ∀m ∈ N, ∀t ∈ [0, T ], ∀T > 0.
(2.52)

Then, by applying a similar argument used in the proof of Theorem 2.4, we can obtain a global weak solution

u of problem (1.1) -(1.4) satisfying u ∈ L ∞ 0, T ; H 1 , u t ∈ L ∞ 0, T ; L 2 , u(i, •) ∈ H 1 (0, T ) , i = 0, 1.
(2.53) However, in case 1 < p, α, β < 2, we do not imply that a weak solution obtained here belongs to C [0, T ]; H 1 ∩ C 1 [0, T ]; L 2 . Furthermore, the uniqueness of a weak solution is also not asserted.

Finite time blow up

In this section we show that the solution of problem (1.1) -(1.4) blows up in finite time if

λ 0 = λ 1 = λ, with λ < √ λ 0 λ 1 , and 
-H(0) = 1 2 u 1 2 + 1 2 u 0 2 1 -1 p u 0 p L p -1 α |u 0 (0)| α -1 β |u 0 (1)| β + hu 0 (0)u 0 (1) < 0. (3.1)
First, in order to obtain the blow up result, we make the following assumptions

(A ′ 2 ) λ 0 = λ 1 = λ, with λ < √ λ 0 λ 1 . (A ′ 3 ) h 0 (t) = h 1 (t) = h
, where h is a constant satisfies h < q-2 4(q+2) , q = min{p, α, β};

Then we obtain the theorem.

Theorem 3.1. Let the assumptions (A 1 ), (A ′ 2 ), (A ′ 3 ) hold and H(0) > 0. Then, for any (u 0 , u 1 ) ∈ H 1 × L 2 , the solution u of problem (1.1) -(1.4) blows up in finite time.

Proof. We denote by E(t) the energy associated to the solution u, defined by

E(t) = 1 2 u ′ (t) 2 + 1 2 u(t) 2 1 - 1 p u(t) p L p - 1 α |u(0, t)| α - 1 β |u(1, t)| β , (3.2) 
and we put

H(t) = -E(t) -hu(0, t)u(1, t). (3.3)
From Lemma 2.1, it is easy to see that

H(t) ≥ 1 p u(t) p L p + 1 α |u(0, t)| α + 1 β |u(1, t)| β - 1 2 u ′ (t) 2 - 1 2 + 2 h u(t) 2 1 . (3.4)
On the other hand, by multiplying (1.1) by u ′ (x, t) and integrating over [0, 1], we get

H ′ (t) = λ u ′ (t) 2 + λ 0 u ′ (0, t) 2 + λ 1 u ′ (1, t) 2 + 2 λu ′ (0, t)u ′ (1, t) ≥ 0, ∀t ∈ [0, T * ). (3.5)
By Lemma 2.2, we have

λ 0 u ′ (0, t) 2 + λ 1 u ′ (1, t) 2 + 2 λu ′ (0, t)u ′ (1, t) ≥ 1 2 µ * u ′ (0, t) 2 + u ′ (1, t) 2 , ∀t ∈ [0, T * ), (3.6)
where

µ * = λ 0 λ 1 -λ 2 min 1 λ 0 , 1 λ 1 > 0. (3.7)
Hence, we can deduce from (3.5), (3.6) and

H(0) > 0 that 0 < H(0) ≤ H(t) ≤ 1 p u(t) p L p + 1 α |u(0, t)| α + 1 β |u(1, t)| β , ∀t ∈ [0, T * ). (3.8)
Now, we define the functional

L(t) = H 1-η (t) + εΦ(t), (3.9) 
where

Φ(t) = u(t), u ′ (t) + λ 2 u(t) 2 + λ 0 2 |u(0, t)| 2 + λ 1 2 |u(1, t)| 2 + λu(0, t)u(1, t), (3.10) 
for ε small enough and 

0 < η ≤ p -2 2p < 1 2 . ( 3 
Φ ′ (t) = u ′ (t) 2 + u(t) p L p + |u(0, t)| α + |u(1, t)| β -u(t) 2 1 -2 hu(0, t)u(1, t). (3.13)
By taking a derivative of (3.9) and using (3.13), we obtain 

L ′ (t) = (1 -η)H -η (t)H ′ (t) + ε u ′ (t) 2 + ε u(t) p L p + ε |u(0, t)| α + |u(1, t)| β -ε u(t) 2 1 -2ε hu(0, t)u(1, t).
-2 hu(0, t)u(1, t) ≥ -4 h u(t) 2 1 , (3.15) 
we deduce that

L ′ (t) ≥ [λ(1 -η)H -η (t) + ε] u ′ (t) 2 + ε u(t) p L p + |u(0, t)| α + |u(1, t)| β -ε 1 + 4 h u(t) 2 1 . (3.16) 
On the other hand, it follows from (3.8) and the following inequality

H(t) ≤ 1 p u(t) p L p + 1 α |u(0, t)| α + 1 β |u(1, t)| β - 1 2 u ′ (t) 2 - 1 2 -2 h u(t) 2 1 , (3.17) 
that u(t) 2 1 ≤ 2 q 1 1 -4 h u(t) p L p + |u(0, t)| α + |u(1, t)| β , (3.18) 
where q = min{p, α, β}. Combining (3.16) and (3.18), we have

L ′ (t) ≥ ε u ′ (t) 2 + ε 1 -2 q 1+4| h| 1-4| h| u(t) p L p + |u(0, t)| α + |u(1, t)| β . (3.19) 
Using the inequality

u(t) p L p + |u(0, t)| α + |u(1, t)| β ≥ qH(t), t ≥ 0, (3.20) 
we can deduce from (3.19) that, with ε is small enough,

L ′ (t) ≥ d 1 H(t) + u ′ (t) 2 + u(t) p L p + |u(0, t)| α + |u(1, t)| β , (3.21) 
for d 1 is a positive constant. The lemma 3.2 is proved completely.

Remark 3.1. From the formula of L(t) and the Lemma 3.2, we can choose ε small enough such that

L(t) ≥ L(0) > 0, ∀t ∈ [0, T * ). (3.22) 
Now we continue to prove Theorem 3.1.

Using the inequality 6 i=1 x i p ≤ 6 p-1 6 i=1 x p i , for all p > 1, and x 1 , ..., x 6 ≥ 0, (

we deduce from (3.9), (3.10) that

L 1/(1-η) (t) ≤ Const H(t) + | u(t), u ′ (t) | 1/(1-η) + u(t) 2/(1-η) +|u(0, t)| 2/(1-η) + |u(1, t)| 2/(1-η) + |u(0, t)u(1, t)| 1/(1-η) ≤ Const H(t) + | u(t), u ′ (t) | 1/(1-η) + |u(0, t)| 2/(1-η) + |u(1, t)| 2/(1-η) + u(t) 2/(1-η) L p . (3.24) 
On the other hand, by using the Young's inequality

| u(t), u ′ (t) | 1/(1-η) ≤ u(t) 1/(1-η) u ′ (t) 1/(1-η) ≤ Const u(t) 1/(1-η) L p u ′ (t) 1/(1-η) ≤ Const u(t) s L p + u ′ (t) 2 , (3.25) 
where s = 2/(1 -2η) ≤ p by (3.11). Now, we need the following lemma.

Lemma 3.3. Let 2 ≤ r 1 ≤ p, 2 ≤ r 2 ≤ α, 2 ≤ r 3 ≤ β, we have v r 1 L p + |v(0)| r 2 + |v(1)| r 3 ≤ 5 v 2 1 + v p L p + |v(0)| α + |v(1)| β , (3.26) 
for any v ∈ H 1 .

Proof of Lemma 3.3.

(i) We consider two cases for v L p : (i.1) Case 1:

v L p ≤ 1 : By 2 ≤ r 1 ≤ p, we have v r 1 L p ≤ v 2 L p ≤ v 2 1 ≤ v 2 1 + v p L p + |v(0)| α + |v(1)| β ≡ ρ[v]. (3.27) 
(i.2) Case 2: v L p ≥ 1 : By 2 ≤ r 1 ≤ p, we have v r 1 L p ≤ v p L p ≤ ρ[v]. (3.28) Therefore v r 1 L p ≤ v p L p ≤ ρ[v], for any v ∈ H 1 . (3.29) (ii) We consider two cases for |v(0)| : (ii.1) Case 1: |v(0)| ≤ 1 : By 2 ≤ r 2 ≤ α, we have |v(0)| r 1 ≤ |v(0)| 2 ≤ v 2 C 0 ([0,1]) ≤ 2 v 2 1 ≤ 2ρ[v]. (3.30) (ii.2) Case 2: |v(0)| ≥ 1 : By 2 ≤ r 2 ≤ α, we have |v(0)| r 1 ≤ |v(0)| α ≤ ρ[v]. (3.31) 
Therefore

|v(0)| r 1 ≤ 2ρ[v], for any v ∈ H 1 . (3.32) 
(iii) Similarly |v(1)| r 2 ≤ 2ρ[v], for any v ∈ H 1 . (3.33) 
Combining (3.29), (3.32), (3.33), we obtain 

v r 1 L p + |v(0)| r 2 + |v(1)| r 3 ≤ 5ρ[v] ≤ 5 v 2 1 + v p L p + |v(0)| α + |v(1)| β , ∀v ∈ H 1 . ( 3 
L 1/(1-η) (t) ≤ Const H(t) + u ′ (t) 2 + u(t) p L p + |u(0, t)| α + |u(1, t)| β , ∀t ∈ [0, T * ). (3.35) This implies that L ′ (t) ≥ d 2 L 1/(1-η) (t), ∀t ∈ [0, T * ), (3.36) 
where d 2 is a positive constant. By integrating (3.36) over (0, t) we deduce that

L η/(1-η) (t) ≥ 1 L -η/(1-η) (0) -d 2 η 1-η t , 0 ≤ t < 1 -η d 2 η L -η/(1-η) (0). (3.37)
Therefore, (3.37) shows that L(t) blows up in a finite time given by 

T * = 1 -η d 2 η L -η/(1-η) (0). ( 3 

Exponential decay

In this section we show that each solution u of (1.1) -(1.4) is global and exponential decay provided that I(0) = u 0 2 1 -u 0 p L p -|u 0 (0)| α -|u 0 (1)| β > 0 and E(0) is small enough. First, we construct the following Lyapunov functional

L(t) = E(t) + δψ(t), (4.1) 
where δ > 0 is chosen later and

ψ(t) = u(t), u ′ (t) + λ 2 u(t) 2 + λ 0 2 |u(0, t)| 2 + λ 1 2 |u(1, t)| 2 . (4.2) Put I(t) = I(u(t)) = u(t) 2 1 -u(t) p L p -|u(0, t)| α -|u(1, t)| β . (4.3)
We make the following assumption

(A ′′ 3 ) h i ∈ L ∞ (R + ) ∩ L 2 (R + ) , i = 1, 2.
Then we have the following theorem.

Theorem 4.1. Assume that (A 1 ), (A 2 ), (A ′′ 3 ) hold. Let I(0) > 0 and the initial energy E(0) satisfies

η * = C p p 2qr q-2 E(0) (p-2)/2 + 2 α/2 2qr q-2 E(0) (α-2)/2 + 2 β/2 2qr q-2 E(0) (β-2)/2 < 1, (4.4) 
with q = min{p, α, β}, and

r = exp 4q µ * (q -2) h 0 2 L 2 (R + ) + h 1 2 L 2 (R + ) , (4.5) 
and C p is a constant verifying the inequality v L p ≤ C p v 1 , for all v ∈ H 1 .

Then, there exist positive constants C, γ such that, for

h 0 L 2 (R + ) , h 1 L 2 (R + )
sufficiently small, we have E(t) ≤ C exp(-γt), for all t ≥ 0. (4.6)

Proof.

First, we need the following lemmas Lemma 4.2. The energy functional E(t) satisfies

E ′ (t) ≤ -λ u ′ (t) 2 + 1 2µ * h 2 0 (t) + h 2 1 (t) u (t) 2 1 -1 4 µ * |u ′ (0, t)| 2 + |u ′ (1, t)| 2 . (4.7)
Proof of Lemma 4.2. Multiplying (1.1) by u ′ (x, t) and integrating over [0, 1], we get

E ′ (t) = -λ u ′ (t) 2 -λ 0 |u ′ (0, t)| 2 + λ 1 |u ′ (1, t)| 2 + λ 0 + λ 1 u ′ (0, t) u ′ (1, t) -h 0 (t)u (0, t) u ′ (1, t) -h 1 (t)u (1, t) u ′ (0, t) . (4.8)
Again, by lemma 2.2, we have

λ 0 |u ′ (0, t)| 2 + λ 1 |u ′ (1, t)| 2 + λ 0 + λ 1 u ′ (0, t) u ′ (1, t) ≥ 1 2 µ * |u ′ (0, t)| 2 + |u ′ (1, t)| 2 .
(4.9)

where

β 2 = 1 + δ + 2q q -2 1 2 + δ 1 + λ 2 + λ 0 + λ 1 . (4.21)
Similarly, we can prove that

L(t) ≥ 1-δ 2 u ′ (t) 2 + 1 2 (1 -δ) u(t) 2 1 -1 p u(t) p L p -1 α |u(0, t)| α -1 β |u(1, t)| β ≥ 1-δ 2 u ′ (t) 2 + 1 2 q-2 q -δ u(t) 2 1 + 1 q I(t) ≥ β 1 E(t), (4.22) 
where 

β 1 = min 1 -δ; q -2 q -δ > 0, δ is small enough. ( 4 
′ (t) ≤ u ′ (t) 2 -1 -η * -ε 1 -2 h 0 (t) + h 1 (t) u (t) 2 1 + 1 ε 1 λ 2 0 + λ 2 1 |u ′ (0, t)| 2 + |u ′ (1, t)| 2 . (4.24)
for all ε 1 > 0.

Proof of Lemma 4.5. By multiplying (1.1) by u(x, t) and integrating over [0, 1], we obtain

ψ ′ (t) = u ′ (t) 2 + u(t) p L p + |u(0, t)| α + |u(1, t)| β -u (t) 2 1 -h 0 (t) + h 1 (t) u (0, t) u (1, t) -λ 0 u ′ (0, t) u (1, t) -λ 1 u (0, t) u ′ (1, t) . (4.25) 
Hence, the lemma 4.5 is proved by using some simple estimates. Now we continue to prove Theorem 4.1.

It follows from (4.1), (4.2), (4.7) and (4.24), that

L ′ (t) ≤ -(λ -δ) u ′ (t) 2 + 2 µ * h 2 0 (t) + h 2 1 (t) + 2δ h 0 (t) + h 1 (t) -δ(1 -η * -ε 1 ) u (t) 2 1 -1 4 µ * -δ ε 1 λ 2 0 + λ 2 1 |u ′ (0, t)| 2 + |u ′ (1, t)| 2 (4.26) for all δ, ε 1 > 0. Let 0 < ε 1 < 1 -η * . (4.27)
Then, for δ small enough, with 0 < δ < λ and if h 0 , h 1 satisfy 

2 µ * h 0 2 L ∞ (R + ) + h 1 2 L ∞ (R + ) + 2δ h 0 L ∞ (R + ) + h 1 L ∞ (R + ) < δ(1 -η * -ε 1 ), ( 4 
                                                                dU (m) j dt (t) = V (m) j (t), j = 0, 1, ..., N, dV (m) 0 dt (t) = -1 + N 2 U (m) 0 (t) + N 2 U (m) 1 (t) -N h 1 (t)U (m) N (t) -(λ + N λ 0 )V (m) 0 (t) -N λ 1 V (m) N (t) + U (m-1) 0 p-2 U (m-1) 0 + N U (m-1) 0 α-2 U (m-1) 0 -N g 0 (t) + f 0 (t), dV (m) j dt (t) = N 2 U (m) j-1 (t) -1 + 2N 2 U (m) j (t) + N 2 U (m) j (t) -λV (m) j (t) + U (m-1) j p-2 U (m-1) j + f j (t), j = 1, N -1, dV (m) N dt (t) = -N h 0 (t)U (m) 0 (t) + N 2 U (m) N -1 (t) -1 + N 2 U (m) N (t) -N λ 0 V (m) 0 (t) -(λ + N λ 1 )V (m) N (t) + U (m-1) N p-2 U (m-1) N + N U (m-1) N β-2 U (m-1) N -N g 1 (t) + f N (t), U (m) j (0) = u 0 (x j ), V (m) j (0) = u 1 (x j ), j = 0, N , m = 1, 2, .... (5.7)
Then system (5.7) is equivalent to: -N g 1 (t) + f N (t), f j (t) = f (x j , t), j = 0, N .

d dt                    U (m) 0 U (m) 1 . . . U (m) N V (m) 0 V (m) 1 . . . . . . V (m) N                    =                  0 0 • • • • • • 0 1 0 0 • • • • • • 0 1 . . . . . . • • • • • • . . . . . . 0 0 • • • • • • 0 1 γ + α 1 α 1 γ 1 (t) δ 0 δ 1 α 1 γ α 1 -λ . . . . . . . . . . . . α 1 γ α 1 -λ γ 0 (t) α 1 γ + α 1 δ 0 δ 1                                     U (m) 0 U (m) 1 . . . 
(5.9)

Rewritten (5.8) d dt X (m) (t) = A(t)X (m) (t) + F (m) (t, X (m-1) ),

X (m) (0) = X 0 , (5.10) 
where 

                       X (m) (t) = U

(3. 14 )

 14 Since (3.5), (3.14) and the following inequality

  .34) Lemma 3.3 is proved completely. Combining (3.18), (3.24) -(3.26) and using the Lemma 3.2 we obtain

  .38) Theorem 3.1 is proved completely.

U

  

FNF+F-F

  (0) = ( u 0 (x 0 ), u 0 (x 1 ), , ..., u 0 (x N )) , ..., V (m)N (0) = ( u 1 (x 0 ), u 1 (x 1 ), , ..., u 1 (x N )) , where                                          α 1 = N 2 , γ = -1 -2N 2 = -1 -2α 1 , γ 0 (t) = -N h 0 (t), γ 1 (t) = -N h 1 (t), δ 0 = -λ -N λ 0 , δ 1 = -λ -N λ 1 , δ 0 = -N λ 0 , δ 1 = -N λ 1 , f j (t), j = 1, N -1, N g 0 (t) + f 0 (t),

Figure 2 :

 2 Figure 1. Approximated solution

  .49) Similarly, by (2.25), we deduce from (2.49) 1 , that|u m | p-2 u m → |u| p-2 u strongly in L 2 (Q T * ).

	(2.50)
	Passing to the limit in (2.37) by (2.47) -(2.50), we have u satisfying the problem
	

On the other hand -h 0 (t)u (0, t) u ′ (1, t) ≤ 

< 1, (4.12)

then I(t) > 0, ∀t ≥ 0.

Proof of Lemma 4.3. By the continuity of I(t) and I(0) > 0, there exists T 1 > 0 such that

this implies

where 

Combining (4.7), (4.16) and using the Gronwal's inequality we have

where r as in (4.5). Hence, it follows from (4.12), (4.17) that

, by the continuity of I(t), we have I(T * ) ≥ 0. By the same arguments as in above part we can deduce that there exists

. Hence, we conclude that I(t) > 0, ∀t ≥ 0.

Lemma 4.3 is proved completely.

Lemma 4.4. Let I(0) > 0 and (4.13) hold. Then there exist the positive constants

for δ is small enough.

Proof of Lemma 4.4. It is easy to see that

Numerical results

Consider the following problem:

0 < x < 1, t > 0, with boundary conditions

and initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), (5.3) where

are constants and the functions u 0 , u 1 , h 0 , h 1 , g 0 , g 1 and f are defined by

(5.4)

The exact solution of the problem (5.1) -( 5.3) with u 0 , u 1 , h 0 , h 1 , g 0 , g 1 and f defined in (5.4) respectively, is the function U ex given by U ex (x, t) = e x-t .

(

To solve problem (5.1) -(5.3) numerically, we consider the differential system for the unknowns U j (t) ≡ u(x j , t), V j (t) = dU j dt (t), with x j = j∆x, ∆x = 1 N , j = 0, 1, ..., N :

U j (0) = u 0 (x j ), V j (0) = u 1 (x j ), j = 0, N .

(5.6)

To solve the nonlinear differential system (5.6), we use the following linear recursive scheme gen-