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OPTIMALITY OF CODES BASED ON CROSSED

PRODUCT ALGEBRAS

GRÉGORY BERHUY, RICHARD SLESSOR

Abstract. In this paper, we explain how to construct reliable
codes for wireless communication channels using crossed product
division algebras, and we prove the optimality of the codes already
constructed on cyclic algebras and biquadratic crossed products.
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Introduction

Within the last few years we have seen a notable increase in the use
of wireless communication, which has led to the need for higher data
rates. In view of this multiple antenna communication systems have
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been investigated, which can provide very high data rates particularly
when there is perfect channel state information (CSI) at the receiver.
The design criteria of such codes established in [6] led to the develop-
ment of space-time codes[16], specifically space-time trellis codes

(STTCs). In this paper we will be concerned with another class of
space-time codes called space-time block codes (STBCs) [15]. A
STBC C consists of a set of N ×T (N ≥ T ) matrices with entries in C.

In [16] the pairwise probability of error of a space-time code is derived,
i.e., the probability of receiving a message and decoding it incorrectly.
This bound led the authors to develop two design criteria: the rank

criterion and the determinant criterion. The rank criterion states
that in order to maximise the diversity gain we require the difference
of any two distinct matricesX,X ′ ∈ C to be full rank. A code satisfying
this property is called fully diverse. Once the rank criterion has been
satisfied, the determinant criterion states that in order to maximise the

coding gain, the determinant of (X − X ′)(X −X ′)
t
, taken over all

pairs of distinct codewords in C, must be maximised.

Finding codes that are fully diverse led to an interest in constructing
codes from division algebras [13], in particular cyclic division algebras.
This work generated a lot of interest and in [14] constructions of codes
based on crossed product algebras were given that included the codes
given in [13] as a subset. An approach based on cyclic division algebras,
which differs from [13] was given in [10]. This paper introduced perfect

codes (PSTBCs). These codes satisfy a large number of properties
including a shaping constraint that is related to the cubic lattice. In
the paper the authors give examples of perfect codes in dimensions
2, 3, 4 and 6.

Codes from non-cyclic division algebras have also been investigated.
In [2] the authors consider biquadratic crossed product algebras and
construct a code with good performance in dimension 4.

In [3] it is shown that PSTBCs only exist in these dimensions, although
by relaxing the definition slightly PSTBCs can exist for any number of
antennas [4]. We will concentrate on the former case. The optimality
of perfect codes has been studied and in [8] it is shown that the golden
code, a PSTBC of dimension 2 presented in [1], is optimal with respect
to the coding gain.

In this paper we will prove the optimality of the perfect codes of dimen-
sion 4 and 6, as well as the optimality of the biquadratic code presented
in [2]. We will also generalise bounds on the minimum determinant of
codes based on cyclic division algebras to the case of codes based on
crossed product algebras.
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This paper is organised as follows. In Section 1 some basic aspects
of coding theory and the wireless channel are introduced as well as
the bound on the pairwise probability of error. It then explains how
division algebras can be used to give fully diverse codes and gives a
description of codes based on crossed product algebras. The section
also introduces the energy constraint and its link with the cubic lat-
tice. This leads to Section 2 which introduces complex ideal lattices
and gives results that will be necessary in deciding when it is possible
to construct the cubic lattice. Bounds on the minimum determinant of
codes based on crossed product algebras are also derived. Section 3 is
then concerned with proving the optimality of the PSTBCs of dimen-
sion 4 and 6 given in [10]. Finally in Section 4 we prove that the code
constructed in [2] is optimal.

1. From codes to crossed product algebras

1.1. Modelling a communication channel. Consider the follow-
ing communication problem. A transmitter, which is equipped with
one antenna, wishes to transmit some information to a receiver, also
equipped with one antenna, over a wireless channel. The signal that
the transmitter wants to send can be modelled by a vector

x =





x1
...
xn



 ∈ Cn.

At time t, t = 1, . . . , n the transmit antenna sends xt, which will reach
the receive antenna via different paths, that may include several reflec-
tions (this is due to the nature of the wireless environment). Further-
more, xt will be affected by some noise, coming from different interfer-
ences it may experience. Thus what the receiver will get is a modified
signal denoted by yt, where

yt = htxt + vt, t = 1, . . . , n.

The coefficients ht and vt are assumed to be complex Gaussian random
variables, and they model respectively fading (coming from the signal
propagation through multipaths) and noise.

The wireless channel from the transmitter to the receiver during n time
slots can thus be modelled as follows:

y = Hx+ v,

where y is the received vector, and H is a diagonal n×n matrix called
the fading matrix or channel matrix. The vector v contains the
noise. Both H and v are assumed to have as coefficients complex
Gaussian random variables, all of them being independent and identi-
cally distributed.
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Figure 1. A channel with two antennas at both the
transmitter and receiver.

In order to be able to transmit more and more data in the wireless
environment, systems having multiple antennas at both transmitter
and receiver have been introduced. They are commonly called Multiple
Input Multiple Output (MIMO) systems or channels.

Let us first consider a channel with two transmit and two receive anten-
nas (see Fig. 1). At time t, the first and second antennas respectively
send x1t and x2t. Both these signals will be received by the two receive
antennas, and will follow a different path to access each of them. The
signals y1t, y2t sensed by each receive antenna are

y1t = h11x1t + h12x2t + v1t

y2t = h21x1t + h22x2t + v2t

where hij denote the fading from the jth transmit antenna to the ith
receive antenna, and vit denotes the noise at the ith receive antenna at
time t.

Note that in the above equations, the fading coefficients hij should
depend on t. However, it is reasonable to assume that the environment
does not change so fast, and that there is a period of time T during
which the channel (that is hij) remains constant. This period T is
called a coherence interval.

For example, let us assume here that the channel stays approximately
constant over a period of length T = 2, and the transmission starts at
time t = 1.

The first and second antennas transmit respectively x11 and x21 at
time t = 1. At the other end, the first and second antennas receive
respectively the signals y11 and y21, each of them being the sum of the
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two transmitted signals with fading and some noise, that is

y11 = h11x11 + h12x21 + v11

y21 = h21x11 + h22x21 + v21.

Similarly, the transmit antennas send respectively x12 and x22 at time
t = 1, and the two receive antennas get y12 and y22. Since the channel
remains constant over a period of length T = 2, the fading coefficients
remain the same, and we have

y12 = h11x12 + h12x22 + v12

y22 = h21x12 + h22x22 + v22.

This can be written in a matrix equation as
(

y11 y12
y21 y22

)

=

(

h11 h12

h21 h22

)(

x11 x12

x21 x22

)

+

(

v11 v12
v21 v22

)

.

This model can be generalised to the case where we have M transmit
antennas and N receive antennas. At time t, the M antennas each send
one signal. Those M signals can be collected and written as a vector

xt =





x1t
...

xmt



. Each xjt will be received by all the N antennas. Thus xjt

follows n different paths, each corresponding to a given fading denoted
by hij, i = 1, . . . , n to reach its N destinations. Now, each receive
antenna will sense a signal, which is the sum of noisy and faded copies
of the signals transmitted by all antennas.

Let us now consider T instances of the transmission, where T is the
coherence time interval, during which the channel is assumed to be
constant. The model for transmission with multiple antennas over a
coherence time T can be summarised as follows:

(1.1) YN×T = HN×MXM×T +VN×T ,

where all matrices have coefficients in C, and their dimensions are writ-
ten as subscript. Each column of the matrix X contains the vector xt

sent at time t. The matrices H and V are random matrices whose coef-
ficients are complex Gaussian random variables. They are independent
and identically distributed.

It is clear from the model that the transmitted signal X will be mod-
ified during transmission, both attenuated by the fading, and affected
by the noise. Actually, the fading a priori makes the signal even more
vulnerable to noise. However, whatever data the transmitter and re-
ceiver want to share, they would like it to be communicated reliably,
i.e., they want the whole message to be recovered completely from Y at
the receiver, despite the fading and noise. It is here that coding comes
into play. The idea behind coding is to send as signal X not the data
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itself, but a function of the data, which typically adds redundancy. In
MIMO communication, coding typically exploits the fact that fading
actually provides different paths from transmitter to receiver, since a
receiver with N antennas may get up to N faded copies of each trans-
mitted signal. Coding thus consists of designing codewords, that are
here the matrices X, as a function of the data to be sent, in such a way
as to protect the data encoded inside. The set of codewords is called
a codebook. A typical communication scheme can thus be seen as
follows: a set of information symbols, that is, the data to be sent, is
the input of an encoder. The encoder maps the information symbols
to a codeword X, which is sent over the channel by M antennas. The
receiver obtains Y = HX +V. It is the role of a decoder to recover
the information symbols from Y.

In a multiple antenna setting, the data is encoded during time (we con-
sider a time interval of T slots) and space (since we have M antennas).
Thus, codes for multiple antenna systems are often called space-time

codes.

In a traditional coding setting, where transmission takes place over
a wire, there is no fading. Thus, a transmitted signal x will only
be affected by noise (which we assume Gaussian). Geometrically, the
transmitted signal x can be seen as a point in an n-dimensional space,
and the received signal y as another point, within a ball centered at x
of radius given by the variance of the noise. In this case, the decoder,
which knows all the possible codewords, can compute ‖x − y‖2 for
all possible x in the codebook and decide that its estimate x̂ of y is
given by the vector which minimises ‖x − y‖2. If the codewords are
designed such that there is only one codeword in a ball of radius equal
to the variance of the noise, then the decoder will always get the right
estimate. The situation is different in the case of fading.

Let us for now assume that the receiver has the knowledge of the chan-
nel H. This is called the coherent case. The non-coherent case
considers the scenario when the receiver does not know the channel,
and will not be discussed in this paper. A decoding rule is obtained as
follows. Let C denote the codebook. The receiver knows Y = HX+V,
the codebook, and an estimate of H. It thus computes the “faded”
codebook {HX | X ∈ C} by multiplying every codeword by H. It then
chooses as the decoded codeword the one which minimises the distance
between HX and Y. We thus have that the decoded codeword X̂ is
given by

X̂ = min
X∈C

‖HX−Y‖2,
where the norm is the Frobenius norm:

‖(mij)i,j‖2 =
∑

i,j

|mij|2.
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An error will occur if the decoded codeword X̂ is different from the
transmitted codeword X. A way of formalising the reliability of a
channel is thus to compute its pairwise probability of error, namely,
the probability of sending X and decoding erroneously X̂ 6= X. We
write such probability P(X → X̂).

Let us assume from now on that M = N = T , and let us call this
common value n. Therefore we get an equality

(1.2) Y = HX+V ∈ Mn(C)

In this case, one can show that we have

P(X → X̂) ≤ κ

δmin(C)n
,

where

δmin(C) = inf{| det(X−X′)|2 | X 6= X′ ∈ C}.
The real number δmin(C) is called the minimum determinant of the
code C.
The quantity κ is a function depending on the minimum determinant
and on the signal-to-noise ratio (SNR). This function is a decreasing
function of the SNR which converges to zero when SNR goes to in-
finity, and the speed of convergence is an increasing function of the
minimum determinant. In other words, a large minimum determinant
will ensure that we will have a small probability error for a SNR which
is not too large (meaning that we will not need too much power during
transmission to cover the noise). We refer the reader to [16] for more
details.

1.2. Algebra based codes. It follows from the results of the previous
section that a code C will have a better performance if we design the
codebook in such a way that the minimum determinant is as large as
possible. Of course, the first step is to ensure that δmin(C) > 0. The
main difficulty comes from the non-linearity of the determinant. The
idea is then to choose C to be a (large) finite subset of a subring D of
Mn(C), which is also a division ring. In this case, the difference of two
distinct codewords will lie in D× ⊂ GLn(C). But how to find explicitly
such a division ring?

This is where (central) simple K-algebras come into play. Assume that
A is a simple finite dimensional K-algebra, and let L/K be a field
extension such that L is a K-subalgebra of A (in particular L/K has
finite degree). The product law induces on A the structure of a finite
dimensional right L-vector space of dimension r. In particular, if we
denote by Ma ∈ Mr(L) the matrix of left multiplication by a ∈ A
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in a fixed basis of the right L-vector space A, we get a K-algebra
homomorphism

ϕ :
A −→ Mr(L) ⊂ Mr(C)

a 7−→ Ma
,

which is injective since A is simple.

In particular, if A is a division K-algebra, ϕ(A) is a subring of Mr(C)
which has the required properties, and we may take our codebook C to
be a finite subset of CA,L = {Ma | a ∈ A} ⊂ Mr(C).

The previous way of encoding will introduce enough redundancy to
prevent the loss of too much information during transmission. However
we cannot introduce too much redundancy either, since sending an
information symbol has an energy cost. One goal is of course to encode
as much information as possible in a single matrix without losing too
much information after transmission. The rate of a code C ⊂ Mr(C)
is the ratio of information symbols per coefficients sent. Of course, it
is in our best interest to design codes with high rates.

Let us compute the rate r(C) of a code C ⊂ CA,L. The information
symbols that we would like to transmit are elements of K, which may
be used to define elements of A. Each element of a may then carry
dimK(A) information symbols. However, an r × r matrix may contain
r2 information symbols, so we have

r(C) = dimK(A)

r2
,

where r = dimL(A). Now since dimK(A) = dimL(A)[L : K] = r[L : K],
this rewrites as

r(C) = [L : K]2

dimK(A)
,

so we should choose L/K such that [L : K] is as large as possible. If A
is a central simple K-algebra, it is known that [L : K] ≤ deg(A). In
particular, if A is a central division K-algebra, we may choose for L a
maximal commutative subfield of A to obtain a code with a rate equal
to 1, which is the maximal possible value in this case.

Now let us have a closer look at δmin(C). One major problem is that C
may have in practical applications a large number of elements. Thus,
it could turn out that δmin(C) is very close to 0 if C is not chosen
carefully, simply because CA,L contains matrices of arbitrary small de-
terminant. Therefore the idea is to force the values of the determinant
to be discrete, for example by choosing elements a ∈ A in an order Λ
of A.

The next results will provide a way to achieve this. We first introduce
some notation. Let K be a number field, and let A be a central simple
K-algebra of degree n having a maximal commutative subfield L/K.
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Finally, let e1, . . . , en be an L-basis of A. For any ideal I of the ring of
integers OL of L, we set

ΛA,I = e1I ⊕ · · · ⊕ enI and CA,I = {Ma | a ∈ ΛA,I}.

Notice that ΛA,I and CA,I are additive groups, and therefore we have

δmin(CA,I) = inf{| det(Ma)|2 | a ∈ ΛA,I , a 6= 0}.
Moreover, if C ⊂ CA,I , the difference of two distinct codewords is a
non-zero element of CA,I , so we get

δmin(C) ≥ δmin(CA,I).

Remark 1.3. Keeping the previous notation, we have an L-algebra
isomorphism

f :
A⊗k L

∼−→ EndL(A)

a⊗ λ 7−→ (z 7→ azλ),

where A is considered as a right L-vector space. Therefore, we have

NrdA(a) = det(f(a⊗ 1)) = det(Ma),

by definition of the reduced norm. In particular, det(Ma) ∈ K for all
a ∈ A.

We then have the following result:

Proposition 1.4. Let K be a number field which is closed under com-
plex conjugation. Let K0 = K ∩ R. Keeping the notation above, there
exists a natural integer c > 0 such that we have

| det(Ma)|2 ∈
1

c
OK0

for all a ∈ ΛA,I .

Proof. Since every element x ∈ L may be written as x =
y

s
for some

y ∈ OL and s ∈ Z, the set

{m ∈ Z | mMei ∈ Mn(OL) for i = 1, . . . , n}
is a non-zero ideal of Z, hence generated by a unique positive integer
r ≥ 1. We deduce that, for every a = e1a1+ . . .+ enan ∈ ΛA,I , we have

rMa = rMe1a1 + . . .+ rMenan ∈ Mn(OL).

Since det(Ma) ∈ K by Remark 1.3, we have det(rMa) = rn det(Ma) ∈
OL ∩K = OK , and we obtain that

det(Ma) ∈
1

rn
OK .

Hence for all a ∈ ΛA,I , there exists x ∈ OK such that

det(Ma) =
x

rn
.
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By assumption, complex conjugation induces an automorphism of K.
Therefore, |x|2 = xx ∈ OK . Hence |x|2 ∈ OK ∩ R = OK0

. Thus

| det(Ma)|2 =
|x|2
r2n

∈ 1

r2n
OK0

for all a ∈ A.

Setting c = r2n then yields the conclusion. �

Corollary 1.5. Let C be a finite subset of CA,I , where A is a central

division K-algebra. If K = Q or Q(
√
−d), d > 0, then there exists a

natural integer c > 0 such that

δmin(C) ≥
1

c
.

Proof. The previous proposition shows that we have

c| det(Ma)|2 ∈ OK0
for all a ∈ ΛA,I ,

for some natural integer c > 0. The assumption on the ground field
implies that OK0

= Z. Assume now that a 6= 0. Since A is division,
det(Ma) 6= 0 and therefore c| det(Ma)|2 is a positive integer. Hence

| det(Ma)|2 ≥
1

c
for all a ∈ Λa,L, a 6= 0.

Thus we get

δmin(C) ≥ δmin(CA,I) ≥
1

c
,

and this concludes the proof. �

The conclusion of the previous corollary is not true anymore if we
drop the assumption on K. For example, if K = K0 = Q(

√
2), then

OK0
contains elements of arbitrary small absolute value. However in

practice, a signal is represented by an element of Q(i) or Q(j), where
j = e2iπ/3 (see [5] for more details). We will assume therefore in the
sequel that K = Q(i) or Q(j), which both satisfy the assumptions of
the previous corollary. Notice that in this case, OK is a principal ideal
domain, and any ideal I of OL has an OK-basis ω1, . . . , ωn.

Now that we have found a way to ensure that δmin(C) is not too close to
0, we examine another constraint related to encoding, called shaping.

An element X ∈ C represents some information which is already en-
coded. In fact, if we write

X = Ma, a = e1a1 + . . .+ enan, ai ∈ I

the real information which is transmitted is represented by the elements
aij ∈ OK defined by

ai =
n

∑

j=1

aijωj, i = 1, . . . , n.
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Sending the n2 information symbols aij has an energy cost, which is
represented by the real number

∑

i,j

|aij|2.

Now sending X = (xij) ∈ Mn(L) will have an energy cost equal to
∑

i,j

|xij|2.

Energy constraint: Encoding the information symbols aij into the
matrix X = Ma needs to preserve the energy cost.

We refer the reader willing to know more about shaping constraints to
[9].

Notice that, once an L-basis of A and an OK-basis are fixed, if x and
a are the two vectors whose coordinates are the xij’s and the aij’s
respectively, one may write

x = Ma,

for some M ∈ Mn2(L) which does not depend on a. The energy con-
straint then states

M
t
M = In2 .

Of course, in order to deal with this constraint, we first need examples
of central simple K-algebras for which we can find an explicit maximal
commutative subfield, and an explicit L-basis. A good family of such
examples is given by the family of crossed product K-algebras.

1.3. Codes based on crossed product K-algebras. Let L/K be a
Galois field extension of degree n, with Galois group G. If σ ∈ G and
λ ∈ L, we set

λσ = σ−1(λ).

Let ξ : G × G → L× be a map satisfying the cocyclicity conditions,
namely

ξId,τ = ξσ,Id = 1, ξσ,τρξτ,ρ = ξστ,ρξ
ρ
σ,τ for all σ, τ, ρ ∈ G.

The crossed product K-algebra (ξ, L/K,G) is the K-algebra generated
as a right L-vector space by elements (eσ)σ∈G subject to the relations

eσeτ = eστξσ,τ , λeσ = eσλ
σ for all σ, τ ∈ G, λ ∈ L.

One can show that (ξ, L/K,G) is a central simple K-algebra of degree
n, with maximal commutative subfield L.
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In particular, we get an injective K-algebra homomorphism

ϕ :
A −→ Mn(L)

a 7−→ Ma

associated to this particular K-algebra. In order to derive explicitly
the energy constraint associated to this K-algebra, we first need to
compute the multiplication matrix of an element a ∈ A.

Lemma 1.6. Let A = (ξ, L/K,G), and let a =
∑

σ∈G
eσaσ. Then the

matrix Ma of left multiplication by a, relative to the L-basis (eσ)σ∈G is

Ma = (ξστ−1,τa
τ
στ−1)σ,τ .

Proof. For all τ ∈ G, we have

aeτ =
∑

σ∈G
eσaσeτ

=
∑

σ∈G
eσeτa

τ
σ

=
∑

σ∈G
eστξσ,τa

τ
σ

=
∑

σ∈G
eσξστ−1,τa

τ
στ−1

This concludes the proof. �

We now derive the energy constraint we are looking for. Since any ideal
of OL is a free OK-module of rank n = |G|, we will index any OK-basis
of I with the elements of G.

Let A = (ξ, L/K,G) and let I be an ideal of OL. If we choose an
OK-basis (ωσ)σ∈G of I, we will (temporarily) encode n2 information
symbols (aσ,τ )σ,τ∈G into the matrix Ma ∈ CA,I , where

a =
∑

σ∈G
eσ(

∑

τ∈G
aσ,τωτ ).

Proposition 1.7. With this way of encoding, the energy constraint is
satisfied if and only if the two following conditions are fulfilled:

(1) |ξσ,τ |2 = 1 for all σ, τ ∈ G

(2) The matrix W = (ωσ
τ )σ,τ is unitary.

Proof. For σ ∈ G, set aσ =
∑

τ∈G
aσ,τωτ . We would like to have

∑

σ,τ∈G
|aσ,τ |2 =

∑

σ,τ∈G
|ξστ−1,τa

τ
στ−1|2 =

∑

σ,τ∈G
|ξσ,τaτσ|2
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for all aσ,τ ∈ OK . For σ ∈ G, we consider the two column vectors of
Ln

Xσ = (ξσ,ρa
ρ
σ)ρ∈G, Aσ = (aσ,ρ)ρ∈G.

Let Dσ be the diagonal matrix of Mn(L) whose non-zero entry at col-
umn ρ is ξσ,ρ. Since aσ,τ ∈ K, we have

ξσ,τa
τ
σ =

∑

ρ∈G
ξσ,τa

τ
σ,ρω

τ
ρ =

∑

ρ∈G
ξσ,τaσ,ρω

τ
ρ .

Now if W = (ωτ
ρ)τ,ρ, then DσW = (ξσ,τω

τ
ρ)τ,ρ, and therefore we get

Xσ = DσWAσ for all σ ∈ G.

Let x and a be the block column vectors defined by

x =







...
Xσ
...






, a =







...
Aσ
...






,

and let M ∈ Mn2(L) be the block diagonal matrix

M =







. . .
DσW

. . .






.

Then we have x = Ma. Since x contains all the entries of Ma and a

contains all the information symbols, fulfilling the energy constraint is
equivalent to ask for M to be unitary. It is equivalent to say that DσW
is unitary for all σ ∈ G. Since DId = In, it is equivalent to ask for W
to be unitary and for Dσ to be unitary for all σ ∈ G. In view of the
definition of Dσ, this is equivalent to conditions (1) and (2). �

Finding anOK-basis of I satisfying condition (2) is not easy. In order to
simplify the problem, we will make the extra assumption that complex
conjugation induces a Q-automorphism on L, which commutes with
every element of Gal(L/K).

In this case, it is easy to check that W
t
W = (TrL/K(ωσωτ ))σ,τ . Hence,

we may find an OK-basis of I for which encoding is energy-preserving
if and only if the hermitian OK-lattice

I × I −→ OK

(x, y) 7−→ TrL/K(xy)

is isomorphic to the cubic lattice On
K (see next section for the definition

of a hermitian OK-lattice).

This has very few chances to happen, so we now modify the encoding
process as follows. Let λ ∈ L× satisfying the following conditions:
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(a) λ = λ.

(b) λσ is a positive real number for all σ ∈ G.

(c) TrL/K(λxy) ∈ OK for all x, y ∈ I.

Notice that in this case, NL/K(λ) and TrL/K(λ) are positive real num-
bers.

Let Dλ ∈ Mn(R) be the diagonal matrix whose diagonal entries are

the real numbers
√
λσ, σ ∈ G. If (ωσ)σ∈G is an OK-basis of I, we will

encode n2 information symbols (aσ,τ )σ,τ∈G into the matrix

MaDλ = (
√
λτξστ−1,τa

τ
στ−1)σ,τ ,

where aσ =
∑

τ∈G
aσ,τωτ for all σ ∈ G.

The reader will check that this new way of encoding simply replaces
W by Wλ = DλW in the proof of the previous proposition. Now

W
t

λWλ = (TrL/K(λωσωτ ))σ,τ .

Hence we may find an OK-basis of I for which encoding is energy-
preserving if and only if the hermitian OK-lattice

I × I −→ OK

(x, y) 7−→ TrL/K(λxy)

is isomorphic to the cubic lattice On
K .

We then set

CA,λ,I = {MaDλ | a ∈ ΛA,I}.

Clearly, we have δmin(CA,λ,I) = NL/K(λ)δmin(CA,I), and therefore is
bounded by a positive constant in view of Corollary 1.5 if A is a division
K-algebra.

At this point, we would like to summarise what we have done so far.

Let K = Q(i) or Q(j). Let L/K be a Galois extension with Galois
group G satisfying the following conditions:

(1) Complex conjugation induces a Q-automorphism of L which com-
mutes with every element of G.

(2) There exists λ ∈ L× and I an ideal of OL satisfying the following
conditions:

(a) λ = λ, that is λ ∈ R

(b) λσ is a positive real number for all σ ∈ G

(c) TrL/K(λxy) ∈ OK for all x, y ∈ I
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(d) The hermitian OK-lattice

hλ :
I × I −→ OK

(x, y) 7−→ TrL/K(λxy)

is isomorphic to the cubic lattice On
K .

Then for any orthonormal OK-basis (ωσ)σ∈G of (I, hλ), and for any
crossed product division K-algebra A = (ξ, L/K,G) such that

|ξσ,τ |2 = 1 for all σ, τ ∈ G,

the encoding map

On
K −→ CA,λ,I

(aσ,τ )σ,τ∈G 7−→ (
√
λτξστ−1,τa

τ
στ−1)σ,τ ,

where aσ =
∑

τ∈G
aσ,τωτ for all σ ∈ G, is energy-preserving. Moreover,

δmin(CA,λ,I) is bounded by a positive constant.

Notice that the conditions above also imply that other coding con-
straints are fulfilled. We will not go into details and let the reader refer
to [9].

The next steps are to give necessary conditions for the lattice hλ to be
isomorphic to the cubic lattice, and to compute (or at least estimate)
δmin(CA,λ,I) in terms of the data, in order to choose A and I such that
δmin(CA,λ,I) is as large as possible.

2. Ideal lattices

2.1. Generalities on hermitian lattices. In this section, we recall
some basic definitions on hermitian lattices and introduce some invari-
ants that we will need later on.

Definition 2.1. Let K/Q be a totally imaginary quadratic field exten-
sion with non-trivial automorphism K → K, u 7→ ū (which is nothing
but complex conjugation). A hermitian OK-lattice is a pair (M,h),
where M is a free OK-module and h : M × M → OK is a hermitian
form with respect to ¯.

We say that two hermitian OK-lattices (M,h) and (M ′, h′) are iso-

morphic if there is an isomorphism of OK-modules f : M
∼→ M ′ such

that

h′(f(x), f(y)) = h(x, y) for all x, y ∈ M.

A hermitian lattice (M,h) is positive definite if h(x, x) > 0 for all
x ∈ M,x 6= 0. This property only depends on the isomorphism class
of (M,h).
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Example 2.2. Let n ≥ 1 be an integer. The cubic lattice of rank n
is the hermitian OK-lattice on On

K given by

h0 :
On

K ×On
K −→ OK

(x, y) 7−→ xty.

Therefore, a hermitian OK-lattice (M,h) is isomorphic to the cubic
lattice if and only if M has an orthonormal basis with respect to the
hermitian form h. In this case, it is positive definite.

Lemma 2.3. Let (M,h) be a hermitian OK-lattice. Let e be an OK-
basis of M . Then Mat(h, e) ∈ Z and does not depend on the choice of
e.

Proof. The matrix H = Mat(h, e) is a hermitian matrix, i.e., H = H̄ t,
which implies

det(H) = det(H) = det(H).

Therefore the determinant of H also lies in R. Hence det(H) ∈ OK ∩
R = Z, since K/Q is a totally imaginary quadratic field extension.

Let e′ be another basis of M , and let P denote the corresponding base

change matrix. If H ′ = Mat(h, e′), then we have H ′ = P
t
HP , and

therefore
det(H ′) = NK/Q(det(P )) det(H).

Since P ∈ GLn(OK), det(P ) is a unit of OK , and thus NK/Q(det(P )) =
1, since K/Q is a totally imaginary quadratic field extension. This
completes the proof. �

Definition 2.4. The determinant of the lattice (M,h), denoted by
det(M,h), is the determinant of any representative matrix of h. It only
depends on the isomorphism class of (M,h).

Example 2.5. Assume that (M,h) is isomorphic to the cubic lattice.
Then det(M,h) = 1, since there exists an orthonormalOK-basis, that is
a basis for which the corresponding representative matrix is the identity
matrix.

Remark 2.6. If (M,h) is positive definite, then det(M,h) is positive.

We now introduce the signature of a hermitian OK-lattice (M,h). Ex-
tending scalars to K gives rise to a hermitian form on V = M ⊗OK

K
over K, that we will still denote by h. Considering V as a Q-vector
space, we then get a quadratic form

qh :
V −→ Q

v 7−→ h(v, v).

It is well-known that the hermitian form h : V × V → K may be
diagonalised, i.e.,

h ≃ 〈a1, . . . , an〉, ai ∈ Q×
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and that in this case, we have

qh ≃ 〈1, d〉 ⊗ 〈a1, . . . , an〉,
where K = Q(

√
−d), d > 0.

Thus, the following definition makes sense:

Definition 2.7. [12] The signature of a hermitian OK-lattice (M,h)
is defined as

sign(M,h) =
1

2
sign(qh) ∈ Z.

Notice that we also have

sign(M,h) = ♯{i | ai > 0} − ♯{i | ai < 0},
for any diagonalisation

h ≃ 〈a1, . . . , an〉, ai ∈ Q×.

It only depends on the isomorphism class of (M,h).

Remark 2.8. It follows from the definition of the signature that (M,h)
is positive definite if and only if sign(M,h) = rk(M).

If (M,h) is a hermitian OK-lattice, we have h(x, x) ∈ OK ∩ R = Z for
all x ∈ M . Thus, we may define the minimal distance of a hermitian
OK-lattice (M,h) as follows:

Definition 2.9. Let (M,h) be a hermitian OK-lattice. The minimal

distance of (M,h) is the non-negative integer d(M,h) defined by

d(M,h) = min
x∈M,x 6=0

|h(x, x)|.

Once again, two isomorphic hermitian OK-lattices will have the same
minimal distance.

Example 2.10. If (M,h) is isomorphic to the cubic lattice, then
d(M,h) = 1.

2.2. Complex ideal lattices. We now study the hermitian lattices
introduced at the end of the first section. We first recall the definition
of the codifferent ideal of a finite extension of number fields.

Definition 2.11. The codifferent ideal of an extension L/K of num-
ber fields is the fractional ideal

D−1
L/K = {x ∈ L | TrL/K(xy) ⊂ OK for all y ∈ OL}.

Lemma 2.12. Let L/K be a finite extension of number fields. Assume
that L is closed under complex conjugation, and let L0 = L ∩R. Then
for any ideal I of OL and any λ ∈ L×

0 , we have

TrL/K(λxy) ∈ OK for all x, y ∈ I ⇐⇒ λII ⊂ D−1
L/K .
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Proof. Assume that λĪI ⊂ D−1
L/K . Then for all x, y ∈ I we have λxy ∈

D−1
L/K by assumption and therefore

TrL/K(λx̄y) = TrL/K(λx̄y · 1K) ⊂ OK for all x, y ∈ I.

Conversely, assume that TrL/K(λxy) ∈ OK for all x, y ∈ I. Since λII is
generated as an additive group by elements of the form λx1x2, xi ∈ I, it
is enough to check that TrL/K(λx1x2y) ∈ OK for all x1, x2 ∈ I, y ∈ OL,
which is clear from the assumption. This concludes the proof. �

We now assume for the rest of this paper that OK is a principal ideal
domain, and that L/K is a finite field extension of degree n, which is
closed under complex conjugation. We will denote by L0 the maximal
real subfield of L, that is L0 = L∩R. In this case, L0 andK are linearly
disjoint over Q, and any K-embedding of L into C is the canonical
extension of a Q-embedding of L0 into C. In particular, for every
λ ∈ L0, we have

NL/K(λ) = NL0/Q(λ) ∈ Q.

Notice also that, since OK is a principal ideal domain, any ideal I of OL

is a free OK-module of rank n. In particular, the following definition
makes sense.

Definition 2.13. Let L/K be an extension of number fields where L
is closed under complex conjugation. A complex ideal lattice on

L/K is a pair (I, hλ), where I is an ideal of OL with λ ∈ L×
0 satisfying

λII ⊂ D−1
L/K and hλ is the hermitian OK-lattice

hλ :
I × I −→ OK

(x, y) 7−→ TrL/K(λxy).

The rest of this paragraph is devoted to the computation of the invari-
ants introduced above for a given complex ideal lattice. We start with
a definition.

Definition 2.14. The relative discriminant of L/K, denoted by
dL/K , is the determinant of (OL, h0). In other words,

dL/K = det(TrL/K(wiwj)) ∈ Z

for any OK-basis w1, . . . , wn of OL.

We will assume until the end of the paper that complex conjugation
commutes with all the K-embeddings of L into C.

We are now ready to state our first result.

Proposition 2.15. Let (I, hλ) be an ideal lattice on L/K. Then

det(I, hλ) = NL/K(λ)NL/Q(I)dL/K .
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Proof. Since OK is a principal ideal domain, there exists an OK-basis
w = (w1, . . . , wn) of OL and elements q1, . . . , qn ∈ OK such that
w′ = (q1w1, . . . , qnwn) is an OK-basis of I. Let σ1, . . . , σn be the n
K-embeddings of L into C. Since complex conjugation commutes with
σ1, . . . , σn, we have

Mat(hλ,w
′) = W ′tLW ′,

where

W ′ = (qjw
σi

j )i,j and L =





λσ1

. . .
λσn



 .

Clearly, det(L) = NL/K(λ) and det(W ′) = q1 . . . qn det(W ), whereW =
(wσi

j )i,j . Therefore, we get

det(I, hλ) = NL/K(λ)q1 · · · qn · q1 · · · qn det(W
t
) det(W ).

If I = OL and λ = 1, we get dL/K = det(W
t
) det(W ), and therefore

det(I, hλ) = NL/K(λ)q1 · · · qn · q1 · · · qndL/K .
Therefore, it remains to show that NL/Q(I) = q1 · · · qn · q1 · · · qn. Recall
that NL/Q(I) is by definition the number of elements of OL/I. Notice
now that we have an isomorphism of OK-modules

OL/I ≃ OK/q1OK × · · · × OK/qnOK .

Thus, it remains to show that for a given q ∈ OK , q 6= 0, the group
OK/qOK has qq elements. But the number of elements of OK/qOK is
by definition NK/Q(qOK), which is nothing but qq. This completes the
proof. �

Remark 2.16. The proof above also shows that dL/K > 0.

Indeed, this follows from the equalities

dL/K = det(W
t
) det(W ) = det(W ) det(W ) > 0.

We now relate dL/K to the norm of the codifferent ideal. We first recall
a few definitions from number theory.

Definition 2.17. Let L/K be a finite extension of number fields. The
different ideal DL/K of L/K is the inverse of the fractional ideal
D−1

L/K . This is an ideal of OL. The discriminant ideal of L/K is the

ideal of OK defined by

dL/K = NL/K(DL/K).

Lemma 2.18. We have dL/K =
√

NL/Q(DL/K) =
√

NK/Q(dL/K).
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Proof. It is well-known that dL/K is the ideal generated by the ele-
ments det(TrL/K(xixj)), where x1, . . . , xn run through the K-bases of
L consisting of elements of OL. Since OK is a principal ideal domain,
dL/K is actually generated by det(TrL/K(wiwj)), where w1, . . . , wn is
an OK-basis of OL. We then have

NK/Q(dL/K) = NK/Q(det(TrL/K(wiwj))).

Now ifW = (wσi

j ), we have det(TrL/K(wiwj)) = det(W tW ) = det(W )2,
and therefore

NK/Q(dL/K) = NK/Q(det(W ))2 = (det(W ) det(W ))2 = d2L/K .

Since dL/K > 0 by Remark 2.16, we are done. �

Corollary 2.19. Let K ⊂ M ⊂ L be a tower of field extensions. Then
we have

(dL/K)
2 = NM/Q(dL/M) · (dM/K)

2·[L:M ]

In particular, d
[L:M ]
M/K | dL/K.

Proof. By the previous lemma, we have (dL/K)
2 = NK/Q(dL/K). More-

over, we have dL/K = NM/K(dL/M) · d[L:M ]
M/K . Putting this into our equa-

tion we get

(dL/K)
2 = NM/Q(dL/M) ·NK/Q(dM/K)

[L:M ] = NM/Q(dL/M) · d2[L:M ]
M/K .

This completes the proof. �

Corollary 2.20. Let (I, hλ) be a complex ideal lattice on L/K. Then
det(I, hλ) = ±1 if and only if λII = D−1

L/K.

Proof. Since we have λII ⊂ D−1
L/K by definition of a complex ideal

lattice on L/K, we will have λII = D−1
L/K if and only if NL/Q(λII) =

NL/Q(D−1
L/K), that is

NL/Q(λII)NL/Q(DL/K) = 1.

Since complex conjugation is an automorphism of L/Q, we have

NL/Q(I) = NL/Q(I).

Moreover, we have

NL/Q(λ) = NK/Q(NL/K(λ)) = NL/K(λ)
2,

since NL/K(λ) ∈ Q. Using Lemma 2.18, the condition above rewrites
as

(NL/K(λ)NL/Q(I)dL/K)
2 = 1,

that is det(I, hλ)
2 = 1 by Proposition 2.15. This completes the proof.

�
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Remark 2.21. In particular, if (I, hλ) is positive definite, we have
det(I, hλ) = 1 if and only if λII = D−1

L/K , since det(I, hλ) > 0 in this
case.

We now compute the signature of a complex ideal lattice.

Proposition 2.22. Let (I, hλ) be a complex ideal lattice on L/K, and
let X(L) = HomK(L,C). Then we have

sign(I, hλ) = ♯{σ ∈ X(L) | σ(λ) > 0} − ♯{σ ∈ X(L) | σ(λ) < 0}.

In particular, (I, hλ) is positive definite if and only if σ(λ) > 0 for
every K-embedding σ : L → C.

Proof. We define two quadratic forms qλ,L0
and q′λ,L by

qλ,L0
:
L0 −→ Q

x 7−→ TrL0/Q(λx
2)

and

q′λ,L :
L −→ Q

x 7−→ TrL/Q(λxx).

Since λxx ∈ L0 for all x ∈ L, we have

TrL/K(λxx) = TrL0/Q(λxx) ∈ Q

and therefore

qhλ
(x) = TrL/K(λxx) =

1

2
TrL/Q(λxx) =

1

2
q′λ,L(x)

for all x ∈ L. Hence, we have

sign(I, hλ) =
1

2
sign(q′λ,L).

Easy computations show that

q′λ,L ≃ 〈1, d〉 ⊗ qλ,L0
,

where K = Q(
√
−d) and therefore

sign(I, hλ) = sign(qλ,L0
).

Set X ′(L0) = HomQ(L0,C). By [12, Proof of Theorem 3.4.5], we get

sign(I, hλ) = ♯{τ ∈ X ′(L0) | τ(λ) > 0} − ♯{τ ∈ X ′(L0) | τ(λ) < 0}.

Taking into account that every K-embedding of L into C is extended
from a Q-embedding of L0 into C, we have the desired result. �

We now give an estimation of the minimal distance of a complex ideal
lattice.
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Proposition 2.23. Let (I, hλ) be a positive definite complex ideal lat-
tice. Then we have

d(I, hλ) ≥ n[NL/K(λ)NL/Q(I)]
1/n.

In particular, if det(I, hλ) = 1, we have

d(I, hλ) ≥ n · d−1/n
L/K .

Proof. By Proposition 2.22, σ(λ) is a positive real number for every
embedding σ : L → C. Since σ commutes with complex conjugation,
σ(λxx) = σ(λ)σ(x)σ(x) is a positive real number for all x ∈ L. In
particular, the inequality of the arithmetic and geometric means implies
that

1

n
TrL/K(λxx) ≥ NL/K(λxx)

1/n for all x ∈ I.

Now for all x ∈ I, we have λxxOL ⊂ λII, and therefore

NL/Q(λ)NL/Q(I)
2 | NL/Q(λxxOL) = NL/Q(λxx).

In particular, if x 6= 0, we get

NL/Q(λxx) ≥ NL/Q(λ)NL/Q(I)
2.

Now since λxx ∈ L0, we have NL/K(λxx) ∈ Q and thus NL/Q(λxx) =
NL/K(λxx)

2. For the same reason, NL/Q(λ) = NL/K(λ)
2, and we get

NL/K(λxx) ≥ NL/K(λ)NL/Q(I),

taking into account that NL/K(λ) and NL/K(λxx) are positive. We
finally get

TrL/K(λxx) ≥ n[NL/K(λ)NL/Q(I)]
1/n for all x ∈ I, x 6= 0,

which proves the first part of the proposition. The second part follows
from Proposition 2.15. �

Since the cubic lattice has a minimal distance equal to 1, we get:

Corollary 2.24. If the cubic lattice is isomorphic to a complex ideal
lattice on L/K, then dL/K ≥ nn.

2.3. Minimum determinant of a crossed product based code.

We would now like to apply the results of the previous paragraph to
give an estimation of the minimum determinant of a crossed product
based code. Let us recall some notation from the first section.

Let A = (ξ, L/K,G) be a crossed product K-algebra of degree n, such
that |ξσ,τ |2 = 1 for all σ, τ ∈ G, and let (I, hλ) be an ideal lattice on
L/K which is isomorphic to the cubic lattice, with orthonormal basis
(wσ)σ∈G.
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Let ΛA,I =
⊕

σ∈G
eσI, and letDλ be the diagonal matrix whose entries are

the real numbers
√
λσ, σ ∈ G. For all a =

∑

σ∈G
eσaσ ∈ ΛA,I , we denote

by Ma the matrix of left multiplication by a in the L-basis (eσ)σ∈G of
A and we set Xa = MaDλ. In other words, we have

Ma = (ξστ−1,τa
τ
στ−1)σ,τ and Xa = (

√
λτξστ−1,τa

τ
στ−1)σ,τ .

We finally set

CA,λ,I = {Xa | a ∈ ΛA,I}.

By the results of Section 1, the encoding map

a =
∑

σ∈G
eσ(

∑

τ∈G
aσ,τωτ ) 7→ Xa

is energy-preserving.

We would like to evaluate the performance of our code. In order to
do this, we have to estimate δmin(CA,λ,I) = infa 6=0| det(Xa)|2. Let us
introduce some notation first. The set

E (τ)
ξ = {c ∈ OK | cξστ−1,τ ∈ OL for all σ ∈ G}

is an ideal of OK . We will denote by ∆
(τ)
ξ the norm of this ideal.

Equivalently, we have

∆
(τ)
ξ = NK/Q(c

(τ)
ξ ) = |c(τ)ξ |2,

for any generator c
(τ)
ξ of E (τ)

ξ . Notice that by the definition of a cocycle,

we have ∆
(Id)
ξ = 1.

By definition, we have

∆
(τ)
ξ = 1 ⇐⇒ ξστ−1,τ ∈ OL for all σ ∈ G.

We then set

∆ξ =
∏

σ∈G
∆

(σ)
ξ .

We then have

∆ξ = 1 ⇐⇒ ξσ,τ ∈ OL for all σ, τ ∈ G.

Finally, we set

Nmin(I) = min
x∈I\{0}

|NL/Q(x)|.

Notice that Nmin(I) = NL/Q(I) if I is a principal ideal. In general,
equality does not hold.
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Proposition 2.25. Assume that A is a division K-algebra. With the
previous notation, we have

1

∆ξdL/K
≤ δmin(CA,λ,I) ≤ NL/K(λ)Nmin(I).

If moreover ∆ξ = 1 and I is principal, we have

δmin(CA,λ,I) =
1

dL/K
.

Proof. Let x ∈ I, x 6= 0 with minimal absolute norm. Then we have

XeIdx = MeIdxDλ = xMeIdDλ = xDλ.

It follows that

det(XeIdx) =
∏

τ∈G
xτ
√
λτ = NL/K(x)

√

NL/K(λ),

and therefore | det(XeIdx)|2 = NL/Q(x)NL/K(λ) = Nmin(I)NL/K(λ),
since we have

|NL/K(x)|2 = NK/Q(NL/K(x)) = NL/Q(x).

The upper bound then follows from the definition of δmin(CA,λ,I).

Now let Xa = MaDλ ∈ CA,λ,I . To establish the lower bound, notice
that

| det(Xa)|2 = | det(Ma)|2NL/K(λ).

Recall that we have det(Ma) = NrdA(a) ∈ K. Now let c
(τ)
ξ be a

generator of E (τ)
ξ , let C be the invertible diagonal matrix whose diagonal

entry at column τ is c
(τ)
ξ , and let M ′

a = MaC. By definition of c
(τ)
ξ , we

have M ′
a = (c

(τ)
ξ ξστ−1,τa

τ
στ−1)σ,τ ∈ Mn(OL). Thus det(M

′
a) ∈ OL ∩K =

OK and | det(M ′
a)|2 ∈ Z.

Since each coefficient in the τ th-column of M ′
a lies in Iτ , the definition

of the determinant and the previous observation show that we have

det(M ′
a) ∈ (

∏

τ∈G
Iτ ) ∩ OK = NL/K(I). It follows that

| det(M ′
a)|2 ∈ NL/K(I)NL/K(I) ∩ Z = NL/Q(I) = NL/Q(I)Z.

Now we have

| det(Xa)|2 = | det(M ′
aC

−1Dλ)|2 =
1

∆ξ

NL/K(λ)| det(M ′
a)|2,

and thus

| det(Xa)|2 ∈
1

∆ξ

NL/K(λ)NL/Q(I)Z.
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Since det(Xa) 6= 0 if a 6= 0, we get

| det(Xa)|2 ≥
1

∆ξ

NL/K(λ)NL/Q(I) for all a ∈ ΛA,I , a 6= 0.

Using Proposition 2.15 and the definition of the minimum determinant,
we get the desired lower bound.

Finally, if I is a principal ideal, then Nmin(I) = NL/Q(I). Using Propo-
sition 2.15 again, we see that the two bounds are equal whenever ∆ξ = 1
and I is principal. �

Remark 2.26. Notice that if x ∈ I, x 6= 0 is an element with minimal
norm, then the first isomorphism theorem applied to the surjective
morphism OL/xOL → OL/I shows that Nmin(I) = NL/Q(I)[I : xOL].
Hence the equation in the previous proposition may be rewritten as

1

∆ξdL/K
≤ δmin(CA,λ,I) ≤

[I : xOL]

dL/K
.

This shows that maximising δmin(CA,λ,I) is essentially equivalent to
minimising dL/K . The lower bound also shows that it is in our interest
to choose the cocycle values to be algebraic integers whenever it is
possible.

3. Optimality of codes based on cyclic K-algebras

In [10] examples of codes with good performance were given for n = 4
and n = 6 that are based on a specific type of crossed product K-
algebra, namely cyclic K-algebras. In this section, we will establish
the optimality of these codes.

3.1. Preliminaries. First, let us recall the definition of a cyclic K-
algebra. Let L/K be a cyclic Galois extension of degree n with Galois
group G generated by σ, and let γ ∈ K×.

The map

ξγ :

G×G −→ L×

(σi, σj) 7−→
{

1 if i+ j < n
γ if i+ j ≥ n

is a 2-cocycle.

We denote by (γ, L/K, σ) the corresponding crossed product. Such a
K-algebra is called a cyclic K-algebra. This K-algebra is generated
by a single element e(= eσ) subject to the relations

en = γ, λe = eλσ for all λ ∈ L.

Codes based on cyclic division K-algebras that satisfy the conditions
discussed at the beginning of this paper are called Perfect Space
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Time Block Codes (PSTBC). It has been shown that if γ ∈ OK , then
these codes only exist in dimension 2, 3, 4 and 6 [3]. If the condition
that γ ∈ OK is dropped then perfect codes exist for any dimension [4].
The case of the optimal PSTBC in dimension 2 has been addressed in
[8]. In this section we deal with the dimension 4 and 6 cases.

In order to study the optimality of these codes, we will need to study
the ramification of some Kummer extensions of K.

Let L = K( n
√
d) be a Kummer extension of K ⊃ µn of degree n. After

multiplying by a suitable nth-power of an element of K, we may assume
that d ∈ OK and that 0 ≤ vπ(d) ≤ n− 1 for every prime element π of
OK .

The following result is well-known.

Lemma 3.1. The prime elements π of K which eventually ramify are
those dividing d or n. Every prime π | d ramifies and if vπ(d) and n
are relatively prime, then π totally ramifies.

If furthermore π ∤ n, then π totally ramifies if and only if vπ(d) and n
are relatively prime.

We continue these preliminaries by giving a necessary and sufficient
condition on d to have complex conjugation commuting with the Galois
group of L/K.

Lemma 3.2. Let L = K( n
√
d) be a Kummer extension of K of degree

n. Then complex conjugation induces a Q-automorphism of L which
commutes with Gal(L/K) if and only if dd ∈ K×n.

Proof. Let ζn ∈ K be a primitive nth-root of 1. Then a generator σ of
Gal(L/K) is given by

σ :
L −→ L

α 7−→ ζnα,

where α = n
√
d. Assume first that complex conjugation induces a Q-

automorphism of L which commutes with Gal(L/K). Then α ∈ L, and
we have

σ(αα) = σ(α)σ(α) = αα,

since ζnζn = 1. Thus αα ∈ K×. Now we have

(αα)n = αnαn = dd,

so dd ∈ K×n. Conversely, assume that dd ∈ K×n. Then we have

(αα)n = dd = cn for some c ∈ K×,
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and therefore α =
cζ ′

α
for some ζ ′ ∈ µn. In particular, α ∈ L and

complex conjugation is therefore a Q-automorphism of L. Moreover,
we have

σ(α) =
cζ ′

ζnα
= ζn

cζ ′

α
= ζnα,

that is σ(α) = σ(α). Hence complex conjugation commutes with σ and
hence with Gal(L/K). This completes the proof. �

We finish this section by computing ∆ξγ .

Assume that K = Q(i) or Q(j). Write γ =
γ1
γ2

, where γ1, γ2 ∈ OK are

relatively prime. For all 1 ≤ j ≤ n− 1, we have

ξγ
σj−1(σj)−1,σj = ξγ

σn−1,σj = γ.

This implies easily that E (σj)
ξγ = (γ2). We then have ∆σj

ξγ = |γ2|2, and
therefore

∆ξγ = |γ2|2(n−1).

Thus, if C ⊂ CA,λ,I is a codebook built on a cyclic division K-algebra
A = (γ, L/K, σ), then by Proposition 2.25 and the considerations of
the previous paragraph, we have

1

δmin(C)
≤ |γ2|2(n−1)dL/K .

3.2. The case n = 4. In [10], Oggier et al. constructed a suitable
code on the cyclic division Q(i)-algebra

(i,Q(i)(ζ15 + ζ−1
15 )/Q(i), σ).

The cyclic extension Q(i)(ζ15+ζ−1
15 )/Q(i) has relative discriminant 1125

as we will see later on. Hence for any C ⊂ CA,λ,I , we get

1

δmin(C)
≤ 1125.

We will show here that this bound is optimal, in the following sense:

Theorem 3.3. If C ⊂ CA,λ,I is a PSTBC built on a cyclic division
K-algebra A = (γ, L/K, σ) of degree 4, then we have

|γ2|6dL/K ≥ 1125.

We will need several intermediate results. Assume that we may build
a PSTBC on a cyclic division K-algebra A = (γ, L/K, σ), where K =
Q(i) or Q(j), such that |γ2|6dL/K < 1125. We would like to notice first
that the case K = Q(i) and γ = i is the only one worth considering.

Assume that |γ2|6dL/K < 1125. Since we need the existence of an ideal
trace lattice on L isomorphic to the cubic lattice structure, we have
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dL/K ≥ 44 by Corollary 2.24. Taking into account that |γ|2 is a positive
integer, we get easily from the previous inequality that|γ2|2 = 1. Since
K/Q is quadratic imaginary, this implies that γ2 is a unit, so γ ∈ OK .
Now |γ|2 = 1, and thus γ is also a unit of OK .

Now if K = Q(j), then by the previous point γ = ±1,±j,±j2, so
γ6 = 1. In particular, we have

6[A] = [(γ6, L/K, σ)] = [(1, L/K, σ)] = 0 ∈ Br(K).

Since A has degree 4, we also have 4[A] = 0 and so 2[A] = 0. Hence A
has exponent 1 or 2, and since K is a number field, it implies that A
has index 1 or 2. Thus, A is not a division K-algebra.

Assume now that K = Q(i). In this case, γ = ±1,±i. Since the index
of A equals its exponent, A will be a division K-algebra if and only
if 2[A] 6= 0. Now if L = K( 4

√
d), we have 2[A] = [(γ, d)]. Since −1

is a square in K, we have (γ, d) ≃ (−γ, d), and (γ, L/K, σ) is then a
division K-algebra if and only if (−γ, L/K, σ) is. Hence, it is enough
to consider the two cases γ = 1, i. The first case has to be discarded
since it yields the split K-algebra M4(K).

Therefore, we may assume without loss of generality that K = Q(i)
and A = (i, L/K, σ). In this case, we are reduced to show that there is
no PSTBC on a cyclic division K-algebra (i, L/K, σ) satisfying dL/K <
1125.

We now assume once and for all that K = Q(i) and that L = K( 4
√
d),

where d ∈ OK is not divisible by any 4th-power of an element of OK .

We denote by S3, S1, S1 the following subsets of OK :

S3 = {p ≡ 3[4], p prime number }

S1 = {π = a+ bi | 0 < a < b, pπ = a2 + b2, pπ prime number }

S1 = {π | π ∈ S1}.
Then any prime element of OK is associate either to 1− i or to exactly
one element of S3, S1 or S1.

Decomposing d into a product of a unit and of prime elements and
using Lemma 3.2 then immediately gives the following result:

Lemma 3.4. Let L = K( 4
√
d). Then complex conjugation induces a

Q-automorphism of L which commutes with Gal(L/K) if and only if
all the following conditions are satisfied:
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(1) v1−i(d) = 0.
(2) vp(d) = 0 or 2, for all p ∈ S3.
(3) (vπ(d), vπ(d)) = (1, 3), (2, 2) or (3, 1) for all π ∈ S1 dividing d.

We will assume from now on that the conditions above are satisfied. In
this case, we have the following estimation of the relative discriminant.

Lemma 3.5. The odd part of dL/K is

(
∏

p ∈ S3

p|d

p)2(
∏

π ∈ S1

vπ(d) = 1, 3

pπ)
3(

∏

π ∈ S1

vπ(d) = 2

pπ)
2.

Proof. Let p ∈ S3 dividing d. By Lemma 3.4, vp(d) = 2, so p ramifies
but does not totally ramify by Lemma 3.1. Hence

(p) = P2
0 or P2

1P
2
2 in OL,

where P1,P2 form an orbit under the action of Gal(L/K). Now since
p is odd, p tamely ramifies, and thus vPi

(DL/K) = 2− 1 = 1.

If (p) = P2
0, we have NL/Q(P0) = p4 and by Lemma 2.18, vp(dL/K) = 2.

If (p) = P2
1P

2
2, we have NL/Q(Pi) = p2 and by Lemma 2.18, we also

get vp(dL/K) = 2 in this case as well.

Assume now that π ∈ S1 divides d with an odd valuation. Then π
also divides d with an odd valuation by Lemma 3.4. In this case, π
and π totally ramify by Lemma 3.1. We then have (π) = P4 and

(π) = P
4
. Thus NL/Q(P) = NL/Q(P) = pπ. Once again π and π

are tamely ramified, and reasoning as before shows that vpπ(d) = 3.
Finally, assume that vπ(dL/K) = 2 and so vπ(d) = 2 by Lemma 3.4. By
Lemma 3.1, π and π ramify but do not totally ramify. We then have

(π) = P2
0 and (π) = P

2

0

or

(π) = P2
1P

2
2 and (π) = P

2

1P
2

2

In the first case we have NL/Q(P0) = NL/Q(P0) = p2π. In the second

case we have NL/Q(Pi) = NL/Q(Pi) = pπ. We now finish the proof as
before. �

Example 3.6. The cyclic extension Q(i)(ζ15 + ζ−1
15 )/Q(i) has relative

discriminant 1125. Indeed, the only prime elements which ramify here
are the prime elements lying above 3 and 5, and we may apply the
previous lemma to conclude.

We now give an explicit criterion to decide whether or notA is a division
K-algebra.
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Lemma 3.7. The cyclic K-algebra A = (i, L/K, σ) is a division K-
algebra if and only if there exists a prime element π ∈ S1 dividing d
with an odd valuation such that pπ ≡ 5[8].

Proof. As already pointed out, A is a division K-algebra if and only if
the quaternion K-algebra (i, d) does not split. In view of the previous
lemma, d is congruent to uπ1π1 · · · πrπr modulo squares, where u is
a unit and π1, . . . , πr are the elements of S1 dividing d with an odd
valuation. Thus, we have

(i, d) ≃ (i, uπ1π1 · · · πrπr), u = ±1,±i.

This implies that if p ∈ S3, or if π ∈ S1 divides d with an even valuation,
the Hasse symbols (i, d)p, (i, d)π and (i, d)π are trivial. If π ∈ S1 divides
d with an odd valuation, the Hasse symbol is the image of i(pπ−1)/2 in
F×
pπ . Since i4 = 1, it is equal to 1 if pπ ≡ 1[8] and to −1 if pπ ≡ 5[8].

We are now ready to conclude. If d is divisible by a prime element
π ∈ S1 with an odd valuation such that pπ ≡ 5[8], then the Hasse
symbol (i, d)π is not trivial, so (i, d) does not split and A is a division
K-algebra in this case. If d is not divisible by a prime element satisfying
the previous conditions, then all Hasse symbols (i, d)π′ , π′ 6= 1 − i are
trivial. The remaining Hasse symbol is then trivial by the product
formula, hence (i, d) splits and A is not a division K-algebra. �

We may now finish the proof of Theorem 3.3. Assume that we may
build a suitable code on a cyclic division K-algebra A = (i, L/K, σ)
with dL/K < 1125. By Lemma 3.7, there exists π ∈ S1 dividing d
with an odd valuation such that pπ ≡ 5[8]. In particular, pπ ≥ 5.
Then by Lemma 3.5, we have p3π | dL/K . Thus, we necessarily have
π = 1 + 2i and 125 | dL/K (Otherwise, we would have pπ ≥ 13 and
dL/K ≥ 133 > 1125). Now if π′ ∈ S1, π

′ 6= 1 + 2i divides d, we would
have 125 · p2π′ | dL/K , and thus p2π′ ≤ 9, which is a contradiction since
pπ′ ≥ 5. Similarly, if p ∈ S3 divides d, we have 125 · p2 | dL/K and thus
necessarily p = 3.

Hence the only possible prime divisors for d are 1 − i, 3 and 1 ± 2i.
Noticing that conjugate values of d generate the same field extension,
we see that the remaining possibilities for d are

d = u · 3m(1 + 2i)(1− 2i)3,m = 0, 2, u = ±1,±i.

Using PARI GP [17] to compute the relative discriminants of the cor-
responding extensions, we see that the only possibility to have dL/K <
1125 is

d = (1 + 2i)(1− 2i)3.
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In this case, dL/K = 125 < 44. Hence, using Corollary 2.24, we see
that no complex ideal lattice on L/K will be isomorphic to the cubic
lattice, and this completes the proof.

3.3. The case n = 6. If C ⊂ CA,λ,I is a codebook built on a cyclic
division K-algebra A = (γ, L/K, σ), then this time we have

1

δmin(C)
≤ |γ2|10dL/K ,

where we have written γ =
γ1
γ2

with γ1, γ2 ∈ OK relatively prime.

In [10], Oggier et al. constructed a PSTBC on the cyclic division Q(j)-
algebra

(−j,Q(j)(ζ28 + ζ−1
28 )/Q(j), σ).

The cyclic extension Q(j)(ζ28 + ζ−1
28 )/Q(j) has relative discriminant

26 · 75. Hence for any C ⊂ CA,λ,I , we get

1

δmin(C)
≤ 26 · 75.

Once again, this bound is optimal:

Theorem 3.8. If C ⊂ CA,λ,I is a PSTBC built on a cyclic division
K-algebra A = (γ, L/K, σ) of degree 6, then we have

|γ2|10dL/K ≥ 26 · 75.

Arguing as in the previous section, we see that we may assume without
loss of generality that K = Q(j) and A = (−j, L/K, σ). In this case,
we are reduced to show that there is no PSTBC on A such that dL/K <
26 · 75.

We now assume that K = Q(j) and that L = K( 6
√
d), where d ∈ OK

is not divisible by any 6th-power of an element of OK .

We denote by T2, T1, T 1 the following subsets of OK :

T2 = {p ≡ 2[3], p > 2 prime number }

T1 = {π = a+ bj | 0 < a < b, pπ = a2 + b2 − ab, pπ ≡ 1[3], pπ prime }

T 1 = {π | π ∈ T1}.
Then any prime element of OK is associate either to 1 − j, 2 or to
exactly one element of T2, T1 or T 1.
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We then have:

Lemma 3.9. Let L = K( 6
√
d). Then complex conjugation induces a

Q-automorphism of L which commutes with Gal(L/K) if and only if
all the following conditions are satisfied:

(1) v1−j(d) = 0.
(2) vp(d) = 0 or 3, for all p ∈ T2 or p = 2.
(3) (vπ(d), vπ(d)) = (1, 5), (2, 4), (3, 3), (4, 2) or (5, 1) for all π ∈ T1

dividing d.

We will assume from now on that the conditions above are satisfied. In
this case, we have the following estimation of the relative discriminant.

Lemma 3.10. The prime-to-6 part of dL/K is

(
∏

p ∈ T2

p|d

p)3(
∏

π ∈ T1

vπ(d) = 1, 5

pπ)
5(

∏

π ∈ T1

vπ(d) = 3

pπ)
3(

∏

π ∈ T1

vπ(d) = 2, 4

pπ)
4.

Moreover, the following holds:

(1) If 2 ramifies in L/K, then v2(dL/K) ≥ 6
(2) If 1− j ramifies in L/K, then v3(dL/K) ≥ 4.

Proof. Let p ∈ T2 dividing d. By Lemma 3.9, vp(d) = 3, so p ramifies
but does not totally ramify by Lemma 3.1. Moreover, p tamely ramifies
since p is prime to 6. Write d = d′p3 with d′ ∈ OK , p ∤ d′. Then p totally

ramifies in K2 = K(
√
d) = K(

√
d′p) by the same lemma, so we may

write

(p) = p20,

for some ideal p0 of OK2
. Since L/K2 is a Galois extension of prime

degree 3 , either p0 is totally ramified, inert or totally split. Since p0
cannot be totally ramified (otherwise p would be totally ramified), we
finally have

(p)OL = p20 or p21p
2
2p

2
3 in OL,

where p1, p2, p3 form an orbit under the action of Gal(L/K2).

If (p) = p20, we have NL/Q(p0) = p6, and since vp0(DL/K) = 1, we get
vp(dL/K) = 3.

If (p) = p21p
2
2p

2
3, we have NL/Q(pi) = p2, and since vpi(DL/K) = 1, we

also get vp(dL/K) = 3 in this case.

Now, let π ∈ T1 such that vπ(d) = 1 or 5. Then vπ(d) = 5 or 1
respectively. By Lemma 3.1, π and π totally ramify, so we have

(π) = p6 and (π) = p
6 in OL,
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with NL/Q(p) = pπ. We then have vp(DL/K) = 5 = vp(DL/K) and thus
vpπ(dL/K) = 5.

Let π ∈ T1 such that vπ(d) = 3. Then we also have vπ(d) = 3. Reason-
ing as above, we see that we have

(π) = p20 or p21p
2
2p

2
3 in OL,

and similarly for (π), so that vpπ(dL/K) = 3.

Finally, let π ∈ T1 such that vπ(d) = 2 or 4, and set K3 = K( 3
√
d). In

this case, we have

(π) = p30 or p31p
3
2 in OL,

where p1, p2 form an orbit under the action of Gal(L/K3). One may
check as before that in both cases, we have vpπ(dL/K) = 4.

We now examine the case of the wildly ramified primes. Let us start
with 1 − j. Since 1 − j does not divide d or 2, it does not ramify in
K2. Then it necessarily totally ramifies in K3, so we have

(1− j) = p30 in OK3
,

where NK3/Q(p0) = 3. Now since 1 − j wildly ramifies, vp0(DK3/K) ≥
3. Therefore, 33 divides NK3/Q(DK3/K) = d2K3/K

. Since dK3/K is an

integer, we get that 32 | dK3/K . By Corollary 2.19, we get 34 | dL/K .
Assume now that 2 ramifies in L/K. Since v2(d) = 0 or 3, it does not
ramify in K3, hence it totally ramifies in K2. We then have

(2) = p20 in OK2
,

so that NK2/Q(p0) = 22. Since 2 wildly ramifies, vp0(DK2/K) ≥ 2, and
we get as before that 24 | d2K2/K

. Hence 22 | dK2/K , and by Corollary

2.19, we get 26 | dL/K . �

As before we now give an explicit criterion to decide whether or not A
is a division K-algebra.

Lemma 3.11. The cyclic K-algebra A = (−j, L/K, σ) is a division
K-algebra if and only if there exist (not necessarily distinct) prime
elements π, π′ ∈ T1 such that vπ(d) is odd, vπ′(d) is prime to 3 and
satisfying the following conditions:

(1) pπ ≡ 7[12].

(2) pπ′ ≡ 4 or 7[9].

Proof. Since K is a number field, the index of A equals the exponent
of A. Thus A will be a division K-algebra if and only if 2[A] 6= 0
and 3[A] 6= 0. Notice that A is nothing but the symbol K-algebra
{−j, d}6. Hence 3[A] = [(−j, d)] and 2[A] = [{−j, d}3]. Since (−j, d)
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and {−j, d}3 have prime degrees, we conclude that A will be a division
K-algebra if and only if A2 = (−j, d) and A3 = {−j, d}3 are not split.

Using Lemma 3.9 and properties of quaternion K-algebras, we see that
we have

A2 = (−j, u2mπ1π1 . . . πrπrp1 · · · ps),
where u is a unit, m = 0 or 1, π1, . . . , πr ∈ T1 and p1, . . . , ps ∈ T2 are
prime elements dividing d with an odd valuation.

It follows in particular that if π 6= πi, pj, then the corresponding Hasse
symbol is trivial. If π = p ∈ T2, then the number of elements of the
residue field κ(π) is qπ = p2. The corresponding Hasse symbol is then
equal to

−j
p2−1

2 ∈ κ(π)×.

Since p ≡ 2[3] and p is odd, we have p ≡ 5[6], so p2 − 1 is a multiple of
12. Since (−j)6 = 1, we deduce that the Hasse symbol is trivial in this
case as well.

Assume now that π ∈ T1. In this case qπ = pπ, and the corresponding
Hasse symbol is then equal to

−j
pπ−1

2 ∈ κ(π)×.

This Hasse symbol will then be trivial if and only if 6 | pπ−1
2

, that is
pπ ≡ 1[12]. In other words, since pπ ≡ 1[3] and pπ is odd, the Hasse
symbol will be non-trivial if and only if pπ ≡ 7[12]. Notice also that
the Hasse symbols corresponding to π and π are equal.

It follows from our computations above that if no prime element π ∈ T1

such that pπ ≡ 7[12] divides d with an odd valuation, then all the
Hasse symbols of A2 are trivial, except maybe for the Hasse symbol
corresponding to 2. By the product formula, this last symbol is also
trivial, and A2 is split in this case. If however such a π exists, then A2

has at least one non-trivial Hasse symbol, and is therefore not split.

Thus A2 is not split if and only if there exists π ∈ T1 such that pπ ≡
7[12] dividing d with an odd valuation.

Using Lemma 3.9 and properties of symbol K-algebras, we see that we
have

A3 = {j, uπ1π
2
1 . . . πrπ

2
rπ

′2
1 π

′
1 · · · π

′2
s π

′
s}3,

where u is a unit and π1, . . . , πr, π
′
1, . . . , π

′
s ∈ T1 are prime elements

dividing d with a valuation prime to 3.

The Hasse symbol corresponding to each of these prime elements has

the form j
m pπ−1

3 , where m = 1 or 2. This symbol is then trivial if and
only if pπ ≡ 1[9]. In other words, the corresponding Hasse symbol is
not trivial if and only if pπ ≡ 4, 7[9].
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Reasoning as above, we see that A3 is not split if and only if there
exists π ∈ T1 such that pπ ≡ 4, 7[9] dividing d with a valuation prime
to 3. This concludes the proof. �

Assume now that we may build an energy-preserving code on a cyclic
division K-algebra A = (−j, L/K, σ), where dL/K < 26 · 75.
Let π ∈ T1 divide d with an odd valuation, such that pπ ≡ 7[12] (such
a π exists by the previous result). If pπ > 7, then pπ ≥ 19. In this
case, Lemma 3.10 implies that 193 | dL/K . Now let π′ ∈ T1 divide
d with a valuation which is prime to 3, such that pπ′ ≡ 4, 7[9]. We
then have pπ′ ≥ 7 and thus Lemma 3.10 implies that 74 | dL/K . Hence
74 · 193 | dL/K , which is a contradiction since 74 · 193 > 26 · 75.
Therefore, pπ = 7. We then get 73 | dL/K . If pπ′ > 7, we have pπ′ ≥ 13
and thus 73 · 134 | dL/K , which is again a contradiction. Hence pπ′ = 7.

Hence we have proved that π = π′ = 2 + 3j. Moreover, since 2 + 3j
divides dL/K with an odd valuation, which is also prime to 3, then
v2+3j(dL/K) = 1 or 5, and thus 75 | dL/K .
Assume that p ∈ T2 ramifies in L/K. Since p ≡ 2[3], we have p ≥ 5,
and by Lemma 3.10, we get 53 | dL/K . We then get a contradiction,

since 53 · 75 > 26 · 75. If π′′ ∈ T1 ∪ T 1, π
′′ ∤ 7 ramifies in L/K, we have

pπ′′ ≥ 13 since pπ′′ ≡ 1[3]. In this case, we obtain that 133 | dL/K ,
which again yields a contradiction. Notice that 1 − j and 2 do not
ramify in L/K either, since otherwise we would have 34 · 75 | dL/K or
26 · 75 | dL/K , which is a contradiction.

The computations above shows that dL/K = 75 < 66, so we may not
construct the cubic lattice as a complex ideal lattice on L/K by Corol-
lary 2.24.

This proves Theorem 3.8.

4. Optimality of codes based on biquadratic crossed

products

Let L/K be a biquadratic extension, and fix two generators σ, τ of
G = Gal(L/K). Then any G-crossed product is isomorphic to the K-
algebra (a, b, u, L/K, σ, τ), for some a, b, u ∈ L×, which is generated by
two elements e and f subject to the relations

aσ = a, bτ = b, uuσ =
a

aτ
, uuτ =

bσ

b
.

Notice that these relations imply that (abuτ )στ = abuτ .
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A K-basis of this K-algebra is given by 1, e, f, ef . A triple (a, b, u)
satisfying the conditions above will be called (σ, τ)-admissible.

The corresponding cocycle is the map ξ : G×G → L× defined by

ξId,Id = 1, ξId,σ = 1, ξId,τ = 1, ξId,στ = 1,

ξσ,Id = 1, ξσ,σ = a, ξσ,τ = 1, ξσ,στ = aτ ,

ξτ,Id = 1, ξτ,σ = u, ξτ,τ = b, ξτ,στ = buτ ,

ξστ,Id = 1, ξστ,σ = aτu, ξστ,τ = b, ξστ,στ = abuτ .

It follows that the cocycle values all have modulus 1 if and only if
|a|2 = |b|2 = |u|2 = 1, provided that complex conjugation commutes
with the elements of G.

Lemma 4.1. The multiplication matrix X of x = x1+exσ+fxτ+efxστ

in the K-algebra (a, b, u, L/K, σ, τ) is given by









x1 axσ
σ bxτ

τ abuτxστ
στ

xσ xσ
1 bxτ

στ buτxστ
τ

xτ aτuxσ
στ xτ

1 aτxστ
σ

xστ uxσ
τ xτ

σ xστ
1









.

In [2], Oggier and the first author constructed a suitable code on the
division Q(i)-algebra

A = (ζ8,
1 + 2i√

5
, i,Q(i)(

√
2,
√
5)/Q(i), σ, τ),

where

σ(
√
2) =

√
2, σ(

√
5) = −

√
5

τ(
√
2) = −

√
2, τ(

√
5) =

√
5

The biquadratic extension L = Q(i)(
√
2,
√
5) of Q(i) has relative dis-

criminant 400, as we will see later on.

Let us compute ∆ξ in this case. Clearly we have

∆
(Id)
ξ = ∆

(σ)
ξ = 1.

Moreover, we have

E (τ)
ξ = E (στ)

ξ = {c ∈ Z[i] | cb ∈ OL}.

We claim that ∆
(τ)
ξ = 5. Notice that 1−2i ∈ E (τ)

ξ since (1−2i)b =
√
5.

Hence ∆
(τ)
ξ divides |1−2i|2 = 5. Since b /∈ OL (its minimal polynomial

over Q is X4 − 6
5
X2 + 1 /∈ Z[X]), we have ∆

(τ)
ξ 6= 1 and therefore

∆
(τ)
ξ = 5. Thus we also have ∆

(στ)
ξ = 5 and ∆ξ = 25.
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In particular, Proposition 2.25 shows that the minimum determinant
of any code C built on this division Q(i)-algebra satisfies

δmin(C) ≥
1

10000
.

Remark 4.2. Notice that in [2], the better bound
1

2500
was announced.

This bound is not correct, since it was obtained by writing b =

√
1 + 2i√
1− 2i

,

and taking the denominator outside the multiplication matrix. How-
ever, the conclusion that the determinant of the remaining matrix was
an element of OK was not correct, since

√
1 + 2i /∈ OL.

We will show in this section that the bound obtained above is optimal,
in the following sense:

Theorem 4.3. Let K = Q(i). If C ⊂ CA,λ,I is an energy-preserving
code built on a biquadratic crossed product division K-algebra A =
(a, b, u, L/K, σ, τ), then we have

dL/K∆ξ ≥ 10000.

We will assume in the sequel that K = Q(i). We start with the study
of the ramification of biquadratic extensions of K.

Lemma 4.4. Let F = K(
√
d). Then complex conjugation induces a

Q-automorphism of L which commutes with Gal(F/K) if and only if
all the following conditions are satisfied:

(1) v1−i(d) = 0.
(2) vp(d) = 0 or 1, for all p ∈ S3.
(3) vπ(d) = vπ(d) = 1 for all π ∈ S1 dividing d.

Let L = K(
√
d,
√
d′) be a biquadratic extension, whose Galois group

commutes with complex conjugation. Then d and d′ have the form m
or mi, where m is a squarefree odd integer (apply twice the previous
lemma). Moreover, we have 4mi = 2m(1 + i)2, so we may in fact
assume that d and d′ are squarefree integers. Since −1 is a square, we
may also assume that d and d′ are positive.

We will then assume from now on that L = K(
√
d,
√
d′), where d and

d′ are squarefree positive integers.

Notice for later use that if π is an irreducible element lying above the
prime number p dividing d and d′, then p | d and p | d′ (This is clear
if π is a prime number, and if p ≡ 1[4], it follows from the fact that π
also divides d and d′).

Proposition 4.5. Let L = K(
√
d,
√
d′), where d and d′ are squarefree

positive integers. Then the following properties hold:
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(1) The odd part of dL/K is
∏

p

p2, where p runs through the odd

prime numbers that divide d or d′.
(2) The element 1 − i ramifies in L if and only if d or d′ is even.

In this case, 24 | dL/K.

Proof. Let p be an odd prime integer and let π be an irreducible element
lying above p. Assume that p does not divide d and d′. Then π ∤ d
and π ∤ d′ (this comes from Lemma 4.4) , and thus π does not ramify

in K(
√
d) and K(

√
d′). Therefore, π does not ramify in L. Assume

now that p | d for example. Replacing d′ by
dd′

p2
if necessary, one may

assume that p ∤ d′, so that π does not ramify in M ′ = K(
√
d′). Since

π divides d, it totally ramifies in M = K(
√
d). Write (π) = p2. Since

π does not ramify in M ′, p does not ramify in L/M . Hence π ramifies
but does not totally ramify in L.

We then either have (π) = P2
0 or (π) = P2

1P
2
2 in OL. Reasoning as in

the proof of Lemma 3.10, we may show that vp(dL/K) = 2.

We now study the ramification of 1− i in M = K(
√
d).

Assume first that d is odd. If d ≡ 1[4] (resp. d ≡ 3[4]), then x = 1
(resp. x = i) is a solution of the equation x2 ≡ d mod 4OK . Hence

1− i does not ramify in K(
√
d).

If now d is even, then the equation x2 ≡ d mod 4OK has no solution.
Assume to the contrary that x ∈ OK is a solution. Since d = 2m, m
odd, we have d ≡ 2[4], so x2 ≡ 2 mod 4OK . Writing x = a+bi, a, b ∈ Z
and comparing real parts show that a2−b2 ≡ 2[4]. But a2−b2 is always
congruent to 0 or ±1 modulo 4, hence we have a contradiction. Thus
1− i totally ramifies in M in this case.

It follows as before that 1− i ramifies in L if and only if d or d′ is even.
It remains to prove that 24 | dL/K in this case. Assume for example
that d is even, so that 1− i totally ramifies in M . By [7, Theorem 1],
a Z-basis of OM is

1, i,
√
d,

1− i

2

√
d.

Now let P be the unique prime ideal of OM lying above 1 − i, and
consider the third ramification group of M/K

G3 = {ρ ∈ Gal(M/K) | ρ(α) ≡ α mod P4 for all α ∈ OM}
= {ρ ∈ Gal(M/K) | ρ(α) ≡ α mod 2OM for all α ∈ OM}

Now any α ∈ OM has the form α = α1 + α2i + α3

√
d + α4

1− i

2

√
d,

where αi ∈ Z. If ι is the unique non-trivial automorphism of M/K, we
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have

ι(α)− α = −2(α3

√
d+ α4

1− i

2

√
d) ∈ 2OM .

Therefore G3 is non-trivial, which implies that

vP(DK(
√
d)/K) =

∑

i≥0

(|Gi| − 1) ≥ 4,

since the ramification groups form a decreasing sequence. This then
gives as usual 24|d2M/K , which by Proposition 2.19 implies that 24|dL/K .

�

Example 4.6. Let L = K(
√
2,
√
5). In this case, the only prime ideals

which ramify in L are those generated by the prime elements 1−i, 1+2i
and 1− 2i. Set M = K(

√
2) and M ′ = K(

√
5). Notice that 2 remains

inert in Q(
√
5)/Q and then totally ramifies M/Q(

√
5). It follows easily

that 1 − i is inert in M/K. In particular, dL/M is not divisible by
any prime ideal lying above 1 − i. Proposition 2.19 then implies that
v2(dL/K) = v2(d

2
M/K).

As pointed in the proof of the previous proposition, 1, i,
√
2, 1−i

2

√
2 is a

Z-basis of OM . One may then check that ι(ζ8)−ζ8 /∈ (1−i)5OM , where
ι is the unique non-trivial automorphism of M/K. Thus the fourth
ramification group of M/K is trivial. Hence vP(DK(

√
d)/K) = 4, and it

follows that v2(dL/K) = v2(d
2
M/K) = 4. We then get dL/K = 2452 = 400.

The following lemma shows that the existence of an energy-preserving
code built on a G-crossed product does not depend on the choice of the
two generators of G.

Lemma 4.7. Let L/K be a biquadratic extension, and let σ, τ be two
generators of the Galois group of L/K. If (a, b, u) is (σ, τ)-admissible,
then (a, abuτ , u) is (σ, στ)-admissible, (abuτ , b, uτ ) is (στ, τ)-admissible
and we have

(a, b, u, L/K, σ, τ) ≃ (a, abuτ , u, L/K, σ, στ) ≃ (abuτ , b, uτ , L/K, στ, τ).

Proof. The first part may be obtained by easy (but slightly tedious)
computations. If e, f are the generators of the first K-algebra, the
isomorphisms with the second and the third one are obtained by taking
e, ef and ef, f as new sets of generators. �

In particular, if any of these three K-algebras is division, so are the
other two. Moreover, if complex conjugation commutes with the ele-
ments of G, we have

|a|2 = |b|2 = |u|2 = 1 ⇐⇒ |a|2 = |abuτ |2 = |u|2 = 1
⇐⇒ |abuτ |2 = |b|2 = |uτ |2 = 1.
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It follows that if one may build an energy-preserving code on a G-
crossed product K-algebra for a particular choice of generators, one
may also build a suitable code for another choice of generators.

From now on, if L = K(
√
d,
√
d′), we set

σ(
√
d) =

√
d, σ(

√
d′) = −

√
d′

τ(
√
d) = −

√
d, τ(

√
d′) =

√
d′

Proposition 4.8. Let A = (a, b, u, L/K, σ, τ). Assume that A is a
division K-algebra. Then d or d′ is divisible by an irreducible element
π lying above a prime p ≡ 1[4].

Proof. LetM be any quadratic subfield of L. SinceM is a quadraticK-
subalgebra of A, AM is not a division K-algebra. (If A is not division,
this is clear, and if A is division, see [11, Corollary 13.4] for example).
In particular, AM has index at most 2 and 2[A]M = 0 ∈ Br(M). Hence
2[A] is split by any quadratic subfield of L.

It follows that any field extension K ′/K in which at least one of the
elements d, d′ or dd′ is a square splits 2[A]. Indeed, in this case, K ′

contains at least one quadratic subfield M of L, and since M splits
2[A], so does K ′.

Assume that d and d′ are only divisible by prime elements p ≡ 3[4] and
eventually by 2, and let us prove that 2[A] = 0 in this case, showing
that A is not a division K-algebra.

Let π 6= 1− i be an irreducible element of OK . We are going to prove
that 2[A] splits over Kπ.

If π is lying above the prime number p and π divides d and d′, then p

divides d and d′. Thus replacing d by
dd′

p2
if necessary, we may assume

that π ∤ d. Assume first that π ∤ d and π ∤ d′. If d or d′ is a square
modulo πOK , since π does not lie above 2, applying Hensel’s lemma
shows that d or d′ is a square in Kπ. If d and d′ are not squares modulo
πOK , they both represent the unique non-trivial square class of the
finite field OK/πOK , hence dd′ is a (non-zero) square modulo πOK .
Once again, we may use Hensel’s lemma to conclude.

Assume now that π ∤ d and π | d′. We are going to show that d is a
square in Kπ. Since π | d′, then by assumption π = p, where p is a
prime number which is congruent to 3 modulo 4.

If d ∈ Z is a square modulo pZ, then d is a square modulo pOK .
If d is not a square modulo pZ, then d represents the unique non-
trivial square-class modulo pZ, which is the class of −1, since p ≡ 3[4].
Hence −d is a square modulo pZ, hence a square modulo pOK . Then
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d = i2(−d) is a square modulo pOK . As before, Hensel’s lemma implies
that d is a square in the corresponding completion of K in both cases.

Therefore, 2[A] splits over Kπ for all π 6= 1− i. By the Brauer-Hasse-
Noether’s theorem, 2[A] splits at all completions of K, and thus 2[A] =
0. �

Lemma 4.9. Let F = K(
√
∆), where ∆ is a square free positive inte-

ger. Let x ∈ OF such that |x|2 = 1. Then x is a root of 1.

More precisely:

(1) If ∆ 6= 2 or 3, then x is a 4th root of 1.
(2) If ∆ = 2, x is an 8th root of 1.
(3) If ∆ = 3, x is a 4th root of 1 or a 6th root of 1.

Proof. Since F is stable by conjugation, we have x ∈ OF . Hence x ∈
O×

F . Since F/Q is totally imaginary, Dirichlet’s unit theorem shows
that x = ζεrF , r ∈ Z, where εF ∈ O×

F is a fundamental unit and ζ ∈ L
is a root of 1. Since |εF | > 1 and |x| = 1, we get r = 0, so x is a root

of 1. Write x = e
2ikπ
ℓ , gcd(k, ℓ) = 1. Then Q(x) = Q(ζℓ) ⊂ F . Since

[F : Q] = 4, it implies that ϕ(ℓ) ≤ 4, so we get ℓ = 1, 2, 3, 4, 5, 6 or 8.
If ℓ = 5, we get Q(ζ5) = F , which is impossible as the Galois group of
Q(ζ5)/Q is cyclic, while the Galois group of F/Q is the Klein group.
This implies that x is a m-th root of 1, with m = 6 or 8 in any case.

If ℓ = 1, 2 or 4, we get that x is in fact a 4th root of 1.

If ℓ = 3 or 6, x is in both cases a 6th root of 1. Moreover, we get
Q(j) = Q(i

√
3) ⊂ F , so Q(i

√
3) is one of the three quadratic subfields

of F . The only possibility is that Q(i
√
3) = Q(i

√
∆), and since ∆

is positive and squarefree, we get ∆ = 3. Finally, if ℓ = 8, we get
Q(ζ8) = Q(i,

√
2) = F . Comparing quadratic subfields shows that

∆ = 2. This concludes the proof. �

Lemma 4.10. Assume that A = (a, b, u, L/K, σ, τ) is a division K-
algebra. Then the elements a, b and abuτ do not lie in K. Moreover,
if one may build an energy-preserving code on A, then at most one of
these elements lies in OL.

Proof. If a ∈ K, the elements e and
√
d′ generate a K-subalgebra of A

which is isomorphic to the quaternion K-algebra A1 = (a, d′). Since A
has degree 4, the centraliser A2 of A1 in A has degree 2. Now as A2 is
central simple, the centraliser theorem shows that A ≃ A1⊗KA2. Since
A1 and A2 have degree 2, we get 2[A] = 2[A1] + 2[A2] = 0 ∈ Br(K).
Hence A is not a division K-algebra. If b ∈ K or abuτ ∈ K, similar
arguments show that A is not a division K-algebra in these two cases
(consider the elements f and

√
d for the first case, and the elements ef

and
√
dd′ for the second one).
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Recall now that a ∈ K(
√
d), b ∈ K(

√
d′) and abuτ ∈ K(

√
dd′). Hence

a, b and abuτ all lie in a different quadratic subfield of L. Assume that
one may build an energy-preserving code on the division K-algebra A,
so a, b and u (hence abuτ ) have modulus 1.

Assume that two of the elements above lie in OL. Then they are units
of the ring of integers of the quadratic subfield of L they belong to. If
one of them is a 4th root of 1, then A is not a division K-algebra by
the previous point, which is a contradiction. Since they lie in a differ-
ent quadratic subfield of F , Lemma 4.9 implies that L = K(

√
2,
√
3).

However, dL/K < 256 in this case, contradicting the existence of a code
built on A by Corollary 2.24. This completes the proof. �

Proposition 4.11. Assume that there exists an energy-preserving code
on the division K-algebra A = (a, b, u, L/K, σ, τ) with dL/K∆ξ < 10000.
Then we have 256 ≤ dL/K < 2500, and L is one of the three following
extensions:

K(
√
2,
√
5), K(

√
5,
√
7), K(

√
3,
√
13),

whose relative discriminants are respectively equal to 400, 1125 and
1521.

Proof. By the previous lemma, at least two elements among a, b and
abuτ do not lie in OL. Assume first that a 6∈ OL. By examining the
multiplication matrix given in Lemma 4.1, we deduce that the ideals

E (σ)
ξ and E (στ)

ξ are proper ideals of OK . Hence ∆
(σ)
ξ ≥ 2 and ∆

(στ)
ξ ≥ 2.

If a ∈ OL, then b /∈ OL and abuτ /∈ OL and we get ∆
(τ)
ξ ≥ 2 and

∆
(στ)
ξ ≥ 2 in a similar way. In both cases, we then obtain ∆ξ ≥ 4, and

thus dL/K < 2500. The lower bound follows from Corollary 2.24.

Let us prove the second part of the proposition. Replacing d′ by
dd′

4
if

necessary, one may assume that d′ is odd. Assume first that d is even.
Then 24 | dL/K by Proposition 4.5. Since A is a division K-algebra, d
or d′ is divisible by a prime p ≡ 1[4], and thus p2 | dL/K by the same
proposition. If d or d′ were divisible by an odd prime number ℓ 6= p,
we would have in the same way ℓ2 | dL/K and thus

dL/K ≥ 24p2ℓ2 ≥ 245232 > 2500,

hence a contradiction. Thus p is the only odd prime divisor of d and
d′. It follows easily that L = K(

√
2,
√
p). The upper bound on dL/K

immediately implies that p = 5. Hence L = K(
√
2,
√
5) and dL/K =

400 by Example 4.6.

Assume now that d is odd. Let p ≡ 1[4] be a prime number dividing d
or d′. We may assume without loss of generality that p | d and p ∤ d′.
Since d′ is an odd positive integer, it has another odd prime divisor
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ℓ. Assume that d or d′ is divisible by a prime number q 6= p, ℓ. Since
q 6= ℓ, one of them is necessarily ≥ 5. Since p ≥ 5, we get

dL/K ≥ p2q2ℓ2 ≥ 5432 > 2500,

which is a contradiction. Thus d and d′ are only divisible by p and ℓ,
so L = K(

√
p,
√
ℓ) and dL/K = p2ℓ2. Since ℓ ≥ 3, the upper bound

on dL/K shows that p = 5 or 13. If p = 5, we get that ℓ = 3 or
7. The first possibility has to be discarded since 3252 < 256. Hence
L = K(

√
5,
√
7) and dL/K = 1125. If p = 13, then necessarily ℓ = 3.

In this case, L = K(
√
3,
√
13) and dL/K = 1521. �

Lemma 4.12. Let F/K be a quadratic extension such that complex
conjugation is a Q-automorphism of F which commutes with Gal(F/K).
Assume that there is only one prime ideal of OF lying above 2. Let
x ∈ F×, x /∈ OF satisfying |x|2 = 1 and let δ ∈ OK such that δx ∈ OF .
Then |δ|2 ≥ 5.

Proof. Write F0 = F ∩ R = Q(
√
∆),∆ > 0. Since x /∈ OF , δ is not a

unit of OK , and thus |δ|2 6= 1. Moreover, the equation |δ|2 = 3 has no
solution in OK , so we need to prove that |δ|2 6= 2, 4.

Assume to the contrary that |δ|2 = 2 or 4, and set y = δx ∈ OF .
By assumption, we have |y|2 = |δ|2. This rewrites as NF/Q(

√
∆)(y) =

NF/Q(
√
∆)(δ) = 2 or 4. In particular, NF/Q(y) and NF/Q(δ) are equal to

the same power of 2. Hence the prime ideals of OF dividing δOF and
yOF all lie above 2. The assumption then implies that δOF and yOF

are powers of the same prime ideal, and since they have same absolute
norms, we get that yOF = δOF . It follows that there exists v ∈ O×

F

such that y = δv, that is δx = δv. Thus x = v ∈ OF , which is a
contradiction. �

We are finally ready to prove Theorem 4.3. Assume that there exists
an energy-preserving code on the division K-algebra (a, b, u, L/K, σ, τ)
with dL/K∆ξ < 10000. By Proposition 4.11, we have, up to a change
of generators

L = K(
√
5,
√
10), K(

√
5,
√
7), or K(

√
13,

√
39).

In each case, L = K(
√
p,
√
∆), where p is a prime number satisfying

p ≡ 5[8], and ∆ ≥ 7. Notice for later use that there is only one
prime ideal lying above 2 in OK(

√
p). Indeed, 2 is inert in Q(

√
p)/Q by

assumption on p, and then totally ramifies in K(
√
p)/Q(

√
p).

If ρ ∈ G has order 2, we will denote by zρ the element among a, b and
abuτ which belongs to L〈ρ〉.

Let ρ, ρ′ ∈ G such that L〈ρ〉 = K(
√
p) and L〈ρ′〉 = K(

√
∆). Assume zρ

is a unit. Then zρ ∈ K by Lemma 4.9, and thus A is not a division
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K-algebra by Lemma 4.10. Hence zρ is not a unit and by Lemma 4.12,

we get that ∆
(ρ)
ξ ≥ 5.

If ∆ = 10, then 1 − i totally ramifies in L〈ρ′〉/K, so 2 totally ramifies

in L〈ρ′〉/Q, and the same reasoning shows that ∆
(ρ′)
ξ ≥ 5. If ∆ = 7 or

39, one may show as above that zρ′ is not a unit, and then ∆
(ρ′)
ξ ≥ 2.

In all cases, we then get that

dL/K∆ξ ≥ dL/K∆
(ρ)
ξ ∆

(ρ′)
ξ ≥ 10000,

hence a contradiction. This concludes the proof.

Remark 4.13. Similar arguments show that the bound 10000 is also
optimal if K = Q(j).

References

[1] J.-C. Belfiore, G. Rekaya, and E. Viterbo. The Golden code: a 2 × 2 full-
rate space-time code with nonvanishing determinants. IEEE Trans. Inform.
Theory, 51(4):1432–1436, 2005.

[2] G. Berhuy and F. Oggier. Space-time codes from crossed product algebras of
degree 4. In Applied algebra, algebraic algorithms and error-correcting codes,
volume 4851 of Lecture Notes in Comput. Sci., pages 90–99. Springer, Berlin,
2007.

[3] G. Berhuy and F. Oggier. On the existence of perfect space-time codes. IEEE
Transactions on Information Theory, 55(5):2078 – 2082, 2009.

[4] P. Elia, B. A. Sethuraman, and P. V. Kumar. Perfect space-time codes for any
number of antennas. IEEE Trans. Inform. Theory, 53(11):3853–3868, 2007.

[5] Jr. Forney, G., R. Gallager, G. Lang, F. Longstaff, and S. Qureshi. Effi-
cient modulation for band-limited channels. Selected Areas in Communica-
tions, IEEE Journal on, 2(5):632 – 647, sep. 1984.

[6] J.-C. Guey, M.P. Fitz, M.R. Bell, and W.-Y. Kuo. Signal design for transmit-
ter diversity wireless communication systems over rayleigh fading channels.
Communications, IEEE Transactions on, 47(4):527 –537, apr. 1999.

[7] J. G. Huard, B. K. Spearman, and K. S. Williams. Integral bases for quartic
fields with quadratic subfields. J. Number Theory, 51(1):87–102, 1995.

[8] F. Oggier. On the optimality of the golden code. In IEEE Information Theory
Workshop (ITW’06), 2006.

[9] F. Oggier, J.-C. Belfiore, and E. Viterbo. Cyclic division algebras: A tool for
space-time coding. Found. Trends Commun. Inf. Theory, 4(1):1–95, 2007.

[10] F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo. Perfect space-time block
codes. IEEE Trans. Inform. Theory, 52(9):3885–3902, 2006.

[11] R.S. Pierce. Associative Algebras. Springer Verlag, 1982.
[12] W. Scharlau. Quadratic and Hermitian Forms, volume 270 of Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 1985.

[13] B. A. Sethuraman, B. Sundar Rajan, and V. Shashidhar. Full-diversity, high-
rate space-time block codes from division algebras. IEEE Trans. Inform. The-
ory, 49(10):2596–2616, 2003. Special issue on space-time transmission, recep-
tion, coding and signal processing.



OPTIMALITY OF CODES BASED ON CROSSED PRODUCT ALGEBRAS 45

[14] V. Shashidhar, B. Sundar Rajan, and B. A. Sethuraman. Information-lossless
space-time block codes from crossed-product algebras. IEEE Trans. Inform.
Theory, 52(9):3913–3935, 2006.

[15] V. Tarokh, H. Jafarkhani, and A. R. Calderbank. Space-time block codes from
orthogonal designs. IEEE Trans. Inform. Theory, 45:1456–1467, 1999.

[16] V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-time codes for high data
rate wireless communication: performance criterion and code construction.
IEEE Trans. Inform. Theory, 44(2):744–765, 1998.

[17] The PARI Group, Bordeaux. PARI/GP, version 2.3.3, 2005. available from
http://pari.math.u-bordeaux.fr/.

Grégory Berhuy
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