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On the remainder in the Weyl formula for the

Euclidean disk

Yves Colin de Verdière ∗

May 9, 2011

Abstract

We prove a 2-terms Weyl formula for the counting function N(µ) of
the spectrum of the Laplace operator in the Euclidean disk with a sharp
remainder estimate O

(

µ2/3
)

.

Introduction

Let us denote by 0 < λ1 < λ2 ≤ · · · the eigenvalues for the Dirichlet Laplacian
of some bounded connected smooth domain X in the Euclidean plane. It has
been shown by Ivrii [11] that the following 2-terms Weyl formula holds under
some genericity assumption on the periodic orbits of the associated billiard ball
problem: if NX(µ) = #{j | λj ≤ µ2},

NX(µ) =
|X|
4π

µ2 − |∂X|
4π

µ+R(µ)

with R(µ) = o(µ). Moreover, this result is quite optimal: Lazutkin and Terman
[13] showed that there is no δ > 0 so that an estimate R(µ) = O

(

µ1−δ
)

holds for
all smooth convex domains.

Our goal is to get an upper bound for R(µ) in the case of the Euclidean disk.
Our main result1 is:

Theorem 1
Ndisk(µ) = µ2/4− µ/2 +O

(

µ2/3
)

.

∗Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin
d’Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr

1After having completed this work, we learned from I. Polterovich that the same result has
been announced in 1964 by N. V. Kuznecov and B. V. Fedosov in [12]. The method is similar
to ours. We give here an independent complete derivation of the needed Van der Corput result
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The proof is based on the explicit expression of the eigenvalues as the squares
of the zeros of the Bessel functions Jn as well as on some precise asymptotics of
these zeros which goes back to Olver (see [15, 5]). This way, we have to study a
lattice point problem in some domain with cusps. A rather general lattice point
problem was studied by Van der Corput [16], see also [10, 9, 17, 3]. In [4], a similar
method was used in order to get a good remainder estimate for some surfaces
of revolution. Let us note also that the same remainder estimate holds for the
integrable polygonal billiards like the rectangles or the equilateral triangles: this
is a direct consequence of the explicit formula for the eigenvalues which reduces
the question directly to a lattice point problem for which the Van der Corput’s
result applies.

1 The spectrum of the unit disk

We consider the spectrum of the Euclidean Laplacian ∆disk = −∂2x − ∂2y in the
unit disk in R2

x,y with Dirichlet boundary conditions. As it is well known and can
be checked by separation of variables, the eigenvalues of ∆disk are the squares of
the zeros of the Bessel functions Jn, n ∈ Z. Let us recall that

Jn(x) =
1

2π

∫ π

−π

ei(x sin t−nt)dt , (1)

and that we have the following identities Jn(−x) = (−1)nJn(x), J−n(−x) =
Jn(x). Let us denote by |n| < x1(n) < x2(n) < · · · < xk(n) < · · · the positive
zeros of Jn. Then the spectrum of ∆disk, with multiplicity, is given by

σ = {xk(n)2 | n ∈ Z, k = 1, · · · , } .

In order to describe the asymptotics of the zeros of Bessel functions, we in-
troduce the domain D in R

2 defined by

D = {(x, y) | − 1 ≤ x ≤ 1, y ≤ g(x), y ≥ max(0,−x) }
with

g(x) =
1

π

(√
1− x2 − x arccosx

)

.

Let us define R = {(n, k − 1/4) | (n, k) ∈ Z
2} and S = {(x, y) | y ≥

max(0,−x)}. Let F : S → R be the function homogeneous of degree 1 which
satisfies F ≡ 1 on the graph of g. The spectrum of the disk is approximately
given by {λj | j ∈ N} ∼ {F (m) | m ∈ R ∩ S}. More precisely, for n ≥ 0,
xk(n) ∼ F (n, k − 1/4), while for n < 0, xk(n) ∼ F (n, k + |n| − 1/4). This will
reduce our problem to a lattice point problem:

Ndisk(µ) ∼ ND(µ) = #{m ∈ R ∩ µD} .
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Figure 1: the domain D

Remark 1 Let us note that D and R are invariant by the linear involution
J(x, y) = (−x, y + x). This corresponds to the fact that Jn and J−n have the
same zeros.

In order to complete the argument, we will have to study the lattice point
problem (Section 2) and to show how close Ndisk(µ) and ND(µ) are (Section
3). The first part uses the method of Hlawka, Herz and Randol [10, 9, 17] for
studying smooth lattice point problems and the second part is done using Olver’s
asymptotics for the zeros of Bessel functions: we re-derived it in [5] using the
integral representation of the Bessel functions and the general theory of oscillatory
integrals associated to versal unfoldings of singularities as explained in [8].

2 A lattice point problem with a cusp

Let us denote by R the lattice R := {(n, k − β) | (n, k) ∈ Z2} with 0 < β < 1.
Let us consider a domain G ⊂ R2 with a cusp: G = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤
g (x)} with g (x) ∼ a (1− x)3/2 with a > 0 near x = 1. We consider the weighted
lattice point problem defined by the counting function

NG,β,χ (µ) =
∑

m=(m1,m2)∈µG∩R

χ (m2/m1) ,

with χ ∈ C∞
o (R) with χ ≡ 1 near 0 and the support of χ small enough.

We have the following 2-term Weyl estimate:

Theorem 2 Under the previous assumptions on G, β and χ, we have

NG,β,χ (µ) =

(
∫

G

χ (y/x) dxdy

)

µ2 +

(

β − 1

2

)

µ+ 0
(

µ2/3
)

.
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Corollary 1 If D is the domain defined in Section 1 and β = 1/4, we have

ND(µ) = Area(D)µ2 − µ

2
+ 0

(

µ2/3
)

.

Proof of Corollary 1: we decompose ND into 3 terms: one for each cusp and
one inner term using an homogeneous partition of unity. The corollary follows
from the previous Theorem for the parts near the cusps and from the classical
estimates going back at least to Van der Corput [16] (see also [17, 3]) for the
inner part. In order to use Van der Corput estimates O

(

µ2/3
)

, we need to check
the strict convexity, in fact the non vanishing of the curvature of the graph of g:

this comes from the fact that g′′(x) = (1− x2)
− 1

2 > 0. �

Proof of Theorem 2: let us denote by B(m, r) the Euclidean ball of center
m and radius r. We can first replace χ(y/x) by the smooth function χ0(x, y) =
χ(y/x)(1−φ(x, y)) with φ ∈ C∞

o with support in the ball B(0,min(β, 1−β)) and
≡ 1 near 0 because there is no element of R in the support of φ. The smooth
function χ0 is a classical symbol of degree 0: ∂jx∂

k
yχ0(x, y) = 0((1+|x|+|y|)−(j+k)).

Let us give a positive function ρ ∈ C∞
o (R2) with Support(ρ) ⊂ {x2 + y2 < 1}

and
∫

R2 ρ(x, y)dxdy = 1, define ρε = ρ (./ε) /ε2 with ε = µ−1/3, and consider

N±
ε (µ) =

∑

m∈R

(

χ01G±
µ,ε
⋆ ρε

)

(m) (2)

where
G+

µ,ε = {(x, y) | 0 ≤ x ≤ µ, 0 ≤ y ≤ µg (x/µ) + 2ε} ,
1G−

µ,ε
= 10≤x≤µ, 0≤y≤µg(x/µ)−2ε − 10≤x≤µ, µg(x/µ)−2ε≤y≤0 .

µ

µ2ε
2εx
x

G+
µ,ε

G−
µ,ε

Figure 2: the domains G±
µ,ε

For each m /∈ µG with m ∈ R, B (m, ε)∩G−
µ,ε = ∅, hence (1G−

µ,ε
⋆ ρε)(m) = 0

while ∀(x, y) ∈ R2, 0 ≤ (1G−
µ,ε
⋆ ρε)(x, y) ≤ 1. Similarly, for each m ∈ µG ∩ R,

B (m, ε) ⊂ G+
µ,ε and (1G+

µ,ε
⋆ ρε)(m) = 1. Hence,

N−
ε (µ) ≤ N (µ) ≤ N+

ε (µ) .
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We will apply Poisson summation formula and use estimates on the Fourier trans-
form of 1G±

µ,ε
. Let us denote by

Φ±
µ,ε (ξ, η) =

∫

R2

χ0(x, y)1G±
µ,ε
(x, y)ei(xξ+yη)dxdy

the Fourier transforms of χ0-times the characteristic function of G±
µ,ε.

The Poisson summation formula applied to the sum (2) gives

N±
ε (µ) =

∫

R2

χ0(x, y)1G±
µ,ε
(x, y)dxdy+

∑

(p,q)∈Z2\0

ρ̂ (2πε (p, q)) Φ±
µ,ε (2πp, 2πq) e

−2πiβq .

(3)
We need to evaluate Φ±

µ,ε. We use Green-Riemann formula in order to get
integrals on the boundaries. We have the following formulas:

Lemma 1 If χ0 is a smooth classical symbol of degree 0 and

α =
i

η

(

χ0(x, y) +
i

η
∂yχ0(x, y)−

1

η2
∂yyχ0(x, y)

)

ei(xξ+yη)dx ,

then
dα = χ0(x, y)e

i(xξ+yη)dx ∧ dy +O(η−3)χ1(x, y)dx ∧ dy ,
where χ1(x, y) ∈ L1(dxdy).

A similar results holds for

β =
1

iξ

(

χ0(x, y) +
i

ξ
∂xχ0(x, y)−

1

ξ2
∂xxχ0(x, y)

)

ei(xξ+yη)dy .

If |η| ≤ C|ξ|, we use

ei(xξ+yη)χ0(x, y)dx ∧ dy = dβ + 0(1/ξ3)χ2dx ∧ dy ,

while, if |ξ| ≤ C|η|, we use

ei(xξ+yη)χ0(x, y)dx ∧ dy = dα + 0(1/η3)χ1dx ∧ dy .

We have to estimate the integrals
∫

∂G±
µ,ε

eiξ(x+νy)χ0 (x, y) dy ,

where ν = η/ξ is bounded (and similar integrals with χ0 replaced by the deriva-
tives of χ0 which are symbols of < 0 degrees) and

∫

∂G±
µ,ε

eiη(y+νx)χ0 (x, y)dx ,
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where ν = ξ/η is bounded. We use the upper bounds given in Appendix A for
the different parts of the boundaries, using the parametrization of the graph of
y = g(x) by x(t) = 1 − t2f(t), y(t) = t3 for 0 ≤ t ≤ t0. For example, the main
part of the integral on the curved part of ∂G+

µ,ε of α is

i

η

∫ ∞

0

χ0(x(t), y(t))e
iµη(y(t)+νx(t))x′(t)dt ,

to which we apply estimate given in Lemma 8. This gives:

Lemma 2 The following estimates hold:

•
Φ±

µ,ε (0, 0) = µ2

∫

G

χ (y/x) dxdy +O
(

µ2/3
)

• For 1 ≤ |p| ≤ C|q|,

Φ±
µ,ε (2πp, 2πq) = O

(

µ2

(1 + µ‖ (p, q) ‖)3/2
+

1

|pq|

)

• For p = 0, q 6= 0,

Φ±
µ,ε (0, 2πq) =

µi

2πq
+O

(

µ2

(1 + µ|q|)3/2

)

• For |q| ≤ C|p|,

Φ±
µ,ε (2πp, 2πq) = O

(

µ2

(1 + µ‖ (p, q) ‖)3/2
+

1

µ1/3|p|

)

.

Let us prove for example the estimate of Φ±
µ,ε (0, 2πq). The corresponding integral

on the boundary splits into 2 parts
∫ µ

0
..dx−

∫ t0
0
..dt. The first part gives the first

term. The second part gives, up to constants, J = q−1
∫ t0
0

exp(2πiqµt3)χ0(µx(t), µy(t))µx
′(t)dt

which is bounded by 0(q−1µ(qµ)−1/2) using the estimates of Lemma 8.
We need also the classical formula:

Lemma 3 For 0 < β < 1, we have

i
∑

q∈Z\0

e−2πiβq/q = 2π

(

β − 1

2

)

.

Theorem 2 follows then from the previous Lemmas and simple evaluations of
the sums in the Poisson summation formula (3); using the fact that the Fourier
transform of ρ is rapidly decaying, we need the bounds:
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Lemma 4 We have:

µ2
∑

(p,q)∈Z2\0

(1 + µ‖(p, q)‖)−3/2(1 + µ−1/3‖(p, q)‖)−N = O
(

µ2/3
)

,

∑

1≤|p|≤C|q|

|pq|−1(1 + µ−1/3‖(p, q)‖)−N = 0
(

(log µ)2
)

,

µ2
∑

q 6=0

|(1 + µ|q|)−3/2(1 + µ−1/3|q|)−N = 0
(

µ
1

2

)

,

µ−1/3
∑

1≤|q|≤C|p|

|p|−1(1 + µ−1/3‖(p, q)‖)−N = 0(1) .

Let us check the first upper bound, the others are similar. The first sum is
bounded by

Cµ
1

2

∑

(p,q)∈Z2\0

‖(p, q)‖−3/2(1 + µ−1/3‖(p, q)‖)−3/2

which is of the same order as the integral

µ
1

2

∫ ∞

0

rdr

r3/2(1 + µ−1/3r)N
.

�

3 Spectrum of the disk as a lattice point prob-

lem

Our goal is to prove the following result:

Theorem 3
Ndisk(µ) = ND(µ) +O

(

µ2/3
)

.

This will complete the proof of Theorem 1.
Proof.–

The estimate splits into 3 parts: the inner part and the 2 boundary
parts. We choose a function χ ∈ C∞

o (] − 1, 1[, [0, 1]) which is ≡ 1
in some large interval [−1 + c, 1 − c] and split the two numbers to
compare as

Ndisk(µ) = N1
disk(µ) +N2

disk(µ) +N3
disk(µ) =

=
∑

xk(n)≤µ

χ(k/n)+
∑

n≥0, xk(n)≤µ

(1−χ(k/n))+
∑

n<0, xk(n)≤µ

(1−χ(k/n)) ,
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and
ND(µ) = N1

D(µ) +N2
D(µ) +N3

D(µ) =

=
∑

(n,k+max(0,−n)−1/4)∈µD

χ(k/n)+
∑

n≥0, (n,k−1/4)∈µD

(1−χ(k/n))+
∑

n<0, (n,k+|n|−1/4)∈µD

(1−χ(k/n)) .

We will compare the first terms (the inner parts) in both decomposi-
tions and the second terms (the boundary parts). The third ones are
similar to the second ones.

The inner part: The zeros xk(n) are given uniformly in any domain
xk(n) > (1 + c)|n| with c > 0, by

xk(n) =

{

F (n, k − 1
4
) +O(1/(1 + k + n)) if n ≥ 0

F (n, k + |n| − 1
4
) +O(1/(1 + k + |n|)) if n < 0

This is a consequence of the stationary phase expansion applied to
the integral representations (1) of Bessel functions (see [5]). Using
the fact that when F (n, k + max(0,−n) − 1/4) is close to µ, |n| + k
is of the same order as µ, we get

N1
D

(

µ− C

µ

)

≤ N1
disk(µ) ≤ N1

D

(

µ+
C

µ

)

.

It follows then from the Van der Corput’s remainder estimate O
(

µ2/3
)

for the smooth strictly convex lattice point problems that

N1
disk(µ)−N1

D(µ) = O
(

µ2/3
)

.

The boundary parts: due to the fact that the zeros of Jn and J−n

are the same, we discuss only the case n > 0. We are in a domain
where xk(n) < (1+C)n. Let us denote by tk the k-th zero of the Airy
function, we have (see [1])

tk =

[

3π

2

(

k − 1

4

)]2/3

+ ε(k) ,

with ε(k) = O (k−1). From [5], we have the following equation for the
zeros x of the Bessel function Jn(x) :

Ai
(

|x|2/3ρ (u)
)

+ b (u, x) |x|−4/3Ai′
(

|x|2/3ρ (u)
)

= 0 ,

where u = (n/x)− 1 < 0, ρ is a smooth germ of odd diffeomorphism
of (R, 0) (with ρ′ > 0) and b (u, x) is a smooth symbol of degree 0 in x.
We deduce, using the implicit function theorem and the asymptotics
of the Airy function, that

xk (n) = n

(

1 + ψ

(

tk
n2/3

))

+ η(n, k)

8



with η(n, k) = O(n−1), ψ smooth, ψ(0) = 0, ψ′(0) > 0. This asymp-
totics is due to Olver [15]. If (1 + C)n > k > (1 + c)n > 0 with
0 < c < C, this asymptotics matches with the inner asymptotics via
the asymptotics of the tk’s for large k’s.

Let

Nk (µ) := #{(n, k − 1/4) ∈ µD | 1 ≤ k ≤ Cn}

and
N ′

k (µ) := #{xk(n) ≤ µ | 1 ≤ k ≤ Cn} .
We have the

Lemma 5

|Nk (µ)−N ′
k (µ) | ≤ Nk

(

µ+
C

µ

)

−Nk

(

µ− C

µ

)

+ Cµ1/3k−4/3 .

By summing the estimate of the previous Lemma w.r. to k and using
the 2-terms asymptotics of N2

D(µ), we get

N2
disk(µ)−N2

D(µ) = O
(

µ2/3
)

.

�

Proof of Lemma 5: Let us write F (x, y) := x(1 + ψ1(y
2/3/x2/3)); we have

Nk(µ) = #{F (n, k − 1/4) ≤ µ | 1 ≤ k ≤ Cn} and N ′
k (µ) = #{F (n, k − 1/4 +

ε(k)) ≤ µ + η(k, n) | 1 ≤ k ≤ Cn}, with ε(k) = O(1/k) and η(k, n) = O(1/n).
We have, in the range 0 < y ≤ cx with c small enough, 0 < a < ∂xF < b and
∂yF = O(x1/3y−1/3). The Lemma follows by estimating the cardinal of the sets

Ak := {n | µ ≤ F (n, k − 1/4) ≤ µ+ η(k, n) + Cε(k)n1/3k−1/3}

and
A′

k := {n | µ− η(k, n)− Cε(k)n1/3k−1/3 ≤ F (n, k − 1/4) ≤ µ} .
We use the fact that if F (n, k − 1/4) is close to µ then n ∼ µ. We have Ak ⊂
Bk ∪ Ck with Bk := {n | µ ≤ F (n, k − 1/4) ≤ µ + O(1/µ)} and Ck := {n | µ +
η(k, n) ≤ F (n, k − 1/4) ≤ µ + η(k, n) + Cε(k)n1/3k−1/3}. Using the estimate on
∂xF , we have #Ck = O

(

n1/3k−4/3
)

4 Conclusion and problems

It would be nice to get similar estimates for other integrable billiards like a
circular annulus. The case of ellipse is more difficult and is due to Emile Mathieu
[14]: the problem is with the unstable periodic geodesic (the larger diameter).
We know now a good approximation of the associated eigenvalues thanks to my
works with Bernard Parisse and San Vũ Ngo.c ([6, 7]).
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Appendix A: Estimation of some integrals

We need to get estimates of various integrals corresponding to part of the bound-
ary of the domains D±

µ,ε to be defined in Section 2.
Let us first recall the following stationary phase estimate:

Lemma 6 Let f ∈ C∞([a, b],C) and φ ∈ C∞([a, b],R) so that φ has only non
degenerate critical points, then, if

I(τ) :=

∫ b

a

eiτφ(t)f(t)dt ,

we have I(τ) = O
(

τ−
1

2

)

. If φ depends smoothly on some parameter µ so that

the non degeneracy assumption holds for µ = µ0, the same conclusion is true
uniformly in some interval |µ− µ0| ≤ c with c small enough.

The curved part

These integrals come when evaluating integrals on the curved part of the domains
D±

µ,ε.

Lemma 7 Let us consider the integral

Ic,A(τ) =

∫ ∞

0

eiτ(νt
3−t2f(t))t2g(t)dt

with g ∈ C∞
o (R), f ∈ C∞(R,R) with f(0) 6= 0 and |ν| ≤ ν0 < ∞ with ν0 small

enough, then, as τ → ∞, Ic,A(τ) = O(τ−
1

2 ) if |ν0| is small enough.

This is easy using the stationary phase Lemma 6.

Lemma 8 Let us consider the integral

Ic,B(τ) =

∫ ∞

0

eiτ(t
3−νt2f(t))tg(t)dt

with g ∈ C∞
o (R), f ∈ C∞(R,R), and |ν| ≤ ν0 < ∞ with ν0 small enough, then,

as τ → ∞, Ic,B(τ) = O(τ−
1

2 ).

This is more difficult because the critical point t = 0 is degenerate for ν = 0. We
need a

Definition 1 A smooth function f(t, α) is in Sk if all t-derivatives are bounded
near t = ∞ by O(tk) uniformly in α.

Proof.–
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We will first prove the Lemma for f ≡ 1. Let us put µ = ντ 1/3. We
consider 2 cases:

• |µ| ≤ 1: let us make the change t = wτ−1/3, we get

Ic,B(τ) = τ−2/3

∫ ∞

0

ei(w
3−µw2)wg

(

wτ−1/3
)

dw ,

The critical points of the phase are 0 and 2µ/3. We split the inte-
gral into 2 parts with a smooth partition of unity 1 = h+(1−h)
with h ∈ C∞

o ([0, w0[) and h ≡ 1 on [0, 1]. The part containing the
critical points is O (1) using an uniform bound for the integrand.
For the other part, we introduce L = 1/ (3w2 − 2µw)d/dw and
integrate by part several times using the formal transpose tL of L
and the fact that wg

(

wτ−1/3
)

∈ S1, so that (tL)
N (

wg
(

wτ−1/3
))

∈
S1−2N . If N ≥ 2, this gives a function which is in L1(]w0,+∞[)
uniformly in µ.

• |µ| ≥ 1: we put t = νσ and get

Ic,B(τ) = ν2
∫ ∞

0

eiµ
3(σ3−σ2)σg (νσ) dσ .

We split the integral smoothly and get for the part containing
the critical points O

(

ν2/µ3/2
)

= O
(

τ−1/2
)

. For the other part
we use K = (1/3w2 − 2w) d/dw, tK : Sk → Sk−2 and σg (νσ) ∈
S1. We pick a factor µ−3 for each integration by parts and get
O
(

ν2/µ3N
)

= O
(

τ−2/3
)

.

It is clear enough that the proof still works if f is not constant.

�

The linear parts

These integrals come when evaluating integrals on the linear parts of the domains
D±

µ,ε.

Lemma 9 We have, for |η| = O(|ξ|), Iv (ξ, η) = 1
ξ

∫ 2ε

0
eiyηdy = O (ε/|ξ|).

For ξ = O (|η|), if
Ih (ξ, η) =

i

η

∫ µ

0

eixξdx ,

then, for ξ 6= 0, Ih (ξ, η) = O (1/|ξη|) for ξ 6= 0 and Ih (0, η) =
iµ
η
.
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