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1 Introduction

In this paper, we consider the following nonlinear wave equation with initial conditions and
boundary conditions of two-point type

Upt — Ugg + U+ Aug = |[ulP2u, 0 <z <1, >0, (1.1)

ug(0,8) = — [u(0,£)[* "2 u(0,£) + Xous (0,) + ha (u(1,£) + Ayuy(1,1), ¢ >0, (1.2)
_uib(lat) = - ‘u(17t)|18_2 ’LL(l,t) + )\lut(lat) +%0(t)u(07t) + Xout(()?t)? > 0) (13)
u($30) = Uo(l‘), ut(x70) = u1($)7 (14)

where Ay, Ai, Xo, Xl, A, p are constants and ug, uq, Eo, 711 are given functions satisfying conditions
specified later.



The wave equation
uy — Au = f(x,t,u,ug), (1.5)

with the different boundary conditions, has been extensively studied by many authors, see ([?], [?], [?]
— [?]) and references therein. In these works, many interesting results about the existence, regularity
and the asymptotic behavior of solutions were obtained.

In [?], J.E. Munoz-Rivera and D. Andrade dealt with the global existence and exponential decay
of solutions of the nonlinear one-dimensional wave equation with a viscoelastic boundary condition.

In [?] — [?], Santos also studied the asymptotic behavior of solutions to a coupled system of wave
equations having integral convolutions as memory terms. The main results show that solutions of
that system decay uniformly in time, with rates depending on the rate of decay of the kernel of the
convolutions.

In [?], the global existence and regularity of weak solutions for the linear wave equation

Ut — Uze + Ku+ Aug = f(z,t), 0<z <1, t >0, (1.6)

with the initial conditions as in (1.4) and the two-point boundary conditions

{ uz(0,1) = hou(0,) + Aoue (0, 8) + hiu(1,t) + Mug(1,8) + go(t), W

—uy(1,8) = hiu(1,t) + Mg (1, ) 4+ hou(0,t) 4+ Aows (0, 1) + g1 (¢),
were proved, where hg, h, Eo, El, Ao, A1, Xo, Xl, K, X\ are constants and wug, u1, go, g1, f are given
functions. Furthermore, the exponential decay of solutions were also given there by using Lyapunov’s

method.
We note more that, the following nonhomogeneous boundary conditions were considered by Hellwig

([?], p-151):

a1 u(0,t) + anpug (0,t) + apzue(0,t) + Boru(l,t) + Booue(1,t) + Bosue(1,t) = fo(t),

(1.8)
anu(0,t) + apug (0,t) + arzu(0,t) + Briu(l,t) + Braus(1,t) + Brzue(1,t) = fi(t),
where ayj, fi5, 1= 0,1, j = 1,2,3 are constants and fo(t), fi(t) are given functions.
Let A = agaf12 — a12002 # 0, (1.8) is transformed into
{ w(0,8) = how(0,t) 4+ Aoug(0,8) + hyu(1,t) + Mg (1,t) + go(t), wo)
—uy(1,8) = hyu(1,t) + Mue(1,8) + hou(0,t) + Aue (0, 1) + g1(t), '
in which . .
ho = x(Boza11 — Braaor), h1 = x (ao2f11 — a12f0),
Ao = % (Bozais — Br2cws), A1 = % (a2B13 — a12503),
ho = (a2t — aizaon), hn = L (Bo2Bi1 — Bi2bor), (1.10)

[y

Mo = & (aoeans — a1paos), M = % (Bo2Biz — Bi2003),

90(t) = £ (Bri2fo(t) — Bo2 f1(1)), g1(t) = % (a2 fo(t) — e fi(t)).

The main goal of this paper is to extend some results of [?]. Motivated by the problem of the
exponential decay of solutions for (1.6) — (1.7), we establish a blow up result and a decay result for
the general problem (1.1) — (1.4).

In Theorem 3.1, by applying techniques as in [?] with some necessary modifications and with some
restrictions on the initial data, we prove that the solution of (1.1) — (1.4) blows up in finite time.




In Theorem 4.1, by the construction of a suitable Lyapunov functional we also prove that the
solution will exponential decay if the initial energy is positive and small.

The paper consists of five sections. In Section 2, we present some preliminaries and the existence
results. The proofs of Theorems 3.1 and 4.1 are done in Sections 3 and 4. Finally, in Section 5 we
give numerical results.

2 Existence and uniqueness of solution

First, we put Q = (0,1); Qr = Q x (0,7), T > 0 and we denote the usual function spaces
used in this paper by the notations C'™ (ﬁ) , WP = WP (Q) ) [P = WOP (Q), H™ = W™2(Q),
1 <p<oo,m=0,1,.. Let (-,-) be either the scalar product in L? or the dual pairing of a continuous
linear functional and an element of a function space. The notation |- || stands for the norm in L? and
we denote by || - ||x the norm in the Banach space X. We call X’ the dual space of X. We denote by
LP(0,7;X), 1 < p < oo for the Banach space of the real functions u : (0,7) — X measurable, such
that

T 1/p
lall oo 7x) = (fo u(®)][% dt) < oo for1<p< oo,
and

[wll oo (0,7, x) = esssup [lu(t)[|x for p = oc.
0<t<T

Let u(t), v/'(t) = u(t), u”(t) = ug(t), ug(t), uze(t) denote u(z,t), %(az,t), %(x,t), %(x,t),

%(m ,t), respectively.

1/2
On H', we use the following norm ||v||; = (H’UH2 + Hva2> .
We have the following lemmas.

Lemma 2.1. |[v[|co 1)) < V2|l , for all v e H.

Lemma 2.2. Let Ay, A1 > 0 and Xo, Xl € R, such that ‘Xo + Xl‘ < 24/ XpA1. Then

Xoz? + My? + (Xo + Xl)wy > %u* (% +y?), for all z, y € R, (2.1)

where -
e =1 = (o +0)? +4)\0)\1} min{/\io, %1} > 0. (2:2)

The proofs of these lemmas are straightforward. We shall omit the details.l

Next, we state two local existence theorems. We make the following assumptions:
Suppose that p, a, 3, A, Ag, A1, Ao, A1 € R, are constants satisfying

(A1) p>2,a>2,0>2, A>0;

(Ag) Ag, A1 > 0, Xo, Xl € R, with ‘3\0 + Xl‘ < 24/ AgAq.
Let
(As) h; € HY(0,T), i =1,2.

Then we have the following theorem about the existence of a ”strong solution”.
Theorem 2.3. Suppose that (A1) — (As3) hold and the initial data (ug,u1) € H? x H' satisfies the
compatibility conditions

{ 02 (0) = — Juo(0)]* 2 ug(0) + Aour (0) + hy (0)ug(1) + Auq (1),

~ ~ 2.3
—U(]x(l) = — ]u0(1)|ﬁ_2 uo(l) + Alul(l) + ho(O)UQ(O) + /\oul(O). ( )
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Then problem (1.1) — (1.4) has a unique local solution

{ ue L®(0,T; H?) , up € L™ (0, Ty; H') , uy € L™ (0, T; L?) (2.4)

u(0,-), u(l,) € H?(0,T}),
for Ty, > 0 small enough.l

Remark 2.1.
The regularity obtained by (2.4) shows that problem (1.1) — (1.4) has a unique strong solution

ue L>(0,T,; H*) nC° (0,T,; H') N C* (0,T%; L?) ,
up € L (0, T,; H') N CY (0,T,; L?),

uy € L™ (0,T,; L?),

u(i,-) € H*(0,T,),i=0,1.

(2.5)

With less regular initial data, we obtain the following theorem about the existence of a weak
solution.

Theorem 2.4. Suppose that (A1) — (As3) hold. Let (ug,u;) € H' x L2
Then problem (1.1) — (1.4) has a unique local solution

uwe C([0,T.); H) nC ([0,T); L?), w(i,-) € H'(0,Ty), i =0,1, (2.6)
for Ty, > 0 small enough.

Proof of Theorem 2.3.

The proof is established by a combination of the arguments in [?]. It consits of steps 1 — 4.
Step 1. The Faedo-Galerkin approzimation. Let {w;} be a denumerable base of H 1 We find the
approximate solution of the problem (1.1) — (1.4) in the form

U (t) = Y251 emj(t)w;, (2.7)
where the coefficient functions ¢,,j, 1 < j < m, satisfy the system of ordinary differential equations

([ (um (8),w5) + (uma (), wja) + (U (), w5) + A (up, (£), w;)

+ ()\ou;n(o,t) T () um (1, 1) + Xlugn(u)) w;(0)

o (Mt (1,8) + o (£ (0, ) + oty (0,) ) (1) 2.9

= (Jum [P~ 2t w; ) + [t (0,8)] 2 1 (0, t)w; (0)
(1, )] 2 g (1, ) w; (1), 1 < 5 <m,

um(0) = o, Uy, (0) = ur.

From the assumptions of Theorem 2.3, system (2.8) has a solution u,, on an interval [0, T},] C [0, T].

Step 2. The first estimate. Multiplying the j* equation of (2.8) by c;nj (t) and summing up
with respect to j, afterwards, integrating by parts with respect to the time variable from 0 to ¢, after
some rearrangements and using Lemma 2.2, we get

S (t) < S (0) + 2 fot (Jum(8)|P2um(s), up, (s)) ds
2 [7 [t (0, 8)[ 7 i (0, 8)ul (0, 8)ds + 2 [ [um (1, 8)|7 7w (1, $)uly, (1, 5)dss (2.9)
-2 fg R (8)um(1, s)ul, (0, s)ds — 2 fg o (8)um (0, s)ul, (1, s)ds,
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where

Sm(t) = Hu;n(t)H2 + [Jum@®)]|F + 2)\/0 Hu’m(s)H2d5 + N*/o <‘u§n(0,s)|2 - |u§n(1,s)‘2) ds, (2.10)

Sm(0) = lur]|* + Jluol? = So. (2.11)
Applying the classical inequalities, we estimate the terms on the right-hand side of (2.9) and obtain

Sn(t) < do+dy [ (Sm(s))2 ds +da [1 (S )a—lds 2.12)
+d3f0 ()7 ds +dy(T fo s)ds, 0<t< Ty, '
where B o L
dy =280, d1 =4(vV2)" ,dy = i2a+37
~ 112 ~ 112
o=, 200) = 2 (o]
3= 5-207°, dy(T) = 52 ( || ho oo T e om ) (2.13)

P>l a-1>1,-1>1

Then, by solving a nonlinear Volterra integral equation (based on the methods in [?]), we get the
following lemma.

Lemma 2.5. There exists a constant T, > 0 depending on T (independent of m) such that
Sm(t) < Cr, Ym € N, Vt € [0,T%], (2.14)

where Cp is a constant depending only on T.H

Lemma 2.5 allows one to take constant T, = T for all m.
The second estimate.
First of all, we estimate u],(0). By taking ¢t = 0 and w; = u;,,(0) in (??), we assert

-1 =%
l O) < s | + ol + Al + || luo || = 5. (2.15)

Now, by differentiating (2.8) with respect to ¢ and substituting w; = u,(t), after integrating with
respect to the time variable from 0 to ¢, using again Lemma 2.2, we have

Xpn(t) < X (0) =2 (%1( ' (1, 8) + R (8)um(1, s)) (0, 5)ds
-2 fg (710( 1 (0, 5) 4 iy (8)um (0, 5) )l (

+2(a — 1) [ [um (0, )% ul, (0, s)ul (0, s)ds (2.16)
+2(6—1) fg |um(1,s)]6_2 ul, (1, 8)ul (1,s)ds

+2(p = 1) fy {Jum ()P~ 1 (), i (5) ) ds,
where

Xm(t):H%(t)“ﬂHu;n(t)ufmx/o Hu;;(s)H?dsw*/o (|u;;(o,s)|2+|u;;(1,s)\2) ds, (2.17)

X (0) =l )17 + uall? < X7 + [[ua [} = Xo. (2.18)
Estimate respectively all the terms on the right-hand side of (2.16) leads to

Xpn(t) < dp +2 [7 Xpn(s)ds, (2.19)
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where B
dr = 2Xo + 36 [(a = 12207205 + (8 - 1)22020) 7

(2.20)

+(p—1)22r 1 TCh 4 Bl gy (Hﬁa(

Zl(O,T) + HEH;(O,T) ’

in which dr is a constant verifying the inequality /% HUH%OO(O,T) +2 H”/“%?(O,T) <dr ”UH?ﬂ(O,T) , for all
ve HY0,T).
By Gronwall’s lemma, it follows from (2.19), that

Xon(t) < dp exp(2T) < Cp, Vt € [0, T3], (2.21)

where Cr is a constant depending only on T.

Step 3. Limiting process. From (2.10), (2.14), (2.17) and (2.21), we deduce the existence of a
subsequence of {u,,} still also so denoted, such that

U — U in L>*(0,T,; H') weakly™,
ul, —u in  L®(0,T,; HY) weakly™,
uy — u in  L®(0,T,; L% weakly*, (2.22)

U (0,+) — u(0,-) in H2(0,T,) weakly,
um(1,-) — u(l,-) in H?(0,T,) weakly.

By the compactness lemma of Lions ([?], p. 57) and the compact imbedding H?(0,7}) —
C' ([0,T]), we can deduce from (2.22) the existence of a subsequence still denoted by {u,,}, such

that
Uy — U stronglyin L?(Qr,) and a.e. in Qr,,

ul, —u stronglyin  L?(Qr,) and a.e. in Q7,, (2.23)
U (i,-) — u(i,-) stronglyin C1([0,Ty]), i =0, 1.
Using the following inequality

| |z[P=22 — [y|P2y| < (p— MP2 |z —y|, Va,y € [-M, M], VM >0, Vp > 2, (2.24)
with M = /2Cr, we deduce from (2.14) that
| P2, — |ufP~2u| < (p — 1)MP™2 up, — u|, for all m, (z,t) € Qr,. (2.25)
Hence, by (2.23)1, we deduce from (2.25), that
[t [P~ 2up, — |u|P~%u  stronglyin L?(Qr,). (2.26)
Passing to the limit in (2.8) by (2.22), (2.23), and (2.26), we have u satisfying the problem
(W'(t),v) + (ugp(t), vz) + (u(t),v) + A (W (t),v)
+ (0w (0,8) + T (B)u(1, ) + Ay (1, 1)) v(0)
n (Alu’(l,t) + T (£)u(0, £) + Xou'(o,t)) (1) (2:27)

= (JuP~2u,v) + |u(0,)|* % w(0,£)v(0) + |u(1,)|" 2 u(1,t)v(1), for all v € H,
u(0) = ug, u'(0) =uy.




On the other hand, we have from (2.22); 23, (2.27); that
Upe = U +u+ M — |u[P~2u € L*°(0, Ty; L?). (2.28)

Thus u € L*®(0,T,; H?) and the existence of the solution is proved completely.
Step 4. Uniqueness of the solution. Let uy, us be two weak solutions of problem (1.1) — (1.4),
such that

u; € L (0,Ty; H?) , uf € L™ (0,T; L?) , u} € L™ (0,Ty; L?), (2.20)
ui(0,-), ui(1,7) € H2(0,T.) i = 1,2. '
Then w = uy — ug verifies
(- (W(t),v) + (wa (), va2) + (w(t),v) + Aw'(t),v)
n </\0w’(0,t) I (Hw(1, b + Xlw'u,t)) v(0)
+ <)\1w’(1,t) + o (t)w(0,¢) + Xow'(o,t)) (1)
= ([ [P72ur — [ualP~?uz, v) (2.30)
a0, D1 ur (0,2) — luz(0,8)|* > us(0,)| v(0)
+ []ul(l,t)|ﬁ_2 ui(1,8) — |ua(1, )72 uz(l,t)} v(1), for all v € H,
We take v = w = u; — ug in (2.30) and integrating with respect to ¢, we obtain
S(t) < -2 fot ho(s)w(0, s)w' (1, s)ds — QfOt hi(s)w(1, s)w' (0, s)ds
+2 fot [\u1(0,3)|a_2 u1(0,8) — ]u2(0,3)|0‘_2 UQ(O,S)] w'(0, s)ds
(2.31)
2 Jy [[un(1, )7 w1 (1,5) = fuz(1,8)|* " ua(1, 5)| w'(1, 5)ds
+2 fot <\u1(s)]7’_2u1(s) — ]u2(s)\p_2u2(s),w’(s)> ds,
where
S(0) = [ O + [ + 27 f{ o) ds + oo f{ (10 08)P + /(1)) ds. (232
It implies that B
S(t) < K [ S(s)ds, (2.33)
where
- ~ 2 ~ 12
_ 32 2204 12284 _ p—2
Kv =3 <HhOHLoo(O,T) + thHLoo(o,T) o DPMT A+ (6 - 1M, > T2 - DM
(2.34)

with My = v/2 <HUHL°°(O,T*;H1) + HUHLM(O,T*;Hl)) :
By Gronwall’s lemma, it follows from (2.23), that S = 0, i.e., u = v. Theorem 2.3 is proved
completely.ll

Proof of Theorem 2.4.

In order to obtain the existence of a weak solution, we use standard arguments of density.



Let us consider (ug,u;) € H' x L? and let sequences {ug,, } and {u1,,} in H? and H', respectively,

such that
{ Ugm — uo stronglyin  HU,

Uim — up  stronglyin L2

So {(ugm, u1m)} satisty, for all m € N, the compatibility conditions

{ Uomz(0) = — |uom (0] uom (0) + Aotu1m (0) + Ay (0)tugm (1) + Auim (1),
—tomaz(1) = — [uom (1”72 uom (1) + Atetm (1) + ho(0)tigm (0) + Agtim (0).

(2.35)

(2.36)

Then, for each m € N there exists a unique function u,,, in the conditions of the Theorem 2.3. So

we can verify

( (), 0) + (Uma (1), v2) + (um (£), v) + A (g, (), v)

+ ()\Ou;n(o,t) + By (Bum (L, 1) + Xlu;n(l,t)) 2(0)

+ <)\1u;n(1,t) + o (E)um (0,) + Xou;n(o,t)) (1)
= (Jtm[P "2, 0) + |tm (0,8)| 2w (0, £)v(0)

+ [t (1, 8)] P72 (1, £)0(1), for all v € H?,

’LLm(O) = UOm, ulm(o) = Ulm,

and
um € L™ (0, T,; H*) N C° (0, Ty; HY) N C* (0, T; L?)

up, € L (0, T,; H') N C° (0, T%; L?)
upy, € L™ (0,T,; L?)
Um (0,-), wm(1,-) € H2(0,T}).

By the same arguments used to obtain the above estimates, we get

ot )12 + Tt (013 + 27 St (5) 2 s + g f5 (I (0,5)[2 + a1, 9)]) dis < Cp,

Vt € [0,T4], where Cr is a positive constant independent of m and ¢.
On the other hand, we put wy,; = up, — w;, from (2.37), it follows that

<w;f1,l(t)7v> + (Wi 12 (1), Vo) 4 (Wi g (£),v) + A <w;n,l(t)7v>
+ (Aowﬁn,z(o,t) + iy (8w (1,) + M, (1, t)> v(0)

n </\1w;n’l(1,t) + ho(t)wm (0, 8) + Xow;ml(o,t)) u(1)

+ [\um(l,tﬂﬁ_z U (1,8) — |y (1, 8)|P 72 ul(l,t)] v(1), for all v € H!,

Wiy 1(0) = wom — uor, wy, ;(0) = w1 — vy

= (Jtm [P~ 2t — |w]P 2w, v) + []um((),t)]a_z U (0,1) — [ug(0,8)[* 2 (0, 8) | v(0)

(2.37)

(2.38)

(2.39)

(2.40)



We take v = w;, ; = up, — uj, in (2.40) and integrating with respect to ¢, we obtain

S (£) < S 1(0) = 2 fg B (8)wn 1 (1, )], 10, 8)ds — 2 f5 ho($)wn (0, 8)w),, (1, 8)ds
+2 [ [!um(o,s)!“‘Qum(o,s) — [uy(0, 8)[* ul(O,s)} wh, (0, 5)ds
2 ¢ [l (1 9) 72 (1, ) — (1, 9) P2 (1, )] (1, 5)ds (2.41)
2 [ (lun ()17 210m(5) = la() P 22u(s), ]y, (5) ) ds,

where

SmJ(t):Hw;nJ(t)Hz—i—me,l(t)H%+2)\/0 |yw;ml(s)|y2ds+u*/o Uw;,l’l(O,s)!z—i-!w;nvl(l,s)ﬂ ds,

(2.42)
S (0) = luam — wil® + luom — uolll; - (2.43)
Hence ~
Sma(t) <2 (Hulm — ul]|* + |[uom — umuf) + Kr [y Sma(s)ds, (2.44)
where
~ ~ 2 ~ 2
Ry =2p - )M + 2 | [T | =y —1)2MEt 4 (3 — 1)2 M
T (p—1)Mp = + 2= Ul oo 0.1y + |[ho L (0.T) + (o= 1) M + (8 = 1) My )
(2.45)
with Mp = /2Cp.
By Gronwall’s lemma, it follows from (2.44), that
Sma(®) <2 (Jlerm = wnll® + lluom — warll}) exp(TKr), vt € [0,T.] (2.46)

Convergences of the sequences {ugn, }, {u1m} imply the convergence to zero (when m, I — o0) of
terms on the right hand side of (2.46). Therefore, we get

{ Uy, — U strongly in CO([O,T*]§ Hl) n Cl([O’T*]; L2)’ (2.47)

U (i,-) — u(i,-) stronglyin H'(0,T}), i =0, 1.

On the other hand, from (2.39), we deduce the existence of a subsequence of {u,,} still also so
denoted, such that

U — U in L>®(0,T,; H') weakly™,

ul, —u in  L®(0,T,; L?) weakly™,
Um(0,:) — u(0,-) in HY0,T,) weakly,

(2.48)
Um(1,-) — u(l,:) in HY(0,T,) weakly,
ul,(0,-) — u/(0,-) in L?(0,T,) weakly,
- 2
|, (1,-) —/(1,-) in L*(0,Ty) weakly.

By the compactness lemma of Lions ([?], p. 57) and the compact imbedding H'(0,T})
C°([0,T.]), we can deduce from (2.48);_4 the existence of a subsequence still denoted by {u,},
such that

U, — U stronglyin  L?(Qr) and a.e. in Qr,,
(2.49)

Um(4,-) — u(i,-) stronglyin C°([0,Ty]), i =0, 1.



Similarly, by (2.25), we deduce from (2.49), that
[t [P~ 2 — |u|P~2u  stronglyin L?(Qr,). (2.50)
Passing to the limit in (2.37) by (2.47) — (2.50), we have u satisfying the problem
&/ (), 0) + (U (), va) + (u(t), v) + A (W' (£),0)
+ (Aou’(o,t) + R (Bu(l, ) + Xlu'u,t)) 2(0)
n (Alu’(l,t) + T (£)u(0, 1) + Xou'(o,t)> (1) (2.51)

= (JulP~2u,v) + [u(0,)|* 2 u(0,t)v(0) + |u(1, )" > u(1,t)v(1), for all v € H',
u(0) = ug, v (0) = uy.

Next, the uniqueness of a weak solution is obtained by using the well-known regularization proce-
dure due to Lions. See for example Ngoc et al. [?].
Theorem 2.4 is proved completely.ll

Remark 2.2. Incase 1 < p, a, 8 < 2, and hg, hy € L™ (0,7), (uo,u1) € H' x L?, the integral
inequality (?7) leads to the following global estimation

Sm(t) < Cp,VYm e N, Vt € [0,T], VT > 0. (2.52)

Then, by applying a similar argument used in the proof of Theorem 2.4, we can obtain a global
weak solution u of problem (1.1) — (1.4) satisfying

uwe L®(0,T;H'), u € L> (0,T;L?), u(i,") € H (0,T),i=0,1. (2.53)
However, in case 1 < p, a, 8 < 2, we do not imply that a weak solution obtained here belongs to
C ([07 T);H 1) nct ([0, TY; L2) . Furthermore, the uniqueness of a weak solution is also not asserted.
3 Finite time blow up
In this section we show that the solution of problem (1.1) — (1.4) blows up in finite time if
X() = Xl = X, with ‘X‘ < v/AgA1, and
2 2 7
—H(0) = § l[ua® + & luoll} = L luollF, — 2 [uo(0)|* — 3§ |uo(1)|” + hu(0)uo(1) < 0. (3.1)
First, in order to obtain the blow up result, we make the following assumptions

(Aé) XO = Xl = 3\, with ‘X‘ < VA1

(A%) ho(t) = hi(t) = h, where h is a constant satisfies ‘ﬁ‘ < A:(‘{I;JEQ), g = min{p, o, 5};

Then we obtain the theorem.

Theorem 3.1. Let the assumptions (A1), (AS), (A5) hold and H(0) > 0. Then, for any (up,u;) €
H' x L?, the solution u of problem (1.1) — (1.4) blows up in finite time.

Proof. We denote by E(t) the energy associated to the solution u, defined by

B0 = 5 |1 O + 5 1Ol = 5 Ja@), = 10,01 = 5 u(1, 01, (32)
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and we put B
H(t) = —E(t) — hu(0,t)u(1,t). (3.3)

From Lemma 2.1, it is easy to see that
HO 2 L+ = 00 + 5 L0 = 3@l - (5 +2[i] ) ol G
On the other hand, by multiplying (1.1) by u/(x,t) and integrating over [0, 1], we get
H'(#) = A[u O + {20 [/ 0,6)* + 2 [/ (1,6)* + 23/ (0,00 (1,0)} 2 0, ¥t € [0, T).  (3.5)
By Lemma 2.2, we have

o |/ (0,8)] + Ay [/ (1,6)]* + 23/ (0, )/ (1, 2) > %u* (\u’(o,t)\2+ \u/(1,t)\2), vt e [0,7.), (3.6)

where L1
_ 12
s = </\0/\1 A > min { N )\1} > 0. (3.7)
Hence, we can deduce from (3.5), (3.6) and H(O) > 0 that
1
0<H(0)<H() < HU( )][%8 ! 0,6)* + 3 lu(1,1)|7, vt € [0, T.). (3.8)
Now, we define the functional
L(t) = H'7(t) +c®(t), (3.9)
where
o ! A 2 /\0 2 )‘ 2
©(t) = (u(t), ' (t) + 5 lu@®” + F[u(0, )" + 5 Srlu(,1)* 4 X0, thu(1, 1), (3.10)
for € small enough and
0<p<b=2_1 (3.11)
n < o 5 .

Lemma 3.2. There exists a constant dy > 0 such that
L'(t) = dy (H(E) + [ @) + [u@f + [u(0,0)]" + [u(1,6)]") (3.12)
Proof of Lemma 3.2. By multiplying (1.1) by u(z,t) and integrating over [0, 1], we get
(1) = [/ @)1 + [l 75 + [w(0,8)|* + u(1, )17 = Ju@)lIf - 2hu(0, )u(1,1). (3.13)

By taking a derivative of (3.9) and using (3.13), we obtain

L(t) = (1= H I OH' () + ¢ [u' (@) +ellu@)}, + = (Ju0,6)]" + [u(1,1)]%)

(3.14)
—elju(t)||? — 2ehu(0, t)u(l, t).
Since (3.5), (3.14) and the following inequality
—2hu(0, t)u(1,t) > —4 (ﬁ‘ lu(®)]2, (3.15)
we deduce that
/() 2 A= H(E) + ] [ ()1 + & (@)l + 1u(0,0)| + u(1,6)]°) -
3.16

e (1 +4 ‘ﬁ() u(t)]|?
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On the other hand, it follows from (3.8) and the following inequality

HO < 3 I+ 2101 + 5t = 5 WOl - (5 -2[F]) luol?, @7
that 5 )
(@ < 2~ (@I, + .01 + u( ) (3.18)
71— 4]f

where ¢ = min{p, a, §}.
Combining (3.16) and (3.18), we have

L) 2 el O+ (1= 222 (Ju@l, + 1u(0, )| + fu(1, 1)) (3.19)
Using the inequality
(N5 + (0, 8)]* + Ju(L,)|” = gH (1), t = 0, (3.20)
we can deduce from (3.19) that, with ¢ is small enough,

L) > dy (H() + [/ ()2 + (@) [, + lu(0,0)]° + Ju(1,0)]7) (3:21)

for d; is a positive constant. The lemma 3.2 is proved completely.ll

Remark 3.1. From the formula of L(¢) and the Lemma 3.2, we can choose € small enough such
that
L(t) > L(0) > 0, Vt € [0, T%). (3.22)

Now we continue to prove Theorem 3.1.

Using the inequality
(Z?Zl a:,) < gpt ZZ (2%, for all p > 1, and 21, ..., 26 > 0, (3.23)
we deduce from (3.9), (3.10) that

L0 (1) < Const (H(1) + [(u(t), ! (6477 + u(n)[2/ 07
(0, ) 2/ 4 [u(1, ) 4 (0, u(1, )] ) (3:24)

< Const (H () + [{u(t), w/ (O] 4+ fu(0,) /0= 4 @, ) /O ) [1,7)
On the other hand, by using the Young’s inequality
[ut), w ()T < Ju) [V O | ()| O
< Const [|u(t)|[ " o (8) ||/ =) (3.25)
< Const (|[u(®)]|5, + v/ (®)]I?) ,

where s = 2/(1 — 2n) < p by (3.11).
Now, we need the following lemma.

Lemma 3.3. Let 2 <711 <p,2<ry<a, 2<r3<f, we have

12



ol + @1 + o™ < 5 (ol + Joll5, + [0(©)1 + [o(0)) (3.26)
for any v e H'.
Proof of Lemma 3.3.

(i) We consider two cases for ||v]|,, :
(i.1) Case 1: [jv||;, <1:
By 2 <ry < p, we have

2 2 2 —
Ioll7 < lloliZe < IollF < lloll} + llolifs + 10(0)|* + [o(1)” = plo]. (3.27)

(i.2) Case 2: |jv]|;, > 1: By 2 <r; < p, we have

ol e < [lvll7s < plo]- (3.28)
Therefore
lvll7s < llvllf, < plv], for any v e H'. (3.29)
(ii) We consider two cases for |v(0)] :
(ii.1) Case 1: |[v(0)] <1:
By 2 <7y < a, we have
O™ < [0(O)* < [|vl[ogo ) < 2vl7 < 2000 (3.30)

(ii.2) Case 2: |v(0)| > 1: By 2 <719 < a, we have

[w(0)[™ < |u(0)]* < p[v]. (3.31)
Therefore
[v(0)|™ < 2p[v], for any v € H'. (3.32)
(iii) Similarly
lv(1)]™ < 2p[v], for any v € H'. (3.33)

Combining (3.29), (3.32), (3.33), we obtain
[l e + 10(0)]"™* + [0(1)]"™* < Bplv] <5 <||U||§ + [[0llZ + [0(0)[* + |U(1)!ﬁ) , Vv e H. (3.34)

Lemma 3.3 is proved completely.ll

Combining (3.18), (3.24) — (3.26) and using the Lemma 3.2 we obtain
LYO=D(4) < Const (H(®)+ [ ()] + e + .01 + u(1,0/7) ¥ € 0.7.).  (3.35)

This implies that

L'(t) > do LV (1), Yt € [0,Ty), (3.36)
where dg is a positive constant. By integrating (3.36) over (0,¢) we deduce that
L= ) > 1 0<t<iTp-n (=7 (q). (3.37)
— Ln/(=m)(0) — fz_zt’ - dan

Therefore, (3.37) shows that L(t) blows up in a finite time given by
1—n_ _ q_
T, = —L="0=m(0). 3.38
= ) (339
Theorem 3.1 is proved completely.ll
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4 Exponential decay

In this section we show that each solution u of (1.1) — (1.4) is global and exponential decay
provided that 7(0) = |luo||? — |luo||%, — |uo(0)|* — lug(1)]” > 0 and E(0) is small enough.
First, we construct the following Lyapunov functional

L(t) = E(t) + 60(t), (4.1)
where & > 0 is chosen later and
9(0) = {ult), ' (1) + 2 N> + 52 0,0 + 2 u(1, 1) (1.2
Put
1) = I0u(®) = )2 ~ )l ~ 1u(0,0)|* ~ Ju(1, ). (4.3

We make the following assumption

(A4) i€ L® (Ry) NL* (Ry), i =1,2.
Then we have the following theorem.

Theorem 4.1. Assume that (A1), (A2), (A%4) hold. Let I(0) > 0 and the initial energy E(0)
satisfies

(p—2)/2 (a—2)/2 (B-2)/2
7 = Cf (255(0)) +20/2 (225E(0)) + 2072 (22 5(0)) <1, (4.4)
with ¢ = min{p, o, 5}, and
4q ~ 2 ~ 2
_ 4,
e [u* (q—2) <Hh0‘ ey th‘ L?(Rn)] ’ (45)

and C, is a constant verifying the inequality ||v| » < Cpllv||1, for all v € H.

Then, there exist positive constants C, v such that, for ‘Eo 2Ry’ hl‘ L®EY) sufficiently small,
we have
E(t) < Cexp(—nt), for all t > 0. (4.6)
Proof.
First, we need the following lemmas
Lemma 4.2. The energy functional E(t) satisfies
B (t) < =M’ (0)1 + 5= (B3(0) + B30)) I () = Jo- [0 Q0P + | (LD (@7)

Proof of Lemma 4.2. Multiplying (1.1) by «/(x,t) and integrating over [0, 1], we get

E (1) = -\ @) - {Ao ! (0,8)]% + A o (1,8)]2 + (XO n Xl) o’ (0,1) u' (1,t)}

(4.8)
—ho(t)u (0,) u’ (1,) — hy(t)u (1,¢)u’ (0,¢).
Again, by lemma 2.2, we have
Ao ’u/ (07t)|2 + A ’u/ (17 t)’2 + (XO + Xl) u' (07t) u' (17 t)
(4.9)

> Lpe [l (0,0) + o' (1,0) ]
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On the other hand
~Ro(t)u (0,6)w (1,1) < dpue | (L) + 2R3 Ju (0], (110)

oty (1,0 (0,1) < Sy ol (0,1)F + 2T (1) (4.11)
Combining (4.8) - (4.11), it is easy to see (4.7) holds.

Lemma 4.2 is proved completely.ll
Lemma 4.3. Suppose that (A1), (Az), (AS) hold. Then, if we have I(0) > 0 and

(-2)/2 (a-2)/2 (8-2)/2
= CP < 247 E(0)> +20/2 <2L7"2E(0)> + 2872 (%E(O)) <1, (4.12)

q— q-—
then I(t) >0, Vt > 0.
Proof of Lemma 4.3. By the continuity of I(¢) and I(0) > 0, there exists 77 > 0 such that

I(u(t)) >0, Vt € [0,T1], (4.13)
this implies
J(t) 2 B2 a2 + 11(0) > B2 Ju(®)|2, vt € 0,73, (4.14)
where
_1 1 8
J(t) =5 llu(®)] - —HU( )L | 0.8)% = gl 1" (4.15)
It follows from (4.14), (4.15) that
2 2
lu@lf < ~Z57(0) < 5B, Vi€ 0,Ti] (4.16)

Combining (4.7), (4.16) and using the Gronwal’s inequality we have
2qr

u(®)]|? < —2E(t) < E(0), Vt € [0,T}], (4.17)

q—
where 7 as in (4.5).
Hence, it follows from (4.12), (4.17) that

()15, + [u(0, )| + [u(1, )% < CElu(®)|} + 222 u@)||§ + 2°/2|[u(t)|{
(4.18)
<0 lu®)|F < llu®)|, vt € [0,T1].

Therefore I(t) > 0, Vt € [0, T1].

Now, we put Ty, = sup{7T" > 0: I(u(t)) >0, Vt € [0,T]}. If T, < +o0o then, by the continuity of
I(t), we have I(Ty) > 0. By the same arguments as in above part we can deduce that there exists
Ty > T, such that I(t) > 0, Vt € [0, T,]. Hence, we conclude that I(¢t) > 0, V¢t > 0.

Lemma 4.3 is proved completely.ll

Lemma 4.4. Let I(0) > 0 and (4.13) hold. Then there exist the positive constants 1, B2 such
that
BLE(t) < L(t) < BE(t), Vt >0, (4.19)

for ¢ is small enough.

Proof of Lemma 4.4. It is easy to see that

1+5H ‘) +[ +5<%>\+)\0+)\1>]Hu(t)HfgﬂgE(t), (4.20)
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where

2 1 1+ A
ﬁ2—1+5+—q[—+5<L+A0+A1>] (4.21)
212 2
Similarly, we can prove that
L(t) = F2 [ O + 5 (1= 8) [lu()]F = Sllu(®)l[F, — 2u(0,0)]* = Flu(l,#)|?
(4.22)
> 550 ()P + 5 (452 = 0) Ilu@)3 + 21(1) = B E(®),
where )
1 = min {1 — 0; q% — 5} >0, ¢ is small enough. (4.23)
Lemma 4.4 is proved completely.ll
Lemma 4.5. Let I(0) > 0 and (4.12) hold. The functional 1(t) defined by (4.2) satisfies
W (1) < I @) = [1 =7 =21 = 2[Fo(®) + (1) ] Ilu ()12
(4.24)

2 (B+22) (I 0,0 + ' (1,1)).
for all e1 > 0.

Proof of Lemma 4.5. By multiplying (1.1) by u(z,t) and integrating over [0, 1], we obtain

W (t) = ! @1 + ()7 + [0, )] + |u(L, )% — [u ()]

- - N B (4.25)
- <h0(t) + hl(t)> w(0,8)u(1,t) — Aow’ (0,8)w (1, ¢) — Aqu (0,8) ' (1,1) .
Hence, the lemma 4.5 is proved by using some simple estimates.ll
Now we continue to prove Theorem 4.1.
It follows from (4.1), (4.2), (4.7) and (4.24), that
L(t) <= (A =d) |l @)
+ [2 (R + 13®) + 28 fot) + T (t)] = 81 = = e0)] Ju ()]} (4.26)
[ = 2 (B3] [l 0.0 + ' (11)P]
for all 9, 1 > 0.
Let
0<ep <1-—n" (4.27)

Then, for § small enough, with 0 < § < A and if ﬁo, ha satisfy

% <HEOH;(R+) + HﬁlHiw(Rg) +2 <HhOHL°°(R+ * HﬁlHLw(R”) <01 —n*" —e1), (4.28)

we deduce from (4.19) and (4.26) that there exists a constant v > 0 such that
L'(t) < —yL(t), Vt>0. (4.29)

Combining (4.19) and (4.29), we get (4.6). Theorem 4.1 is proved completely.ll
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5 Numerical results
Consider the following problem:
Upp — U + 1+ Mg = |uP 2 u+ f(x,t), (5.1)

0 <x<1,t>0, with boundary conditions

{ uz(0,8) + [w(0,8)|“ 72 w(0,) = Aoug(0,8) + hy(H)u(1,t) + Aug(1, ) + go(2), 652)
—ug(1,8) + |u(1, )P 72 w1, t) = Mug(1,8) + ho(£)u(0,t) + Xoue (0, t) + g1 (), '
and initial conditions

u(z,0) = up(z), w(z,0)=1u1(z), (5.3)

where A = Mg = A\ =1, Xo = Xl = _71, p =3, a = =4 are constants and the functions ug, 1, Eo,
h1, go, g1 and f are defined by

UO(l‘) “"’, (:L")I—e””,
ho

6 1( ) 6—1—2t’
( —) —t + 26 s gl(t) = _%e_tv
fx,t) = —e?72t,

The exact solution of the problem (5.1) — (5.3) with ug, w1, ﬁo, 711, 9o, g1 and f defined in (5.4)
respectively, is the function U, given by

Uer(m,t) = L. (5.5)

To solve problem (5.1) — (5.3) numerically, we consider the differential system for the unknowns

Uj(t) = u(zj,t), Vj(t) = %(t), with ; = jAz, Az =+, j=0,1,..,N :

%(t) = ‘/j(t)7 7j = 07 1a "'7N7
Do () = — (14 N?) Up(t) + N2Ui(t) — Nhi()Un(t)
—(A+ N)Vo(t) = NX Vi (t) + |U,[P~2 Up + N |U,|* 2 Uy — Ngo(t) + fo(t),

D (t) = N2U;_1 () — (1+ 2N2) U;(t) + N2U;(t) — AVj(t)

+U PP U+ £(8), G =T N = 1,
DN () = —Nho(t)Up(t) + N2Un-1(t) — (1 + N?) Un(t)
—NXVo(t) — (A + NA)Vn(t) + |Uy [P 2 Uy + N |Un|? 2 Un — Ngi(t) + fa(t),
U;j(0) = uo(x;), V;(0) =t (z;), j =0,N.

To solve the nonlinear differential system (5.6), we use the following linear recursive scheme gen-
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erated by the nonlinear terms

(&) = V"™ (t), 5 =0,1,... N,
(m) m m _ .
S (1) = — (1+ M) U (0) + MU (0) = Nl (U (1)

—(A+ NV (1) = NV (8)
-2 m— _ a—2 m—
+ [Um=DPE g im N oD T gD NG () + folt),

T (t) = N2U™ (6) — (14 2N2) U™ (1) + N2U™ (1) — av ™ (1)

5.7)
m—1) P72 ;/(m—1 R S v (
+ U]( 1)‘ U]( )+fj(t)7.7:17N_17
avim 7 m m m
X (t) = —Nho()US™ () + N2U{, (8) — (1+ N2) U (1)
—NXV™ () — (A + NADVEI™M(8)
- m— m—1)|P=2 __(m—
+ om0 u T+ N ug oY - N + S (@),
U 0) = do(e;), V™(0) = @(zy), j=0. N, m=1,2,...
Then system (5.7) is equivalent to:
[ 77(m) T [ ™) T
U(Em) 0 o - ... 0 1 UOm)
1 0 0 - ... 0 1 U,
g vl = [v @ () | do 51 v
v, a7 @ —A v
: a1 Yoo -A
(m Yo(t) a1 y+ar | d o1 (m
| vy | vy ]
(5.8)
PSR
0
0
LA
By
|
and

(U5 (0), U™ (0), ., UG (0)) = (io(wo), o 1), o (2))

Vo™ () V™ (0), s V(0)) = (@ (@0), T (w1), o 1 (20)

/N
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where

a; = N2 y=—1-2N2=—1—2ay, F(t) = —Nho(t), 31 (t) = —Nhy(t),
50 =-A—NXg, 01 = —A— N1, 0o = =N, 61 = —NAy,

- P2 (e N
F(m) :Fj(t7U]( 1)): Uj(m_l)‘ U]( 1)+fj(t)7 ]ZlaN_L

J
(5.9)
m m— m— -2 (m— m—1) 142 7 (m—
B = R = [0 4 0 0 — )+ ),
m m— m—1)|P~2 (m— m-1)[8=2 __(m—
F{Y = Fn(t U0 = oD o+ N ool - N + fae),
fj(t):f(l'j,t), ]ZO,N
Rewritten (5.8)
HXM () = ADX (1) + Fm (¢, Xm=D), 510
X (0) = X, ’
where
( T
Xt = (U™ (0, U™ (1), UGV (0, Vg™ 0.V @), VI (1) € RV,
T
FOm(g) = (o,o,...,o, Fom),Flm),...,F}vm)) € R2N+2,
_ _ _ _ ~ _ (5.11)
Xo = (o(x0), U0 (1), ; -+ Uo(2N), U1 (0), U1 (1), , -y U (7)) € RENT2,
0 E
a0={ G &)
1 v+ o nt) ]
1 Y
o A = : (5.12)
o 7 o
1 | F0(?) ar y+a |
5 -
-
B = . (5.13)
—A
| do o1 |

To solve the linear differential system (77?), we use a spectral method with a time step At = 0.08
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and a spacial step Az = 0.1

approximated solution

X

Figure 1. Approximated solution

exact solution

25

X 0 o

Figure 2: Exact solution

In fig. 1 we have drawn the approximated solution of the problem (5.1) — (5.3) while fig. 2
represents his corresponding exact solution (5.5). So in both cases we notice the very good decay of
these surfaces from T'=0to T = 5.
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