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CENTRAL LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF

ERGODIC MARKOV DIFFUSIONS PROCESSES

PATRICK CATTIAUX, DJALIL CHAFAÏ, AND ARNAUD GUILLIN

Dedicated to the Memory of Naoufel Ben Abdallah

Abstract. We revisit functional central limit theorems for additive functionals of er-
godic Markov diffusion processes. Translated in the language of partial differential equa-
tions of evolution, they appear as diffusion limits in the asymptotic analysis of Fokker-
Planck type equations. We focus on the square integrable framework, and we provide
tractable conditions on the infinitesimal generator, including degenerate or anomalously
slow diffusions. We take advantage on recent developments in the study of the trend to
the equilibrium of ergodic diffusions. We discuss examples and formulate open problems.
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1. Introduction

Let (Xt)t≥0 be a continuous time strong Markov process with state space R
d, non

explosive, irreducible, positive recurrent, with unique invariant probability measure µ.
Following [MT59, Theorem 5.1 page 170], for every f ∈ L

1(µ), if almost surely (a.s.) the
function s ∈ R+ 7→ f(Xs) is locally Lebesgue integrable, then

St
t

a.s.−→
t→∞

∫

f dµ where St :=

∫ t

0
f(Xs) ds. (1.1)

If X0 ∼ µ then by the Fubini theorem (1.1) holds for all f ∈ L
1(µ) and the convergence

holds additionally in L
1 thanks to the dominated convergence theorem. The statement

(1.1) which relates an average in time with an average in space is an instance of the ergodic
phenomenon. It can be seen as a strong law of large numbers for the additive functional
(St)t≥0 of the Markov process (Xt)t≥0. The asymptotic fluctuations are described by a
central limit theorem which is the subject of this work. Let us assume that X0 ∼ µ and
f ∈ L

2(µ) with
∫

f dµ = 0 and f 6= 0. Then for all t ≥ 0 we have St ∈ L
2(µ) ⊂ L

1(µ) and
E(St) = 0. We say that (St)t≥0 satisfies to a central limit theorem (CLT) when

St
st

law−→
t→∞

N (0, 1) (CLT)

for a deterministic positive function t 7→ st which may depend on f . Here N (0, 1) stands
for the standard Gaussian law on R with mean 0 and variance 1. By analogy with the
CLT for i.i.d. sequences one may expect that s2t = Var(St) and that this variance is of
order t as t→ ∞. A standard strategy for proving (CLT) consists in representing (St)t≥0

as a sum of an L
2-martingale plus a remainder term which vanishes in the limit, reducing

the proof to a central limit theorem for martingales. This strategy is particularly simple
under mild assumptions [JS03, VII.3 p. 486]. Namely, if L is the infinitesimal generator
of (Xt)t≥0 with domain D(L) ⊂ L

2(µ) and if g ∈ D(L) then (Mt)t≥0 defined by

Mt := g(Xt)− g(X0)−
∫ t

0
(Lg)(Xs) ds

is a local L2 martingale. Now if g2 ∈ D(L) and Γ(g) := L(g2)− 2gLg ∈ L
1(µ), then

〈M〉t =
∫ t

0
Γ(g)(Xs) ds.

The law of large numbers (1.1) yields limt→∞ t−1〈M〉t =
∫

Γ(g) dµ. As a consequence, for
a prescribed f , if the Poisson equation Lg = f admits a mild enough solution g then

Mt

st
=
g(Xt)− g(X0)

st
− St
st
.

This suggests to deduce (CLT) from a CLT for martingales. We will revisit this strategy.
Beyond (CLT), we say that (St)t≥0 satisfies to a Functional Central Limit Theorem (FCLT)
or Invariance Principle when for every finite sequence 0 < t1 ≤ · · · ≤ tn <∞,

(

St1/ε

st1/ε
, . . . ,

Stn/ε

stn/ε

)

law−→
ε→0

L((Bt1 , . . . , Btn)) (FCLT)

where (Bt)t≥0 is a standard Brownian Motion on R. Taking n = 1 gives (CLT). To

capture multitime correlations, one may upgrade the convergence in law in (FCLT) to
an L

2 convergence. The statement (FCLT) means that as ε → 0, the rescaled process
(St/ε/st/ε)t≥0

converges in law to a Brownian Motion, for the topology of finite dimensional

marginal laws. At the level of Chapman-Kolmogorov-Fokker-Planck equations, (FCLT) is
a diffusion limit for a weak topology.
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In this work, we focus on the case where (Xt)t≥0 is a Markov diffusion process on E =

R
d, and we seek for conditions on f and on the infinitesimal generator in order to get (CLT)

or even (FCLT). We shall revisit the renowned result of Kipnis and Varadhan [KV86], and
provide an alternative approach which is not based on the resolvent. Our results cover
fully degenerate situations such as the kinetic model studied in [GJS+09, DM08, CCM10].
More generally, we believe that a whole category of diffusion limits which appear in the
asymptotic analysis of evolution partial differential equations of Fokker-Planck type enters
indeed the framework of the central limit theorems we shall discuss. We also explain how
the behavior out of equilibrium (i.e. X0 6∼ µ) may be recovered from the behavior at
equilibrium (i.e. X0 ∼ µ) by using propagation of chaos (decorrelation), for instance via
Lyapunov criteria ensuring a quick convergence in law of Xt to µ as t → ∞. Note that
since we focus on an L

2 framework, the natural normalization is the square root of the
variance and we can only expect Gaussian fluctuations. We believe however that stable
limits that are not Gaussian, also known as “anomalous diffusion limits”, can be studied
using similar tools (one may take a look at the works [JKO09, MMM08] in this direction).

The literature on central limit theorems for discrete or continuous Markov processes
is immense and possesses many connected components. Some instructive entry points
for ergodic Markov processes are given by [DL01a, DL01b, DL03, CL09, HP04, KM03,
Kut04, KM05, GM96, PV01, PV03, PV05, Lan03]. We refer to [KLO] and [HL03] for null
recurrent Markov processes. Central limit theorems for additive functionals of Markov
chains can be traced back to the works of Kolmogorov and Doeblin [Doe38]. The discrete
time allows to decompose the sample paths into excursions. The link with stationary
sequences goes back to Gordin [Gor69], see also Ibragimov and Linnik [IL65] and Nagaev
[Nag57] (only stable laws can appear at the limit). The link with martingales goes back to
Gordin and Lifsic [GL78]. For diffusions, the martingale method was developed by Kipnis
and Varadhan [KV86], see also [Hel82] (the Poisson equation is solved via the resolvent).

Outline. Section 2 provides some notations and preliminaries including a discussion
on the variance of St. Section 3 is devoted to FCLT at equilibrium and contains a lot of
known results. We recall how to use the Poisson equation and compare with the known
results on stationary sequences, which seems more powerful. In particular, we give in
section 3.1 a direct new proof of the renowned FCLT of Kipnis and Varadhan [KV86,
Corollary 1.9] in the reversible case. In section 4.3 we provide a non-reversible version of
the Kipnis-Varadhan theorem. Actually some of the results of section 4 are written in the
CLT situation, but under mild assumptions, they can be extended to a general FCLT (see
Proposition 8.1). All these general results are illustrated by the examples discussed in
Section 5. In sections 6 and 7 we exhibit a particularly interesting behavior, i.e. a possible
anomalous rate of convergence to a Gaussian limit. This behavior is a consequence of a
not too slow decay to equilibrium in the ergodic theorem. Finally we give in the next
section some results concerning fluctuations out of equilibrium.

Acknowledgments. This work benefited from discussions with N. Ben Abdallah, M.
Puel and S. Motsch, in the Institut de Mathématiques de Toulouse.

2. The framework

Unless otherwise stated (Xt)t≥0 is a continuous time strong Markov process with state

space R
d, non explosive, irreducible, positive recurrent, with unique invariant probability

measure µ. We realize the process on a canonical space and we denote by Pν the law of
the process with initial law ν = L(X0). In particular Px := Pδx = L((Xt)t≥0|X0 = x)
for all x ∈ E. We denote by Eν and Varν the expectation and variance under Pν . For
all t ≥ 0, all x ∈ E, and every f : E → R integrable for L(Xt|X0 = x), we define the
function Pt(f) : x 7→ E(f(Xt)|X0 = x). One can check that Pt(f) is well defined for all
f : E → R which is measurable and positive, or in L

p(µ) for 1 ≤ p ≤ ∞. On each L
p(µ)
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with 1 ≤ p ≤ ∞, the family (Pt)t≥0 forms a Markov semigroup of linear operators of
unit norm, leaving stable each constant function and preserving globally the set of non
negative functions. We denote by L the infinitesimal generator of this semigroup in L

2(µ),
defined by Lf := limt→0 t

−1(Pt(f) − f). We assume that (Xt)t≥0 is a diffusion process
(this implies that for all x ∈ E the law Px is supported in the set of continuous functions
from R+ to R

d taking the value x at time 0) and that there exists an algebra D(L) of
uniformly continuous and bounded functions, containing constant functions, which is a
core for the extended domain De(L) of the generator, see e.g. [CL96, DM87]. Following
[CL96], one can then show that there exists a countable orthogonal family (Cn) of local
martingales and a countable family (∇n) of operators such that for all f ∈ De(L), the
stochastic process (Mt)t≥0 defined from f by

Mt := f(Xt)− f(X0)−
∫ t

0
Lf(Xs) ds =

∑

n

∫ t

0
∇nf(Xs) dC

n
s , (2.1)

is a square integrable local martingale for all probability measure on E. Its bracket is

〈M〉t =
∫ t

0
Γ(f)(Xs) ds.

where Γ(f) is the carré-du-champ functional quadratic form defined for any f ∈ D(L) by

Γ(f) :=
∑

n

∇nf ∇nf. (2.2)

We write for convenience Mt =
∫ t
0∇f(Xs) dCs. With these definitions, for f ∈ D(L),

E(f) :=
∫

Γ(f) dµ = −2

∫

f Lf dµ = −∂t=0‖Ptf‖2L2(µ). (2.3)

The diffusion property states that for every smooth Φ : Rn → R and f1, . . . , fn ∈ D(L),

LΦ(f1, . . . , fn) =

n
∑

i=1

∂Φ

∂xi
(f1, . . . , fn)Lfi +

1

2

n
∑

i,j=1

∂2Φ

∂xi ∂xj
(f1, . . . , fn) Γ(fi, fj)

where Γ(f, g) = L (fg)−f Lg−g Lf is the bilinear form associated to the carré-du-champ.
We shall also use the adjoint L∗ of L in L

2(µ) given for all f, g ∈ D(L) by
∫

fLg dµ =

∫

gL∗f dµ

and the corresponding semigroup (P ∗
t )t≥0. We shall mainly be interested by diffusion

processes with generator of the form

L =
1

2

d
∑

i,j=1

Aij(x) ∂
2
i,j +

d
∑

i=1

Bi(x) ∂i (2.4)

where x 7→ A(x) := (Ai,j(x))1≤i,j≤d is a smooth field of symmetric positive semidefinite
matrices, and x 7→ b(x) := (bi(x))1≤i≤d is a smooth vector field. If we denote by (Xx

t )t≥0

a process of law Px then it is the solution of the stochastic differential equation

dXx
t = b(Xx

t ) dt+
√
A(Xx

t )dBt, with Xx
0 = x (2.5)

where (Bt)t≥0 is a d-dimensional standard Brownian Motion, and we have also

Γ(f) = 〈A∇f,∇f〉.
Note that since the process admits a unique invariant probability measure µ, the process
is positive recurrent. We say that the invariant probability measure µ is reversible when
L = L∗ (and thus Pt = P ∗

t for all t ≥ 0).
In practice, the initial data consists in the operator L. We give below a criterion on L

ensuring the existence of a unique probability measure and thus positive recurrence.
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Definition 2.6 (Lyapunov function). Let ϕ : [1,+∞[→ ]0,∞[. We say that V ∈ De(L)
(the extended domain of the generator, see [CL96, DM87]) is a ϕ-Lyapunov function if
V ≥ 1 and if there exist a constant κ and a closed petite set C such that for all x

LV (x) ≤ −ϕ(V (x)) + κ1C(x) .

Recall that C is a petite set if there exists some probability measure p(dt) on R+ such that

for all x ∈ C ,
∫∞
0 Pt(x, ·) p(dt) ≥ ν for a non trivial positive measure ν.

In the Rd situation with L given by (2.4) with smooth coefficients, compact subsets are
petite sets and we have the following [Kha80]:

Proposition 2.7. If L is given by (2.4) a sufficient condition for positive recurrence is
the existence of a ϕ-Lyapunov function with ϕ(u) = 1 and for C some compact subset.
In addition, for all x ∈ R

d the law of (2.5) denoted by Pt(x, .) converges to the unique
invariant probability measure µ in total variation distance, as t→ +∞.

We say that an invariant probability measure µ is ergodic if the only invariant functions
(i.e. such that Ptf = f for all t) are the constants. In this case the ergodic theorem says

that the Cesàro means 1
t

∫ t
0f(Xs) ds converge, as t → ∞, Pµ almost surely and in L

1, to
∫

f dµ for any f ∈ L
1(µ). We say that the process is strongly ergodic if Ptf →

∫

f dµ in

L
2(µ) for any f ∈ L

2(µ) (this immediately extends to L
p(µ), 1 ≤ p < +∞) and recall that

t 7→ ‖Ptf‖L2(µ) is always non increasing. If µ is ergodic and reversible then the process

is strongly ergodic. We say that the Dirichlet form is non degenerate if E(f, f) = 0 if
and only if f is constant. Again the reversible ergodic case is non degenerate, but kinetic
models will be degenerate. We refer to section 5 in [Cat04] for a detailed discussion of
these notions.

Lemma 2.8 (Variance in the reversible case). Assume that µ is reversible and 0 6= f ∈
L
2(µ) with

∫

f dµ = 0. Then we have the following properties:

(1) lim inft→∞
1
t Varµ(St) > 0

(2) lim supt→∞
1
t Varµ(St) <∞ iff the Kipnis-Varadhan condition is satisfied:

V :=

∫ ∞

0

(
∫

(Psf)
2 dµ

)

ds <∞, (2.9)

and in this case limt→∞
1
t Varµ(St) = 4V

The quantity 4V is the asymptotic variance of the scaled additive functional 1
tSt.

Proof. By using the Markov property, and the invariance of µ, we can write

Varµ(St) = E(S2
t )

= 2

∫

0≤u≤s≤t
E[f(Xs)f(Xu)] duds

= 2

∫

0≤u≤s≤t

(
∫

fPs−uf dµ

)

duds

= 2

∫

0≤u≤s≤t

(
∫

fPuf dµ

)

duds

= 2

∫

0≤u≤s≤t

(
∫

P ∗
u/2fPu/2f dµ

)

duds

= 4

∫ t/2

0
(t− 2s)

(
∫

P ∗
s fPsf dµ

)

ds.
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Using now the reversibility of µ and the decay of the L
2 norm, we obtain

2t

∫ t/4

0

(
∫

(Psf)
2 dµ

)

ds ≤ Varµ(St) ≤ 4t

∫ t/2

0

(
∫

(Psf)
2 dµ

)

ds.

This implies the first property. The second property follows from the Cesàro rule and

Varµ(St)

t
=

2

t

∫

0≤u≤s≤t

(
∫

P 2
u/2f dµ

)

du ds.

�

Remark 2.10 (Non reversible case). If µ is not reversible, we do not even know whether
∫

P ∗
s fPsf dµ is non-negative or not. Nevertheless we may define V− and V+ by

V− := lim inf
t→∞

∫ t

0

(
∫

PsfP
∗
s f dµ

)

ds and V+ := lim sup
t→∞

∫ t

0

(
∫

PsfP
∗
s f dµ

)

ds

abridged into V if V+ = V−. As in the reversible case, if V+ < +∞ then V+ = V− and
limt→∞ t−1Varµ(St) = 4V . We ignore if V−(f) > 0 as in the reversible case. We have
thus a priori to face two type of situations: either V+ < +∞ and the asymptotic variance
exists and Varµ(St) is of order t as t→ ∞, or V+ = +∞ and Varµ(St) is much larger.

Remark 2.11 (Possible limits). For every sequence (νn)n≥1 of probability measure on R

with unit second moment and zero mean, it can be shown by using for instance the Sko-
rokhod representation theorem that all adherence values of (νn)n≥1 for the weak topology
(with respect to continuous bounded functions) have second moment ≤ 1 and mean 0. In
particular, if an adherence value is a stable law then it is necessarily a centered Gaussian
with variance ≤ 1. As a consequence, if (St/

√

Varµ(St))t≥0
converges in law to a proba-

bility measure as t→ ∞, then this probability measure has second moment ≤ 1 and mean
0, and if it is a stable law, then it is a centered Gaussian with variance ≤ 1.

3. Poisson equation and martingale approximation

We present in this section a strategy to prove (FCLT) which consists in a reduction
to a more standard result for a family of martingales. We start by solving the Poisson
equation: we fix 0 6= f ∈ L

2(µ),
∫

f dµ = 0, and we seek for g solving

Lg = f. (3.1)

The Poisson equation (3.1) corresponds to a so called coboundary in ergodic theory. If
(3.1) admits a regular enough solution g, then by Itô’s formula, for every t ≥ 0 and ε > 0,

Sε−1t =

∫ ε−1t

0
f(Xs) ds = g(Xε−1t)− g(X0)−M ε

t (3.2)

where (M ε
t )t≥0 is a local martingale with brackets

〈M ε〉t =
∫ ε−1t

0
Γ(g)(Xs) ds. (3.3)

Now the Rebolledo FCLT for L2 local martingales (see [Reb80] or [Whi07]) says that if

v2(ε)〈M ε〉t
P−→

ε→0
h2(t) (3.4)

for all t ≥ 0, where v and h are deterministic functions which may depend on f via g, then

(v(ε)M ε
t )t≥0

Law−→
ε→0

(
∫ t

0
h(s) dWs

)

t≥0

(3.5)

where (Wt)t≥0 is a standard Brownian Motion, the convergence in law being in the sense

of finite dimensional process marginal laws. To obtain (FCLT), it suffices to show the



CENTRAL LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF ERGODIC DIFFUSIONS 7

convergence in probability to 0 of v(ε)g(Xε−1t) as ε→ 0, for any fixed t ≥ 0. Moreover, if
this convergence holds in L

2 then the normalization factor v can be chosen such that

lim
ε→0

v2(ε)E
[

S2
ε−1t

]

= lim
ε→0

v2(ε)E[〈M ε〉t] = lim
ε→0

v2(ε)
t

ε
E(g) = h2(t) (3.6)

i.e. we recover v(ε) =
√
ε and V = limt→∞ t−1Varµ(St) = 1

4E(g). To summarize, this
martingale approach reduces the proof of (FCLT) to the following three steps:

• solve the Poisson equation Lg = f in the g variable
• control the regularity of g in order to use Itô’s formula (3.2)
• check the convergence to 0 of g(Xε−1t) as ε→ 0 in an appropriate way.

Let us start with a simple proposition which follows from the discussion above.

Theorem 3.7 (FCLT via Poisson equation in L
2). If 0 6= f ∈ L

2(µ) with
∫

f dµ = 0, and
if f ∈ D(L−1) i.e. there exists g ∈ D(L) such that Lg = f where L is seen as an unbounded
operator, then Varµ(St) ∼t→∞ tE(g, g) and (FCLT) holds under Pµ with s2t (f) = tE(g, g).

Let us examine a natural candidate to solve the Poisson equation. Assume that Lg = f
in L

2(µ) and that
∫

g dµ = 0 (note that since L1 = 0 we may always center g). Then

Ptg − g =

∫ t

0
∂sPsg ds =

∫ t

0
LPsg ds =

∫ t

0
PsLg ds =

∫ t

0
Psf ds

so that, if the process is strongly ergodic, limt→∞ Ptg =
∫

g dµ = 0, and thus

g = −
∫ ∞

0
Psf ds. (3.8)

For the latter to be well defined in L
2(µ), it is enough to have some quantitative controls

for the convergence of Psf to 0 as s→ ∞. Conversely, for a deterministic T > 0 we set

gT := −
∫ T

0
Psf ds (3.9)

which is well defined in L
2(µ) and satisfies to

LgT = lim
u→0

PugT − gT
u

= −∂u=0

∫ u+T

u
Psf ds = f − PT f.

If gT converges in L
2 to g then Lg = f . In particular, we obtain the following.

Corollary 3.10 (Solving the Poisson equation in L
2). Let 0 6= f ∈ L

2(µ) with
∫

f dµ = 0.

(1) If we have
∫ ∞

0
s‖Psf‖L2(µ) ds <∞, (3.11)

then f ∈ D(L−1) and g in (3.8) is in L
2(µ) and solves the Poisson equation (3.1)

(2) If µ is reversible then f ∈ D(L−1) if and only if

∫ ∞

0
s‖Psf‖2L2(µ) ds <∞, (3.12)

and in this case the Poisson equation (3.1) has a unique solution g given by (3.8).

Moreover, condition (3.11) implies condition (3.12).
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Proof. The existence of g ∈ L
2(µ) in the case (3.11) is immediate. For (3.12) consider gT

defined in (3.9). For a > 0 we then have, using reversibility

∫

|gT+a − gT |2 dµ = 2

∫
(
∫ T+a

T
Psf

∫ s

T
Puf du ds

)

dµ

= 2

∫
(
∫ T+a

T

∫ s

T

(

P s+u
2
f
)2
du ds

)

dµ

= 4

∫
(
∫ T+a

T
(u− T ) (Puf)

2 du

)

dµ,

so that (gT )T is Cauchy, hence convergent, if and only if (3.12) is satisfied. In addition,
taking T = 0 above gives

∫

g2T dµ = 4

∫ T

0
u

(
∫

(Puf)
2 dµ

)

du.

Hence the family (gT )T is bounded in L
2 only if (3.12) is satisfied, i.e. here convergence

and boundedness of (gT )T are equivalent.
To deduce (3.12) from (3.11), we note that t 7→ ‖Ptf‖L2(µ) is non-increasing, and hence,

t ‖Ptf‖L2(µ) ≤
∫ t

0
‖Psf‖L2(µ)ds ≤

∫ ∞

0
‖Psf‖L2(µ)ds

so that ‖Ptf‖L2(µ) = O(1/t) by (3.11), which gives (3.12). We remark by the way that

conversely, (3.12) implies ‖Ptf‖L2(µ) = O(1/t) since by the same reasoning,

1

2
t2 ‖Ptf‖2L2(µ) ≤

∫ +∞

0
s ‖Psf‖2L2(µ) ds.

�

Recent results on the asymptotic behavior of such semigroups can be used to give
tractable conditions and general examples. We shall recall them later. In particular for
R
d valued diffusion processes we will compare them with [GM96, PV01, PV03, PV05].
Actually one can (partly) improve on this result. For instance if µ is a reversible

measure, the same FCLT holds under the weaker assumption f ∈ D(L−1/2) as shown
in [KV86] and revisited in the next subsection too. For non-reversible Markov chains, a
systematic study of fractional Poisson equation is done in [DL01b]. The connection with
the rate of convergence of Ptf is also discussed therein, and the result “at equilibrium” is
extended to an initial δx Dirac mass in [DL01a, DL03] extending [MW00] for the central

limit theorem (i.e. for each marginal of the process). The previous f ∈ D(L−1/2) is
however no more sufficient (see the final discussion in [DL03]). It is thus more natural to
look at the rate of convergence (as in [DL03, MW00]) rather than at fractional operators.

3.1. Reversible case and Kipnis-Varadhan theorem. In this section we assume that
µ is reversible. Corollary 3.10 states that (2.9) (equivalent to the existence of the as-
ymptotic variance) is not sufficient to solve the Poisson equation, even in a weak sense.
Nevertheless it is enough to get (FCLT), the result below is Corollary 1.9 of [KV86].

Theorem 3.13 (FCLT from the existence of asymptotic variance). Assume that µ is
reversible, that 0 6= f ∈ L

2(µ) with
∫

f dµ = 0, and that f satisfies the Kipnis-Varadhan
condition (2.9). Then (FCLT) holds under Pµ with s2t = 4tV , and Varµ(St) ∼t→∞ s2t .



CENTRAL LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF ERGODIC DIFFUSIONS 9

Proof. For T > 0 introduce gT by (3.9), and the corresponding family ((∇ngT ))T>0 (recall
(2.1)). We thus have LgT = f − PT f and, for all S ≤ T ,

∫

Γ(gT − gS) dµ = 2

∫

(−L(gT − gS)) (gT − gS) dµ

= 2

∫ T

S

∫

(PSf − PT f)Psf dµ ds

= 2

∫ T

S

∫

(P 2
(s+S)/2f − P 2

(s+T )/2f) dµ ds

≤ 4

∫ ∞

S

∫

P 2
s f dµ ds,

so that according to (2.9), the family ((∇ngT ))T>0 is Cauchy in L
2(µ). It follows that it

strongly converges to h in L
2(µ). On the other hand, using Itô’s formula,

ST
t/ε = gT (Xt/ε)− gT (X0)−MT

t +

∫ t/ε

0
PT f(Xs) ds (3.14)

= gT (Xt/ε)− gT (X0)−MT
t + ST

t/ε

where (MT
t )t≥0 is a martingale with brackets

〈

MT
〉

t
=
∫ t/ε
0 Γ(gT )(Xs) ds (recall (2.2)).

According to what precedes and the framework (recall (2.1)) we may replace (MT
t )t≥0

by another martingale (Nh
t )t≥0 with brackets

〈

Nh
〉

t
=
∫ t/ε
0 |h|2(Xs) ds such that

εEµ

(

sup
0≤s≤t

|MT
s −Nh

s |2
)

≤ t‖∇gT − h‖2
L2(µ) → 0 as T → ∞ uniformly in ε.

In addition the ergodic theorem tells us that

lim
ε→0

ε
〈

Nh
〉

t
= t

∫

h2 dµ.

Thus we may again apply Rebolledo’s FCLT, taking first the limit in T and then in ε. It
remains to control the others terms. But

Varµ(S
T
t/ε) = 2

∫ t/ε

0

∫ s

0

(

P 2
T+(u/2)f dµ

)

du ds

= 4

∫ t/ε

0

∫ T+(s/2)

T

(
∫

P 2
uf dµ

)

du ds

≤ 4

∫ t/ε

0

∫ ∞

T

(
∫

P 2
uf dµ

)

du ds

≤ 4(t/ε)

∫ ∞

T

(
∫

P 2
uf dµ

)

du.

Since limT→∞

∫∞
T

(∫

P 2
uf dµ

)

du = 0 according to (2.9), we have, uniformly in ε,

lim
T→∞

εVarµ(S
T
t/ε) = 0.

Next,
∫

g2T dµ = 4

∫ T

0
u

(
∫

P 2
uf dµ

)

du ≤ 4T

∫ ∞

0

(
∫

P 2
uf dµ

)

du.

Hence limε→0 ε‖gT ‖2L2(µ) = 0. The desired result follows by taking T large enough. �

Remark 3.15. Our proof is different from the original one by Kipnis and Varadhan
and is perhaps simpler. Indeed we have chosen to use the natural approximation of what
should be the solution of the Poisson equation (i.e gt), rather than the approximating Rε
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resolvent as in [KV86]. Let us mention at this point the work by Holzmann [Hol05] giving
a necessary and sufficient condition for the so called “martingale approximation” property
(we get some in our proof), thanks to an approximation procedure using the resolvent.

Remark 3.16 (By D. Bakry). The condition (2.9) is satisfied if Assumption (1.14) in
[KV86] is satisfied i.e. there exists a constant cf such that for all F in the domain of E,

(
∫

f F dµ

)2

≤ −c2f
∫

FLF dµ. (3.17)

Indeed, if we define ϕ(t) := −
∫

f gt dµ where as usual gt = −
∫ t
0 Psf ds, and if we take

F = gt, then −LF = −Lgt = Ptf − f , and using (3.17) we get ϕ2(t) ≤ c2f (2ϕ(t)− ϕ(2t)).

Using that ϕ(2t) ≥ 0 we obtain 2c2fϕ(t)−ϕ2(t) ≥ 0 which implies that ϕ is bounded hence

ϕ(+∞) < +∞. Taking the limit as t→ ∞ and using 2V (f) = ϕ(+∞), we obtain

V (f) ≤ 1

2
c2f .

All this can be interpreted in terms of the domain of (−L)−1/2 (which is formally the
gradient ∇) i.e. condition (2.9) can be seen to be equivalent to the existence in L

2(µ) of

(−L)−1/2f = c

∫ ∞

0
s−

1
2 Psf ds

for an ad-hoc constant c. Indeed, for some constant C > 0,
∥

∥

∥

∥

∫ ∞

0
s−

1
2 Psf ds

∥

∥

∥

∥

2

L2(µ)

≤ C

∫ ∫ ∞

0
P 2
s f

(
∫ 2s

s
(2u− s)−1/2 u−1/2 du

)

ds dµ

and
∫ 2s
s (2u−s)−1/2 u−1/2 du is bounded. Note that (2.9) implies that ‖Ptf‖L2(µ) ≤ C(f)/

√
t.

We shall come back later to the method we used in the previous proof, for more general
situations including anomalous rate of convergence.

3.2. Poisson equation in L
q with q ≤ 2 for diffusions. What has been done before

is written in a L
2 framework. But the method can be extended to a more general setting.

Indeed, what is really needed is

(1) a solution g ∈ L
q(µ) of the Poisson equation, for some q ≥ 1,

(2) sufficient smoothness of g in order to apply Itô’s formula,
(3) control the brackets i.e. give a sense to the following quantities

∫

Γ(g) dµ = −2

∫

f g dµ.

Definition 3.18 (Ergodic rate of convergence). For any r ≥ p ≥ 1 and t ≥ 0 we define

t 7→ αp,r(t) := sup
‖g‖

Lr(µ)=1
∫

g dµ=0

‖Ptg‖Lp(µ).

The uniform decay rate is α := α2,∞. We denote by α∗ the uniform decay rate of L∗. We
say that the process is uniformly ergodic if limt→∞ α(t) = 0.

We shall discuss later how to get some estimates on these decay rates.

Proposition 3.19 (Solving the Poisson equation in L
q). Let p ≥ 2 and q := p/(p− 1). If

f ∈ L
p(µ) and

∫

f dµ = 0 and

∫ ∞

0
α∗
2,p(t) ‖Ptf‖L2(µ) dt <∞

then g := −
∫∞
0 Psf ds belongs to L

q(µ) and solves the Poisson equation Lg = f .
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The assumption of Proposition 3.19 is satisfied for any µ-centered f ∈ L
p(µ) if

∫ ∞

0
α∗
2,p(t)α2,p(t) dt <∞.

In the reversible case, we recover a version of the Kipnis-Varadhan statement implying a
stronger result (the existence of a solution of the Poisson equation). The results of this
section are mainly interesting in the non-reversible situation.

Proof. Let h ∈ L
p(µ), h̄ := h−

∫

hdµ, T > 0 and gT := −
∫ T
0 Ptf dt. Then

∣

∣

∣

∣

∫

h (gT+a − gT ) dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

h̄ (gT+a − gT ) dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T+a

T

(
∫

P ∗
t/2h̄ Pt/2f dµ

)

dt

∣

∣

∣

∣

≤
(
∫ T+a

T
α∗
2,p(t/2)

∥

∥Pt/2f
∥

∥

L2(µ)
dt

)

‖h‖
Lp(µ).

As in the proof of Corollary 3.10, gT is Cauchy, hence convergent in L
q(µ) and solves the

Poisson equation. �

The previous proof “by duality” can be improved, just calculating the L
q(µ) norm of

gT , for some 1 ≤ q ≤ 2 which is not necessarily the conjugate of p.

Proposition 3.20 (Solving the Poisson equation in L
q). Let p ≥ 2 and 1 ≤ q ≤ 2. If

f ∈ L
p(µ) and

∫

f dµ = 0 and

∫ ∞

0
tq−1 α∗

2,p/(q−1)(t) ‖Ptf‖L2(µ) dt <∞

then g = −
∫∞
0 Psf ds belongs to L

q(µ) and solves the Poisson equation Lg = f .

Proof. We have
∫

|gT |q dµ = q

∫

(

∫ T

0
Psf (1gs<0 − 1gs>0)

∣

∣

∣

∣

∫ s

0
Puf du

∣

∣

∣

∣

q−1

ds

)

dµ

≤ q

∫ T

0

∥

∥Ps/2f
∥

∥

L2(µ)

∥

∥

∥
P ∗
s/2h̄s

∥

∥

∥

L2(µ)
ds

≤ q

∫ T

0

∥

∥Ps/2f
∥

∥

L2(µ)
α∗
2,m(s/2)

∥

∥h̄s
∥

∥

Lm(µ)
ds

for an arbitrary m ≥ 2, where

hs := (1gs<0 − 1gs>0)

∣

∣

∣

∣

∫ s

0
Puf du

∣

∣

∣

∣

q−1

and h̄s := hs −
∫

hs dµ.

It remains to choose the best m. But of course
∥

∥h̄s
∥

∥

Lm(µ)
≤ 2‖hs‖Lm(µ) and

(
∫

|hs|m dµ
)

1
m

= s(q−1)

(

∫
(
∫ s

0
|Puf |

du

s

)(q−1)m

dµ

)
1
m

≤ s(q−1)

(
∫

|f |(q−1)m dµ

)
1
m

.

The best choice is m = p/(q−1). We then proceed as in the proof of proposition 3.19. �

In view of FCLT, the main difficulty is to apply Itô’s formula in the non L
2 context.

Though things can be done in some abstract setting, we shall restrict ourselves here to
the diffusion setting (2.5). For simplicity again we shall consider rather regular settings.
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Proposition 3.21 (FCLT via the Poisson equation). Assume that

• 0 6= f ∈ L
2(µ) with

∫

f dµ = 0
• L is given by (2.4) with smooth coefficients and is hypoelliptic

• µ has positive Lesbegue density dµ
dx = e−U for some locally bounded U

• f is smooth and belongs to L
p(µ) for some 2 ≤ p and, with, q = p/(p − 1),

∫ ∞

0
α∗
2,p(t) ‖Ptf‖L2(µ) dt <∞ or

∫ ∞

0
tq−1 α∗

2,p/(q−1)(t) ‖Ptf‖L2(µ) dt <∞

then g := −
∫∞
0 Psf ds is well defined in L

q(µ), is smooth, and solves the Poisson equation

Lg = f , and hence (FCLT) holds under Pµ with s2t = −t
∫

f g dµ.

Proof. The only thing to do is to show that g (obtained in proposition 3.19) satisfies
Lg = f in the Schwartz space of distributions D′. To see the latter just write for h ∈ D,

∫

L∗h gT dµ =

∫

hLgT dµ =

∫

h (f − PT f) dµ

and use that PT f goes to 0 in L
1(µ). It follows that e−UgT converges in D′ to some

Schwartz distribution we may write e−Ug, since e−U is everywhere positive and smooth.
Furthermore since the adjoint operator of e−UL∗ (defined on D) is e−UL (defined on D′),
we get that g solves the Poisson equation Lg = f in D′. Using hypoellipticity, we deduce
that g is smooth and satisfies Lg = f in the usual sense. Finally (FCLT) follows from the
usual strategy, provided

∫

Γ(g) dµ is finite. That is why we have to restrict ourselves (in
the second case) to q the conjugate of p, ensuring that

∫

|fg| dµ <∞. �

Remark 3.22. If f ∈ L
p(µ) for some p ≥ 1 (f being still smooth), one can immediately

adapt the proof of the previous proposition to show that the Poisson equation Lg = f has
a solution g ∈ L

1(µ) as soon as
∫ +∞
0 α∗

q,∞(t) dt < +∞. ♦
In the hypoelliptic context one can go a step further. First of all, as before we may and

will assume that f is of C∞ class, so that gt is also smooth. Next, if ϕ ∈ D(Rd),
∫

Lgt ϕp dx =

∫

Lgt ϕdµ →t→+∞

∫

f ϕdµ =

∫

f ϕp dx

so that pLgt →t→+∞ p f in D′(Rd), hence Lgt →t→+∞ f in D′(Rd), since p is smooth
and positive.

Assume in addition that there exists a solution ψ ∈ L
2(µ) of the Poisson equation

L∗ψ = ϕ. Thanks to the assumptions, ψ belongs to C∞ and solves the Poisson equation
in the usual sense. Hence

∫

gt ϕdµ =

∫

gt L
∗ψ dµ =

∫

Lgt ψ dµ →t→+∞

∫

f ψ dµ .

It follows that for every ϕ ∈ D(Rd),

〈p gt , ϕ〉 →t→+∞ a(ϕ) =

∫

f ψ dµ

where the bracket denotes the duality bracket between D′(Rd) and D(Rd). Thanks to the
uniform boundedness principle it follows that there exists an element ν ∈ D′(Rd) such
that p gt → ν in D′(Rd), and using again smoothness and positivity of p, we have that
gt → g = ν/p. We immediately deduce that Lg = f in D′(Rd), hence thanks to (H3) that
g ∈ C∞. Let us summarize all this

Lemma 3.23. Consider the assumptions of proposition 3.21 and assume that for all
ϕ ∈ D(Rd) there exists a solution ψ ∈ L

2(µ) of the Poisson equation L∗ψ = ϕ. Then for
all smooth f there exists some smooth function g such that Lg = f .
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Of course in the cases we are interested in, g does not belong to L
q(µ) if f ∈ L

p(µ), so
that we cannot use previous results. We shall give sufficient conditions ensuring that the
dual Poisson equation has a solution for all smooth functions with compact support (see
Theorem 5.12 in section 5).

Remark 3.24 (The Kipnis Varadhan situation). If ϕ ∈ D(R), we thus have

∫

fϕdµ =

∫

Lgϕdµ =

∫

∇g∇ϕdµ ≤
(
∫

|∇g|2 dµ
)

1
2
∣

∣

∣

∣

∫

|∇ϕ|2 dµ
∣

∣

∣

∣

1
2

so that (3.17) is satisfied as soon as ∇g ∈ L
2(µ), since D(R) is everywhere dense in L

2(µ).

Remark 3.25 (Time reversal, duality, forward-backward martingale decomposition). We
have just seen that it could be useful to work with L∗ too. Actually if the process is
strongly ergodic, we do not know whether limt→+∞ P ∗

t f = 0 for centered f ’s or not (the
limit taking place in the L

2 strong sense). However if the process is uniformly ergodic
(i.e. limt→+∞ α(t) = 0 recall definition 3.18) then limt→+∞ α∗(t) = 0, as will be shown in
Proposition 4.5 in section 4. Now remark that:

∫ t

0
f(Xs) ds =

∫ t

0
f(Xt−s) ds .

Since the infinitesimal generator of the process s 7→ Xt−s (for s ≤ t) is given by L∗ we can
use the previous strategy replacing L by L∗ and the process X. by its time reversal up to
time t. It is then known that, similarly to the standard forward decomposition (2.1), one
can associate a backward one

g(X0)− g(Xt)− (M∗)t =

∫ t

0
L∗g(Xs) ds , (3.26)

where ((M∗)t − (M∗)t−s)0≤s≤t is a backward martingale with the same brackets as M (in

the reversible case this is just the time reversal of M). The solution to the dual Poisson
equation L∗g = f thus furnishes a triangular array of local martingales to which Re-
bolledo’s FCLT applies. Thus, all the results we have shown with the solution of

the Poisson equation are still true with the dual Poisson equation, at least in

the uniformly ergodic case. The previous remark yields another possible improvement,
which is a standard tool in the reversible case, namely the so called Lyons-Zheng decompo-
sition. If g is smooth enough, summing up the standard forward decomposition (2.1) and
the backward decomposition (3.26), we obtain the forward-backward decomposition

∫ t

0
(L+ L∗)g(Xs) ds = − (Mt + (M∗)t)

so that if one can solve the Poisson equation for the symmetrized operator LS := L+L∗ the
previous decomposition can be used to study the behavior of our additive functional. This
is done in e.g. [Wu99], but of course what can be obtained is only a tightness result since
the addition is not compatible with convergence in distribution. However, the forward-
backward decomposition will be useful in the sequel.

4. Comparison with general results on stationary sequences

The CLT and FCLT theory for stationary sequences can be used in our context. Indeed,
let us assume as usual that X0 ∼ µ, 0 6= f ∈ L

2(µ),
∫

f dµ = 0. We may introduce the
stationary sequence of random variables (Yn)n≥0:

Yn :=

∫ n+1

n
f(Xs) ds. (4.1)
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and the partial sum Sn :=
∑n−1

k=0 Yk. If f ∈ L
1(µ) and β(t) → 0 as t→ +∞, denoting by [t]

the integer part of t, we have that β(t)
∫ t
[t] f(Xs) ds → 0 in Pµ probability as t→ +∞, so

that the control of the law of our additive functional reduces to the one of Sn as n→ +∞.
We may thus use the known results for convergence of sums of stationary sequences.

At the process level we may similarly consider the random variables S[nt] where [·]
denotes the integer part again, and for n ≤ (1/ε) < (n + 1). The remainder St/ε − S[nt]
multiplied by a quantity going to 0 will converge to 0 in probability, so that for any k-uple
of times t1, . . . , tk we will obtain the convergence (in distribution) of the corresponding
k-uple, provided the usual FCLT holds for S[nt].

Hence we may apply the main results in [MPU06] for instance. In particular a renowned
result of Maxwell and Woodroofe ([MW00] and (18) in [MPU06]) adapted to the present
situation tells us that (CLT) holds under Pµ as soon as 0 6= f ∈ L

2(µ) with
∫

f dµ = 0 and

∫ ∞

1
t−

3
2

(

∫
(
∫ t

0
Psf ds

)2

dµ

)
1
2

dt <∞. (4.2)

This has been improved for chains [CL09]. For (FCLT) we recall [MPU06, Cor. 12]:

Theorem 4.3 (FCLT). Assume that 0 6= f ∈ L
2(µ) with

∫

f dµ = 0 and that
∫ ∞

1
t−

1
2 ‖Ptf‖L2(µ) dt <∞. (4.4)

Then (FCLT) holds true under Pµ with s2t := Varµ(St) and s
2 := limt→∞

1
t s

2
t exists.

Condition (4.4) is much better than both (3.11) and (3.12) when Ptf goes slowly to 0.
In the reversible case however, (4.4) is stronger that the Kipnis-Varadhan condition (2.9)
(if one prefers Theorem 4.3 is implied by Theorem 3.13), according to what we said in
Remark 3.16. Also note that in full generality it is worse than the one in Proposition 3.19
as soon as α∗

2,p(t) ≤ c/
√
t and f ∈ L

p. Additionally, an advantage of the previous section
is the simplicity of proofs, compared with the intricate block decomposition used in the
proof of the CLT for general stationary sequences.

4.1. Mixing. Following [CG08] (Section 3, Proposition 3.4), let Fs (resp. Gs) be the
σ-field generated by (Xu)u≤s (resp. (Xu)u≥s ). The strong mixing coefficient αmix(r) is

αmix(r) = sup
s,F,G

{|Cov(F,G)|}

where the sup runs over s and F (resp. G) Fs (resp. Gs+r) measurable, non-negative and
bounded by 1. If limr→∞ αmix(r) = 0 then we say that the process is strongly mixing.

Proposition 4.5. Let α be as in definition 3.18. The following correspondence holds :

α2(t) ∨ (α∗)2(t) ≤ αmix(t) ≤ α(t/2)α∗(t/2).

Hence the process is strongly mixing if and only if it is uniformly ergodic (or equivalently
if and only if its dual is uniformly ergodic).

Proof. For the first inequality, it suffices to take F = Prf(X0) and G = f(Xr) (respectively
F = f(X0) and G = P ∗

r f(Xr)) for f µ-centered and bounded by 1. For the second in-
equality, let F and G be centered and bounded by 1, respectively Fs and Gs+r measurable.
We may apply the Markov property to get

Eµ[FG] = Eµ[F Eµ[G|Xs+r]] = Eµ[F Prg(Xs)]

where g is µ-centered and bounded by 1. Indeed since the state space E is Polish, we may
find a measurable g such that Eµ[G|Xs+r] = g(Xs+r) (disintegration of measure). But

Eµ[F Prg(Xs)] = E
∗
µ[F (Xs−.)Prg(X0)] = E

∗
µ[f(X0)Prg(X0)] =

∫

P ∗
r/2f Pr/2g dµ
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where f is similarly obtained by desintegration of the measure. Here we have used the
notation E

∗
µ for the expectation with respect to the law of the dual process at equilibrium,

which is equal to the law of the reversed process on each interval [0, s] (and conversely).
We conclude using Cauchy-Schwarz inequality since f and g are still bounded by 1. �

Remark 4.6. The preceding proposition implies the following comparison:

(α∗)2(2t)

α∗(t)
≤ α(t) .

In particular if we know that α∗ is “slowly” decreasing (i.e. there exists c > 0 such that
α∗(t) ≤ c α∗(2t)), then α(t) ≥ (1/c)α∗(2t) ≥ (1/c2)α∗(t). If both α and α∗ are slowly
decreasing, then they are of the same order. More generally, for t ≥ 2 (for instance)

α2(t) ≤ α(t/2)α∗(t/2) ≤ c α(1)α∗(t)

so that α(t) ≤ c1 (α
∗(t))1/2. Plugging this new bound in the previous inequality we obtain

α2(t) ≤ α(t/2)α∗(t/2) ≤ c1 (α
∗(t/2))3/2 ≤ c1 c

3/2 (α∗(t))3/2

i.e. α(t) ≤ c2 (α
∗(t))3/4. By induction, for all ε > 0 there exists a constant cε such that

α(t) ≤ cε (α
∗(t))1−ε.

Again we shall mainly use the recent survey [MPU06] in order to compare and extend
the results of the previous section. Notice that f ∈ L

p(µ) implies that Y ∈ L
p.

The first main result is due to Dedecker and Rio [DR00, MPU06]: if
∫ t
0f Psf ds converges

in L
1(µ) then (FCLT) holds true under Pµ with s2t = Varµ(St) and

s2 := lim
t→∞

1

t
s2t = 2

∫
(
∫ +∞

0
f Ptf dt

)

dµ.

In the reversible case this assumption is similar to f ∈ D(L−1/2) (see Remark 3.16). Using
some covariance estimates due to Rio, one gets ([MPU06] page 16 (37)) the following.

Proposition 4.7 (FCLT via mixing). If 0 6= f ∈ L
p(µ) for some p > 2 with

∫

f dµ = 0

and
∫ +∞
1 t2/(p−2) α(t)α∗(t) dt <∞, then (FCLT) holds true under Pµ with

1

t
s2t = 2

∫
(
∫ ∞

0
f Ptf dt

)

dµ.

We shall compare all these results with the one obtained in the previous section later,
in particular by giving some explicit comparison results between α and αp,q introduced in
definition 3.18. But we shall below give some others nice consequences of mixing.

4.2. Self normalization with the variance and uniform integrability. The follow-
ing characterization of the CLT goes back at least to [Den86]. The FCLT seems to be less
understood [MPU06, MP06].

Theorem 4.8 (CLT). Assume that α(t) (or α∗(t)) goes to 0 as t → +∞ (i.e. the
process is “strongly” mixing). Then for all 0 6= f ∈ L

2(µ) such that
∫

fdµ = 0 and
limt→∞Varµ(St(f)) = ∞, the following two conditions are equivalent:

(1)
(

S2
t

Var(St(t))

)

t≥1
is uniformly integrable

(2)

(

St√
Var(St(t))

)

t≥1

converges in distribution to a standard Gaussian law as t→ ∞.
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Note that if the process is not reversible, the asymptotic behavior of
∫ s
0

(∫

f Puf dµ
)

du
in unknown in general, and thus Varµ(St) is possibly bounded.

We turn to the main goal of this section. Our aim is to show how to use the general
martingale approximation strategy (as in section 3.1) in order to get sufficient conditions
for S2

t /Varµ(St) to be uniformly integrable. To this end let us introduce some notation.

β(s) =

∫

Psf P
∗
s f dµ and η(t) =

∫ t

0
β(s) ds (4.9)

Varµ(St) = 4

∫ t/2

0
(t− 2s)β(s) ds = th(t). (4.10)

If the (possibly infinite) limit exists we denote limt→+∞ h(t) = 2V ≤ +∞.

Assumption 4.11. We shall say that (Hpos) is satisfied if β(s) ≥ 0 for all s large enough.

Assumption (Hpos) is satisfied is the reversible case, in the non reversible case we only

know that
∫ t
0 η(s) ds > 0. Notice that if (Hpos) is satisfied

2t

∫ t/4

0
β(s) ds ≤ Varµ(St) ≤ 4t

∫ t/2

0
β(s) ds +Ot→∞(1), (4.12)

for t large enough similarly to the reversible case, so that

2 η(t/4) ≤ h(t) ≤ 4 η(t/2) +Ot→∞(1).

Denker’s theorem 4.8 allows us to obtain new results, at least CLTs, using the natural
symmetrization of the generator and the forward-backward martingale decomposition.

To this end consider the symmetrized generator LS = 1
2 (L+L∗). We shall assume that

the closure of LS (again denoted by LS) is the infinitesimal generator of a µ-stationary
Markov semigroup PS

. , which in addition is ergodic. This will be the case in many concrete
situations (see e.g [Wu99]). It is then known that the Dirichlet form associated to LS is
again E(f, g) =

∫

Γ(f, g) dµ. We use systematically the superscript S for all concerned
with this symmetrization.

According to Corollary 3.10 (2), we know that for a centered f ∈ L
2(µ) there exists a

L
2(µ) solution of the Poisson equation LSg = f if and only if

∫ +∞

0
t
∥

∥PS
t f
∥

∥

2

L2(µ)
dt < +∞ . (4.13)

According to remark 3.25 we thus have
∫ t

0
f(Xs) ds = − (Mt + (M∗)t) ,

for a forward (resp. backward) martingaleMt (resp. (M
∗)t). In order to use Denker’s theo-

rem, it is enough to get sufficient conditions for both (Mt)
2/Varµ(St) and ((M∗)t)

2/Varµ(St)
to be uniformly integrable.

To this end recall first that uniform integrability of a family Ft is equivalent (La
Vallée-Poussin theorem) to the existence of a non-decreasing convex function γ such that
limu→+∞ γ(u)/u = +∞ and

sup
t

Eµ (γ(Ft)) < +∞ .

Recall now the following strong version of Burkholder-Davis-Gundy inequalities (see
[DM80], chap. VII, Theorem 92 p.304)
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Proposition 4.14. Let γ be a C1 convex function such that p := supu>0
u γ′(u)
γ(u) is finite

(i.e. γ is moderate). For any continuous L2 martingale N. define N
∗
t = sups≤t |Ns|. Then

the following inequalities hold

1

4p
‖N∗

t ‖γ ≤
∥

∥

∥

∥

〈N〉
1
2
t

∥

∥

∥

∥

γ

≤ 6p ‖N∗
t ‖γ ,

where ‖A‖γ = inf{λ > 0 , E[γ(|A|/λ)] ≤ 1} denotes the Orlicz gauge norm.

In addition Doob’s inequality tells us that the Orlicz norms of N∗
t and Nt are equivalent

(with constants independent of t).
Since the brackets of the forward and the backward martingales are the same, we are

reduced to show that
∫ t
0 Γ(g)(Xs) ds/Varµ(St) is a Pµ uniformly integrable family. But

according to the ergodic theorem

1

t

∫ t

0
Γ(g)(Xs) ds converges as t→ +∞ to

∫

Γ(g)dµ in L
1(Pµ). (4.15)

It follows first that Varµ(St) = O(t). Otherwise (Mt)
2/Varµ(St) would converge to 0

in L
1(Pµ) (the same for the backward martingale), implying the same convergence for

S2
t /Varµ(St) whose L

1 norm is equal to 1, hence a contradiction. If (Hpos) is satisfied,
according to (4.12) we thus have that η(t) = O(1) (and accordingly h(t) = O(1)), hence
(Mt)

2/Varµ(St) and ((M∗)t)
2/Varµ(St) are uniformly integrable. But we do not really

need (Hpos) here, only a lower bound lim inf Varµ(St)/t ≥ c > 0. Summarizing all this we
have shown

Proposition 4.16. Assume that the process is strongly mixing and that (4.13) is satis-

fied. Assume in addition that lim inf Varµ(St)/t > 0. Then St/
√

Varµ(St) converges in
distribution to a standard normal law, as t→ +∞.

Notice that in this situation one can find some positive constants c and d such that
0 < c ≤ Varµ(St)/t ≤ d for large t’s, and that the latter is ensured if (Hpos) holds.

4.3. A non-reversible version of Kipnis-Varadhan result. Finally what happens if
one cannot solve the symmetrized Poisson equation, but if f ∈ D((−LS)−1/2), i.e. if one
can apply Kipnis-Vardahan theorem to the symmetrized process XS

. ?
Coming back to the proof of Theorem 3.13 we may introduce gST so that ∇gST converges

to some h in L
2 as T goes to +∞.

We thus have an approximate forward-backward decomposition

St = − 1

2

(

MT
t + (M∗)Tt

)

+

∫ t

0
PS
T f(Xs) ds . (4.17)

We first look at the corresponding forward martingale MT
t whose bracket is given by

〈MT 〉t =
∫ t

0
|∇gST |2(Xs) ds .

We then have for a convex function γ,

Eµ

[

γ(〈MT 〉t/t)
]

= Eµ

[

γ

(

1

t

∫ t

0
|∇gST |2(Xs) ds

)]

≤ 1

t
Eµ

[
∫ t

0
γ(|∇gST |2)(Xs) ds

]

≤
∫

γ(|∇gST |2) dµ .

Since |∇gST | is strongly convergent in L
2, it is uniformly integrable. So we can find a

function γ as in Proposition 4.14 such that the right hand side of the previous inequality
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is bounded by some K < +∞ for all T . Hence applying Proposition 4.14 we see that
((MT

t )2/t))(T,t) is uniformly integrable. The same holds for the backward martingale.
It remains to control

A(T, t) = Eµ

[

γ

(

1

t

(
∫ t

0
PS
T f(Xs) ds

)2
)]

.

But we know that PS
T f goes to 0 in L2(µ). So there exists some γ such that γ((PS

T f)
2) is

uniformly integrable. Up to a subsequence (we already work with subsequences) we may
assume that the convergence holds true µ almost surely, applying Vitali’s convergence
theorem we thus have (we may choose γ(0) = 0) that

∫

γ
(

(PS
T f)

2
)

dµ→ 0 as T → +∞ .

We thus may apply Cesàro’s theorem, which furnishes some non-decreasing function T (t)
such that suptA(T (t), t) < +∞.

We may now conclude as for the proof of Proposition 4.16, obtaining the following
reinforcement which is some non-reversible version of Kipnis-Varadhan theorem (at the
CLT level), since we already proved that

∫ +∞

0

∥

∥PS
t f
∥

∥

2

L2(µ)
dt <∞

is ensured by the condition (3.17):

Theorem 4.18. Assume that the process is strongly mixing and that (3.17) is satisfied.
Assume in addition that lim inf Varµ(St)/t ≥ c > 0 (or equivalently that V− > 0). Then

St/
√

Varµ(St) converges in distribution to a standard normal law, as t→ +∞.
Notice that in this situation one can find some positive constants c and d such that

0 < c ≤ Varµ(St)/t ≤ d for large t’s, again this is satisfied if (Hpos) holds.

According to the discussion after Proposition 4.16, the upper bound for the rate of
convergence for Lp functions is the worse in the reversible situation. In a sense the previous
Theorem is not so surprising. But here the condition is written for the sole function f , for
which we cannot prove any comparison result.

5. Complements and examples

In this section we shall first discuss in a quite “general” framework how to compare
all the results described in the preceding two sections. This will be done by studying the
asymptotic behavior of Pt. Next we shall describe explicit examples

5.1. Trends to equilibrium. In order to apply corollary 3.10 we thus have to find
tractable conditions on the generator in order to control the decay of the L

2 norm of
Ptf . Such controls are usually obtained for all functions in a given class. The general
smallest possible class is L∞ so that it is natural to introduce Definition 3.18.

The uniform decay rate furnishes a first p, r-decay rate as follows

Lemma 5.1. If 1 ≤ p ≤ 2

αp,r(t) ≤ 21+(p/r) α
r−p
r (t) ,

while if 2 ≤ p,

αp,r(t) ≤ 21+(p/r) α
2
p

r−p
r (t) .

Proof. The proof is adapted from [CG09]. Pick some K > 1 and define gK = g∧K ∨−K.
Since

∫

gdµ = 0, defining mK =
∫

gK dµ it holds

|mK | =
∣

∣

∣

∣

∫

gK dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(gK − g) dµ

∣

∣

∣

∣

≤
∫

(|g| −K)1|g|≥K dµ ≤ ‖g‖rr/K(r−1) .
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Similarly,

‖g − gK‖pp ≤
∫

|g|p 1|g|≥K dµ ≤ ‖g‖rr/Kr−p.

Using the contraction property of Pt in L
p(µ) we have

‖Ptg‖p ≤ ‖Ptg − PtgK‖p + ‖Pt(gK −mK)‖p + |mK |
≤ ‖Pt(gK −mK)‖p + ‖g − gK‖p + |mK |
≤ Var1/2µ (PtgK) + ‖g‖r/pr /K(r−p)/p + ‖g‖rr/K(r−1)

≤ Var1/2µ (PtgK) +
(

2/K(r−p)/p
)

,

the latter being a consequence of ‖g‖r = 1 and K > 1. It follows

‖Ptg‖p ≤ α(t)K + 2K−(r−p)/p.

It remains to optimize in K. Actually up to a factor 2 we know that the optimum is
attained for α(t)K = 2K−(r−p)/p i.e. for K = (2/α(t))p/r (which is larger than one),
hence the first result.

The second one is immediate since for p ≥ 2, αp,∞(t) ≤ α
2
p (t), and we may follow the

same proof without introducing the variance. �

Note that up to a factor 2 due to the proof, the result is coherent for r = +∞.
We can complete the result by the following well known consequence of the semigroup

property

Lemma 5.2. For r = p ≥ 1, either αp,p(t) = 1 for all t ≥ 0, or there exist positive
constants cp and Cp such that αp,p(t) ≤ C(p) e−cpt.

When the second statement is in force we shall (abusively in the non-reversible case)
say that L has a spectral gap. We shall discuss in the next section conditions for the
existence of a spectral gap or for the obtention of the optimal uniform decay rate.

Of course for f ∈ L
p for some p ≥ 2 a sufficient condition for (3.11) to hold is

∫ +∞

0
α2,p(t) dt < +∞ . (5.3)

Remark 5.4. Specialists in interpolation theory certainly will use Riesz-Thorin theorem
in order to evaluate αp,r. Let us see what happens.

Consider the linear operator Ttf = Ptf −
∫

f dµ. As an operator defined in L
2(µ) with

values in L
2(µ), Tt is bounded with an operator norm equal to 1. As on operator defined in

L
∞(µ) with values in L

2(µ), Tt is bounded with an operator norm equal to 2α(t). Hence
Tt is bounded from L

r(µ) to L
2(µ) (for r ≥ 2) with an operator norm smaller than or

equal to 22(1−
1
r
) α

r−2
r (t), which is (up to a slightly worse constant) the same result as the

one obtained in lemma 5.1. The same holds for the pair (1, r), and then for all (p, r). The
main advantage of the previous lemma is that the proof is elementary. See also [CGR10]
for further developments on this subject. ♦

In section 3.2 we used α2,p for p > 2. It seems that in full generality the relation

α2,p(t) = cp α
p−2
p (t) is the best possible. However it is interesting to notice the following

duality result

Lemma 5.5. For all pair 1 ≤ p < r ≤ +∞ there exists c(p, r) such that

αp,r(t) ≤ c(p, r)α∗
r

r−1
, p
p−1

(t) .



20 PATRICK CATTIAUX, DJALIL CHAFAÏ, AND ARNAUD GUILLIN

Proof. If f ∈ L
r is such that

∫

fdµ = 0, for all g ∈ L
p

p−1 , we have
∫

Ptf g dµ =

∫

Ptf

(

g −
∫

gdµ

)

dµ =

∫

f P ∗
t

(

g −
∫

gdµ

)

dµ

hence the result. �

As a consequence we obtain that

Lemma 5.6. For 1 < p ≤ 2, α1,p(t) ≤ c(p) (α∗(t))
2(p−1)

p .

This result is of course much better (up to a square) than the one obtained in lemma
5.1 in this situation, since we know that for slowly decreasing α and α∗ these functions are
equivalent (up to some constants). It can also be compared with similar results obtained
in [CG09].

Remark 5.7. These results allow us to compare conditions obtained in Proposition 3.19,
Proposition 3.21 on one hand, and Theorem 4.3 or Proposition 4.7 on the other hand.

For example, if we use the bound obtained in lemma 5.1, proposition 3.21 tells that
convergence to a brownian motion holds provided

∫ +∞

0
(α(t)α∗(t))

p−2
p dt < +∞ .

(Remark that it is exactly the condition in [Jon04] Theorem 5). Notice that as soon as
α(t)α∗(t) < 1/t this bound is worse than the one in proposition 4.7, so that the mixing
approach seems to be at least as interesting as the usual one.

However, in the diffusion case we shall obtain in proposition 5.10 below a better bound
for α∗

2,p. Combined with remark 4.6, it yields (under the appropriate hypotheses) the
condition

∫ +∞

0
(α∗(t))ε+

2(p−2)
p−1 dt < +∞ ,

for some ε ≥ 0 (0 is allowed in the slowly decreasing case), which is better than the mixing

condition in proposition 4.5 as long as α∗(t) > (1/t)
(p−1
p−2

)−η
for some η ≥ 0. ♦

The question is: how to find α ?

5.2. Rate of convergence for diffusions. In “non degenerate” situations, α is given
by weak Poincaré inequalities:

Definition 5.8. µ satisfies a weak Poincaré inequality (WPI) for Γ with rate β if for all
s > 0 and all f in the domain of Γ (or some core) the following holds,

Varµ(f) ≤ β(s) E(f, f) + sOsc2(f)

where Osc(f) = esssupf − essinff is the oscillation of f .

Proposition 5.9. ([RW01] Theorem 2.1 and Theorem 2.3) If µ satisfies (WPI) with

rate β then both α(t) and α∗(t) are less than 2 ξ
1
2 (t) where ξ(t) = inf{s > 0, β(s) log(1/s) ≤

t}.
If L is µ-reversible (or more generally normal) some converse holds, i.e. decay with

uniform decay rate α implies some corresponding (WPI).

It is actually quite hard to check, in the reversible case, whether starting with some
(WPI) one obtains a ξ which in return furnishes the same (WPI) (see the quite intricate
expression of β in [RW01] Theorem 2.3). It seems that in general one can loose some
slowly varying term (like a log for instance).

Notice that (WPI) implies the following: E(f, f) = 0 ⇒ f constant i.e. the Dirichlet
form is non degenerate. In the degenerate case of course, the uniform decay rate cannot
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be controlled via a functional inequality. The most studied situation being the diffusion
case we now focus on it.

First we recall the following explicit control proved in [BCG08] Theorem 2.1 (using the
main result of [DFG09])

Proposition 5.10. Let L be given by (2.4). Assume that there exists a ϕ-Lyapunov
function V (belonging to the domain D(L)) for some smooth increasing concave function

ϕ and for C some compact subset. Define Hϕ(t) =
∫ t
1 (1/ϕ(s))ds and assume that

∫

V dµ <
+∞.

Then, if limu→+∞ ϕ′(u) = 0,

(α∗)2(t) ≤ C

(
∫

V dµ

)

1

ϕ ◦H−1
ϕ (t)

.

If for p > 2 and q its conjugate, V ∈ L
q(µ) then

α∗
2,p(t) ≤ C(p, ‖V ‖q)(α∗)

p−2
p−1 (t).

If ϕ is linear, α∗(t) and α(t) are decaying like e−λt for some λ > 0 (see [DMT95, BCG08,
BBCG08]).

Note that the latter bound is better than the general one obtained in lemma 5.1. Of
course we may use either remark 3.25 (telling that we may use α∗ instead of α) or Remark
4.6 (comparing both rates) to apply this result.

In the same spirit we shall also recall a beautiful result due to Glynn and Meyn [GM96]
or more precisely the version obtained in Gao-Guillin-Wu [GGW10]:

We introduce the Lyapunov control condition, as in [GM96, GGW10]

Assumption 5.11. there exist a positive function F , a compact set C, a constant b and
a (smooth) function θ, going to infinity at infinity such that

L∗θ ≤ −F + b1C .

Then we have the following (Theorem 3.2 in [GM96] and its refined version Lemma 6.2
in [GGW10])

Theorem 5.12. If Assumption 5.11 is satisfied and θ2 ∈ L
1(µ), the Poisson equation

Lg = f admits a solution in L
2 , provided |f | ≤ F . Hence the usual FCLT holds

The authors get the FCLT in Theorem 4.3 of [GM96], but we know how to do in this
situation.

Assumption 5.11 is thus enough in order to ensure the existence of a L
2 solution of the

Poisson equation for ϕ ∈ D(Rd), so that if this assumption is satisfied we may use Lemma
3.23 (i.e. the existence of a smooth solution (but non necessarily L

2(µ)) to the Poisson
equation for any smooth f).

We shall continue this section by providing several families of examples, starting with
the one-dimensional case. These examples are then extended to n-dimensional reversible
Langevin stochastic differential equations using Lyapunov conditions and results of [BCG08,
BBCG08, CGGR10] to recover Poincaré inequalities or weak Poincaré inequalities through
the use of Lyapunov conditions, and so the rate α∗ or α.
We will then consider elliptic (non necessarilly reversible) examples for which result of
[DFG09], recalled in Proposition 5.10, furnishes the rate α∗ and then existence of the so-
lution of Poisson equation and CLT where the usual Kipnis-Varadhan condition cannot be
used. Comparisons with the recent results of Pardoux-Veretennikov [PV01] will be made.
We will end with some hypoelliptic cases such as the kinetic Fokker-Planck equation or
oscillator chains for which results of [DFG09, BCG08] still apply, and results of [PV05]
are harder to consider. It is of particular interest in PDE theory.
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One of the main strategy to get explicit convergence controls are Lyapunov conditions as
explained before.

5.3. Reversible case in dimension one.

5.3.1. General criterion for weak Poincaré inequalities. We recall here results of [BCR05]

giving necessary and sufficient conditions for a one dimensional measure dµ(x) = e−V (x)dx,
associated to the one dimensional diffusion

dXt =
√
2dBt − V ′(Xt)dt

to satisfy a weak Poincaré inequality.

Proposition 5.13. [BCR05, Theorem 3] Let m be a median of µ, and β : (0, 1/2) → R+

be non increasing. Let C be the optimal constant such that for all f and 0 < s < 1/4

Varµ(f) ≤ C β(s)

∫

f ′2dµ+ sOsc(f)2

then 1/4max(b−, b+) ≤ C ≤ 12max(B+, B−) where, with m a median for µ

b+ = sup
x>m

µ([x,∞[)

β(µ([x,∞[)/4)

∫ x

m
eV dx

B+ = sup
x>m

µ([x,∞[)

β(µ([x,∞[))

∫ x

m
eV dx

and the corresponding ones for b−, B− with the left hand side of the median.

5.3.2. A first particular family : general Cauchy laws. Consider the diffusion process on
the line

dXt =
√
2 dBt −

(

αx

1 + x2
+

2β x

(e+ x2) log(e+ x2)

)

dt (5.14)

for some parameters α > 1 and β ≥ 0. The model is slightly more general than the
usual Cauchy laws considering β = 0, but the difference allows interesting behaviors. The
corresponding generator is

L = ∂2x2 −
(

αx

1 + x2
+

2β x

(e+ x2) log(e+ x2)

)

∂x

so that L is µ-reversible for

µ(dx) =
c(α, β)

(1 + x2)α/2 logβ(e+ x2)
dx .

It is immediate that V (x) = x2 satisfies

LV (x) = 2
1− (α− 1)x2

1 + x2
− 4βx2

(e+ x2) log(e+ x2)
(5.15)

hence verifies the assumption in proposition 2.7. So the process defined by (5.14) does not
explode (is conservative if one prefers), and is ergodic with unique invariant measure µ,
which satisfies a local Poincaré inequality on any interval.

The rate α2,∞ is known in this situation. Indeed, according to Proposition 5.13, µ
satisfies a weak Poincaré inequality (recall definition 5.8) with optimal rate

β(s) = d(α, β) s−2/(α−1) log−2β/(α−1)(1/s) .

According to Proposition 5.9 (and its converse in the reversible case), for large t,

α2,∞(t) ≃ ξ
1
2 (t) with ξ(t) =

1

t
(α−1)

2

log
(α−1)

2
−β(t) .

In the sequel we shall only consider bounded functions f .
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If α > 3 or α = 3 and β > 2, α2
2,∞ is integrable, and so we may apply Kipnis-Varadhan

theorem to all bounded functions f .
Interesting cases are α = 3 and β ≤ 2.
If β > 1, θ(x) = |x| for large |x|’s satisfies the assumptions in Theorem 5.12, and

accordingly the usual FCLT holds provided |f(x)| ≤ c/|x| at infinity. If β ≤ 1 a similar
result holds but this time for |f(x)| ≤ c/|x|1+ε at infinity, for any ε > 0.

But it should be interesting to know what happens for bounded f ’s that do not go to
0 at infinity.

5.3.3. A second general family: subexponential laws. Let us consider the process on the
line

dXt =
√
2dBt − αx |x|α−2dt

for α < 1 with the generator
L = ∂2x2 − αx |x|α−2 ∂x

which is να reversible where

να(dx) = C(α) e−|x|αdx.

It is well known the process does not explode and ergodic with unique invariant measure
µ. By Proposition 5.13, one easily gets that να satisfies a weak Poincaré inequality with

β(s) = kα log(2/s)
2
α
−2. According to Proposition 5.9 (and its converse in the reversible

case), for large t,

α2,∞(t) ≃ ξ
1
2 (t) with ξ(t) = e−ctα .

It is then of course immediate by Kipnis-Varadhan theorem, and Proposition 3.19 for
tractable conditions, to get that as soon as f ∈ L

p for p > 2 then it satisfies the FLCT. Of

course, the interesting examples are in unbounded test functions like f(x) = e
1
2
|x|αg(x)− c

for g in L
2(dx) but not in any L

p(dx) for any p > 2. We believe that in this context,
one may exhibit anomalous speed in the FCLT, as in the Cauchy case explored in the
following sections. It does not seem that interesting new examples may be sorted out
using Glynn-Meyn’s result.

5.4. Reversible case in general. We quickly give here multidimensional Langevin-
Kolmogorov reversible diffusions example (say in R

n), that may be treated as in the
one-dimensional case using the appropriate Lyapunov conditions and weak Poincaré in-
equalities.

5.4.1. Cauchy type measures. Let us consider with α > n

µα(dx) := Z (1 + |x|2)α/2 dx
associated to the generator

L = ∆− αx

1 + |x|2 .∇

reversible with respect to µ. In fact one may use as in the one dimensional case Lyapunov
functions W (x) = |x|k for large |x| so that for large |x|

LW = (nk + k(k − 2)) |x|k−2 − kα
|x|k

1 + |x|2
so that to get a Lyapunov condition we have to impose the compatibility condition α >
n+ k − 2.
Use now Theorems 2.8 and 5.1 in [CGGR10] to get a weak Poincaré inequality with

β(s) = c(n, α)s−
2

α−n leading to

α2,∞(t) = c′(α, n)
log

α−n
2

(t)

t
α−n
2

.
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We then get that if α > n+ 2 then α2
2,∞ is integrable and thus Kipnis-Varadhan theorem

may be used for all bounded functions. Note that in this case, one does not recover the
optimal speed of decay via the results of [DFG09].
We may also use Theorem 5.12 to consider unbounded function: for k ≥ 2, if α > n+ 2k
and α > n + k − 2 then the usual FCLT holds for all centered function f such that
|f | ≤ c(1 + |x|k−2).
One may also, in the setting where K ≥ 2, f is centered with |f | ≤ c(1 + |x|k−2) and
α > n+2(k− 2) (so that f ∈ L

β for β < α−n
k−2 ), use Prop. 3.19: if α > n+2k− 3 then the

FCLT holds. Note that it gives better results than Theorem 5.12.
One may of course generalize the model (β 6= 0) as in the one-dimensional case, which
would lead to the same discussion as in the one-dimensional case.

5.4.2. Subexponential measures. Let us consider for 0 < α < 1,

να(dx) = C(α) e−|x|αdx

associated to the να-reversible generator

L = ∆− αx |x|α−2 .∇.
With W (x) = ea|x|

α
for large |x|, one easily gets that for large |x|

LW (x) ≤ −cα2a(a− 1) |x|2α−2ea|x|
α

so that by Theorems 2.8 and 5.1 in [CGGR10], we get that να verifies a weak Poincaré

inequality with β(s) = kn,α log(2/s)
2
α
−2. We may then mimic the results given in the one

dimensional case.

5.5. Beyond reversible diffusions. We will focus here on general diffusion models on
R
n, with the notations of [PV01, PV05] for easier comparisons,

dXt = σ(Xt)dBt + b(Xt)dt

with generator

L =
n
∑

i,j=1

aij(x)∂
2
xi,xj

+
n
∑

i=1

bi(x)∂xi
,

and a = σσ∗/2. We will suppose that σ is bounded and b, σ locally (bounded) Lipschitz
functions. We assume moreover a condition on the diffusion matrix

(Hσ) :

〈

a(x)
x

|x| ,
x

|x|

〉

≤ λ+ , T r(σσ∗)/n ≤ Λ.

Note that Pardoux and Veretennikov also impose an ellipticity condition in [PV01], or a
local Doeblin condition in [PV05] preventing however too degenerate models like kinetic
Fokker-Planck ones. We also introduce the following family of recurrence conditions

(Hb(r, α)) : ∀|x| ≥M,

〈

b(x),
x

|x|

〉

≤ −r|x|α.

We suppose M > 0, α ≥ −1, and when α = −1, that the process does not explode (it will
be a consequence of the Lyapunov conditions given later). We also define when α = −1,
r0 = (r − Λn)/2)/λ+. We may then use the results of [DMT95, DFG09] and [PV01] to
get that

α∗(t)
2 ≤











C e−ct if α ≥ 0,

C e−ct
1+α
1−α

if − 1 ≤ α < 0,

C (1 + t)−k if α = −1 and 0 < k < r0,
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for some (usually non explicit) constants C, c > 0. Note that these results are obtained

using Lyapunov functions W1(x) = ea|x|, W2(x) = ea|x|
1+α

and W3(x) = 1 + |x|2k+2

respectively, for some a < 2r
λ+(1+α) whenever α > −1). Namely outside a large ball, for

some positive λ
α ≥ 0, LW1 ≤ −λW1,

−1 < α < 0, LW2 ≤ −λW2 [lnW2]
2 α
1+α ,

α = −1, LW3 ≤ −λW
m−2
m

3 .

All this shows that the process is positive recurrent. We denote by µ its invariant proba-
bility measure. Remark that the convergence rate in the last case is slightly better than
the one in Pardoux-Veretennikov. Note that a direct consequence of these Lyapunov con-

ditions is that W1 is L
1(µ), W2 [lnW2]

2 α
1+α ∈ L

1(µ) and W
k

k+1

3 ∈ L
1(µ). These last two

integrability results are presumably not optimal, indeed results of [PV01, Proposition 1]
give us in the case α = −1 that for every m < 2r0 − 1, W4(x) = 1 + |x|m is in L

1.
We may then use results of Proposition 3.19, or more precisely Proposition 3.21 to get

results on the solution of the Poisson equation and the FCLT that we may compare with
[PV01, Theorem 1]. Comparison is not so easy as Pardoux-Veretennikov’s results consider
function f with polynomial growth and obtain polynomial control of the solution of the
Poisson equation, when our results deal with L

p control. Glynn-Meyn’s result will help us
in this direction. We will only consider here examples for α = −1 and −1 < α < 0, i.e.
sub-exponential cases.

Case α = −1. Pardoux-Veretennikov’s result, assuming some ellipticity condition
(namely the existence of a λ− > 0 for the corresponding lower bound in (Hσ)) estab-
lishes that if |f(x)| ≤ c(1+ |x|β) for β < 2r0 − 3 then the solution of the Poisson equation
g exists with a polynomial control in |x|β+2+ε (ε > 0 arbitrary) just ensuring that g ∈ L

1.
They also obtain a polynomial upper control of |∇g|. We have not pushed too much fur-
ther in this last direction but elements of the next sections may give integrability results
for |∇g|.
To use Proposition 3.21 in our context, one has to verify, for smooth f in L

p for simplic-
ity, that α(t)α∗(t) is sufficiently decreasing. Using Remark 4.6, one gets here that for all
k < r0

α(t)α∗(t) ≤ ckt
−k

and we have thus to impose the condition that k(p− 2) > p. Our results are then weaker
than Pardoux-Veretennikov as it enables us only to consider f to be in L

p for p > 2
whereas they consider f in L

m for m < (2r0 − 1)/(2r0 − 3).
Note however that we have no ellipticity assumption, and we refer to examples in the

next paragraph, which cannot be obtained using the results of Pardoux-Veretennikov.
Remark finally that our results do not only apply to the existence of the solution of
the Poisson equation but also to the FCLT, with a finite variance, which is not at all
ensured by Pardoux-Veretennikov’s results. In this perspective, if we want to use Pardoux-
Veretennikov result to get a finite variance, we will have to impose that there exists p ≥ 1
such that max(pβ, p

p−1(β+2)) < 2r0−1, which will imply that for p ≥ 2 one has to impose

(r0 − 1/2)(p − 2) > p which is slightly stronger than our conditions.

Case −1 < α < 0. In fact, by the results of Pardoux-Veretennikov, one has that for f
bounded by a polynomial, then g is also bounded by a polynomial and thus at least in L

1.
We get much more general results here as we allow, for example, smooth f such that there
exists C > 0 with

|f(x)| ≤ C e

(

r
λ+(1+α)

−ε
)

|x|1+α

for ε > 0.
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Note also that no additional ellipticity condition is supposed, and even in the subsequent
work [PV05], the local Doeblin condition and condition (AT ) (see [PV05, Page 1113] seems
to be verified in only slightly degenerate case. We will then give here particular examples
that may be reached through our work.

5.6. Kinetic models. Consider a kinetic system, where v is the velocity (in R
d) and x

is the position. The motion of v is perturbed by a Brownian noise, i.e. we consider the
diffusion process (Xt, Vt)t≥0 with state space R

d × R
d solution of the kinetic stochastic

differential equation
{

dxt = vt dt,

dvt = H(vt, xt)dt+
√
2dBt.

If the initial law of (x0, v0) is ν we denote by P (t, ν, dx, dv) the law at time t of the process.
A standard scaling (see e.g. [DM08]) is to consider

P ε(t, ν, dx, dv) = ε−d P

(

t

ε2
, νε,

dx

ε
, dv

)

i.e. the law of the scaled process (ε xt/ε2 , vt/ε2) (also rescale the initial law), solution of

ε∂tP + v · ∇xP − 1

ε
(∆vP + divv(H P )) = 0 . (5.16)

The FCLT with v(ε) =
√
ε, if it holds, combined with a standard argument of propagation

of chaos (see [CCM10] for more details) implies that as ε goes to 0, P ε(t, dx, dv) converges
to the product N(t, dx)M(dv) where M(dv) is the projection of the invariant measure
of the diffusion on the velocities space and N(t, dx) is the solution of the appropriate
(depending on the asymptotic variance) heat equation on the positions space.

Let us present more concrete examples where we can use the results of the paper just
using f(v) = v or f(x, v) = v, as well as the possible necessity of using another scaling
in space (anomalous rate of convergence), via explicit speed of convergence obtained as
previously via Lyapunov conditions.

Kinetic Fokker-Planck equation.
Let us consider the following stochastic differential system

dxt = vt dt,

dvt =
√
2 dBt − vt dt−∇F (Xt) dt,

where (Bt) is a R
d-Brownian motion. The invariant (but non-reversible) probability mea-

sure is then µ(dx, dv) = Z−1 e− ( 1
2
|v|2+F (x)) dv dx.

If F (x) behaves like |x|p for large |x| with 0 < p < 1 then one can build a Lyapunov

function W (x, v) behaving at infinity as ea(|v|
2+|x|p) (for s sufficiently small) and such that

outside a large ball (see [DFG09, BCG08])

LW ≤ −λW [lnW ]
2 p−1

p .

We may thus apply the results explained in the previous case −1 < α < 0.
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Oscillator chains.
We present here the model studied by Hairer-Mattingly [HM09]: 3-oscillator chains

dq0 = p0 dt

dp0 = −γ0p0 dt− q0|q0|2k−2 dt− (q0 − q1) dt+
√

2γ0T0dB
0
t

dq1 = p1 dt

dp1 = −q1|q1|2k−2 − (2q1 − q0 − q2)dt

dq2 = p2 dt

dp2 = −γ2p2 dt− q2|q2|2k−2 dt− (q2 − q1) dt+
√

2γ2T2dB
2
t

whereB0 and B2 are two independent brownian motions. Then by Theorem 5.6 in [HM09],
if k > 3/2, one can give a Lyapunov function W for which LW ≤ −λW r + C for some
r < 1 so that we may use the results presented before in the polynomial rate case.

6. An example of anomalous rate of convergence

In all the examples developed before, the asymptotic variance was existing. We shall
try now to investigate the possible anomalous rates of convergence, i.e. cases where the
variance of St is super-linear. Instead of studying the full generality, we shall first focus
on a simple example, namely the one discussed in section 5.3.2.

We consider the generator L defined in (5.15) in the critical situation α = 3 and β ≤ 2 or
the supercritical one i.e α < 3 (but α > 1). For simplicity we shall here directly introduce
the function g and choose g(x) = x2, so that f = Lg is bounded but does not go to 0 at
infinity (hence we cannot use Theorem 5.12).

Since ∇g(x) = 2x, ∇g ∈ L
2(µ) if and only if α = 3 and β > 1.

According to Remark 3.24 we may thus apply Kipnis-Varadhan result, so that from now
on these cases are excluded. Remark that for this particular case, Kipnis-Varadhan result
applies for β > 1, while for the general bounded case (i.e. f bounded) we have to assume
that β > 2. This is presumably due to the non exact correspondence between (WPI) and
the decay rate ξ as noticed just after Proposition 5.9.

Our goal in this section will be to evaluate Varµ(St) and to see that one can apply
Denker’s Theorem 4.8, i.e. obtain a CLT with an anomalous explicit rate.

In the sequel, c will denote a universal constant that may change from place to place.
ForK > 0 we introduce a truncation function ψK such that, 1[−K,K] ≤ ψ′

K ≤ 1[−K−1,K+1]

and all ψ′′
K are bounded by c (ψK is thus an approximation of x ∧K ∨ −K).

We then define gK = ψK(g), fK = LgK which is still bounded by c and such that

|fK − f | ≤ c1|x|≥K .

In what follows, we shall use repeatedly the fact that, for large K
∫ K

e
xa logβ(x) dx ≃ c(a, β)

(

1 +Ka+1 logβ(K)
)

if a 6= −1

∫ K

e
x−1 logβ(x) dx ≃ c(β)

(

1 + logβ+1(K)
)

if β 6= −1

∫ K

e
x−1 log−1(x) dx ≃ c (1 + log log(K)) .

These estimates follow easily by integrating by parts (integrate xa and differentiate the
log).

Now we can write (we are using the notation in section 4.2, in particular (4.10) and
(4.9)):
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(St)
2 ≤ 2 (St − SfK

t )2 + 2 (SfK
t )2

≤ 2 (St − SfK
t )2 + (MgK

t )2 + ((M∗)gKt )2 , (6.1)

or

(St)
2 ≤ 2 (St − SfK

t )2 + 8 (g2K(Xt) + g2K(X0)) + 4 (MgK
t )2 , (6.2)

and

(St)
2 ≥ 4 (MgK

t )2 − 2 (St − SfK
t )2 − 8 (g2K(Xt) + g2K(X0)) . (6.3)

Recall that

2t η(t/4) ≤ Varµ(St) ≤ 4t η(t/2)

with η given in (4.9) which is non-decreasing since L is reversible. Hence we know that
Varµ(St)/t is bounded below. This will allow us to improve on the results in section 5.3.2.

Indeed for K > K0 where K0 is large enough,

Eµ

[

(St − SfK
t )2

]

≤ cEµ

[
∫ t

0

∫ s

0
1|Xs|≥K 1|Xu|≥K du ds

]

≤ cEµ

[
∫ t

0
s1|Xs|≥K ds

]

≤ c t2 µ(|x| ≥ K) ≤ c′′(α, β) t2K1−α log−β(K) . (6.4)

Eµ

[

(MgK
t )2

]

≤ cEµ

[
∫ t

0
X2

s 1|Xs|≤K+1 ds

]

≤ c t

∫ K+1

−K−1
x2 µ(dx)

≤ c(α, β) t (1 + ϕ(K)) , (6.5)

with ϕ(K) = K3−α log−β(K) if α 6= 3, ϕ(K) = log1−β(K) if α = 3 and β 6= 1, and finally
ϕ(K) = log log(K) if α = 3 and β = 1 . Note that similarly

Eµ

[

(MgK
t )2

]

≥ Eµ

[
∫ t

0
X2

s 1|Xs|≤K ds

]

≥ c t

∫ K

−K
x2 µ(dx)

≥ c′(α, β) t (1 + ϕ(K)) . (6.6)

In addition
∫

g2K dµ ≤ c

∫ K+1

−K−1

x4

(1 + |x|α) logβ(e+ |x|2)
dx+ 2K4 µ(|x| > K)

≤ c (1 +K5−α log−β(K)) . (6.7)

According to lemma 2.8 we already know that Varµ(St)/t is bounded if and only if we
are in the Kipnis-Varadhan situation (in particular as we already saw if α = 3 and β > 1).
In order to get the good order for Varµ(St)/t by using (6.2) and (6.3) we have to choose
K(t) in such a way that

Eµ

[

(MgK
t )2

]

≫
∫

g2K dµ

and

Eµ

[

(MgK
t )2

]

≫ Eµ

[

(St − SfK
t )2

]

.
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Hence, according to (6.5) and (6.6) as well as (6.4) and (6.7) we need for (α, β) 6= (3, 1)

t
(

K3−α 1α>3 + log(K)1α=3

)

log−β(K) ≫ max(K5−α log−β(K) ; t2K1−α log−β(K)) ,
(6.8)

We immediately see that the unique favorable situation is obtained for

α = 3 and β 6= 1 and K2 log(K) ≫ t≫ K2/ log(K) . (6.9)

In this situation the leading term Eµ

[

(MgK
t )2

]

is of order t log1−β(K) i.e. of order

t log1−β(t).
If α = 3 and β = 1 we get

K2 log(K) log log(K) ≫ t≫ K2/ log(K) log log(K) (6.10)

yielding this time Eµ

[

(MgK
t )2

]

≃ t log log(t).
So we now consider the cases α = 3 and β ≤ 1.
Notice that it corresponds to the rate of convergence described in the next section 7.

We thus have
Varµ(St)/t ≃ log1−β(t) (or log log t if β = 1) . (6.11)

Any choice of K(t) satisfying (6.9) (or (6.10)) yields that (St − SfK
t )2/t log1−β(t) (or

t log log t) goes to 0 in L
1(µ). Hence, thanks to (6.1), it remains to show that (MgK

t )2/t log1−β(t)
(or t log log t) is uniformly integrable i.e. that the bracket

∫ t

0
|∇gK |2(Xs) ds/t log

1−β(t) or t log log(t)

is uniformly integrable, according to Proposition 4.14. Due to the form of gK it is thus
enough to show that

H(t,X,K(t)) :=

∫ t

0
X2

s 1|Xs|≤1+K(t) ds/t log
1−β(t) ( or t log log(t) if β = 1) (6.12)

is uniformly integrable.

Remark 6.13. One can remark that in the situation described above, β(t) ≪ α2(t), that
is the decay of the L

2 norm of Ptf is faster than the worse possible one. Indeed, as we
know, η(t) ∼ Varµ(St)/t ∼ log1−β(t) (or log log t for β = 1) while α2(t) ∼ log1−β(t) t−1 so

that its primitive behaves like log2−β(t). ♦
To this end, denote by u(x,M) = |x|2 1|x|≤1+M for M ≥ 1, and ū(x,M) = u(x,M) −

∫

u(.,M) dµ, and U(t,X,M) =
∫ t
0 u(Xs,M) ds.

We know that if β ≤ 1, and t > 1 for instance,

Varµ(U(t,X,M)) = 4

∫ t/2

0
(t− 2s)

(
∫

P 2
s (ū(.,M)) dµ

)

ds .

Recall that α2(s) = α2
2,∞(s) is the mixing coefficient whose expression is recalled in

section 5.3.2, i.e. α2(s) ≃ log1−β(s) s−1.
A direct calculation thus yields (for t ≥ 1)

Varµ(U(t,X,M)) ≤ 4

∫ t/2

0
(t− 2s)α2(s) (1 +M)4 ds

≤ 4c (1 +M)4
∫ t/2

0
(t− 2s)

log1−β(1 + s)

1 + s
ds

≤ 4c (1 +M)4 t log2−β(1 + t) .

Hence if we choose M(t) = ta with a < 1/4,

Varµ(U(t,X, ta))/t2 log2(1−β)t
(

or (log log t)2 if β = 1
)

→ 0 as t→ +∞ .
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We can also calculate the mean

Eµ(U(t,X, ta)) ≃ c(β) t log1−β(t) ( or log log t if β = 1)

i.e. is asymptotically equivalent to the mean of U(t,X,K(t)), so that

Eµ(U(t,X, ta))/t log1−β(t) ( or log log t if β = 1)

is bounded.
It follows that U(t,X, ta)/t log1−β(t) or U(t,X, ta)/t log log(t) when β = 1, is uniformly

integrable.
We claim that

(U(t,X,K(t)) − U(t,X, ta)) /t log1−β(t) ( or log log t if β = 1) → 0 in L
1(Pµ) ,

so that it is uniformly integrable. According to what precedes, it immediately follows that
H(t,X,K(t)) = U(t,X,K(t))/t log1−β(t) (with the ad hoc normalization if β = 1) is also
uniformly integrable.

It remains to prove our claim. For simplicity we choose K(t) = t1/2 (any allowed K(t)
furnishes the result but calculations are easier). Since U(t,X,K(t))−U(t,X, ta) ≥ 0 it is
enough to calculate for large t

Eµ (U(t,X,K(t)) − U(t,X, ta)) = t

∫ K(t)

ta
x2 µ(dx) .

If β 6= 1, the right hand side is equal to

1

1− β

(

log1−β(K(t)) − log1−β(ta)
)

≃ (log(1/2) − log(a)) log−β(t) .

If β = 1 it is equal to

log log(K(t))− log log ta ≃ log(1/2) − log(a) .

Our claim immediately follows in both cases.
Let us collect the results we have obtained:

Theorem 6.14. Let

µβ(dx) = pβ(x) dx = c(β) (1 + x2)−3/2 log−β(e+ x2) dx

be a probability measure on the line and Lβ = ∂2x2 +∇(log pβ) ∂x the associated diffusion

generator for which µβ is reversible and ergodic. Xβ
. denotes the associated diffusion

process.
For g(x) = x2, fβ = Lβg is a bounded function with µ-mean equal to 0. We consider

the associated additive functional S
fβ
t =

∫ t
0 fβ(X

β
s ) ds.

If β > 1 we may apply Kipnis-Varadhan result (Theorem 3.13).

If β = 1, limt→+∞Varµβ
(S

fβ
t )/t log log t = c for some constant c > 0 and we may apply

Denker’s theorem 4.8.

If β < 1, limt→+∞Varµβ
(S

fβ
t )/t log1−β(t) = c for some constant c > 0 and we may

again apply Denker’s theorem 4.8.

The previous theorem is really satisfactory and in a sense generic. We shall try in the
next sections to exhibit general properties yielding to an anomalous rate of convergence.
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7. Anomalous rate of convergence. Some hints

The standard strategy we used for the CLT is to reduce the problem to the use of
the ergodic theorem for the brackets of a well chosen martingale. This requires to ap-
proximate the solution of the Poisson equation, i.e. to obtain a decomposition of St into
some martingale terms, whose brackets may be controlled, and remaining but negligible
“boundary” terms. In this section we shall address the problem of using this strategy for
super-linear variance. Hence we have to choose a correct approximation of the solution of
the Poisson equation, and to replace the ergodic theorem for the martingale brackets, by
some uniform integrability property. Again we are using the notation (4.9) and (4.10).

As before, for T > 0 depending on t to be chosen later, introduce again gT = −
∫ T
0 Psf ds.

We thus have LgT = f − PT f and using Itô’s formula

St =

∫ t

0
f(Xs) ds = gT (Xt)− gT (X0)−MT

t +

∫ t

0
PT f(Xs) ds (7.1)

= gT (Xt)− gT (X0)−MT
t + ST

t

= −1

2
(MT

t + (M∗)Tt ) + ST
t ,

where
〈

MT
〉

t
=
∫ t
0Γ(gT )(Xs) ds. In order to prove that S2

t (f)/Var(St(f)) is uniformly
integrable when X0 ∼ µ, we shall find conditions for the following three propositions:

lim
t→∞

1

Var(St)

∫

(gT )
2 dµ = 0 (7.2)

lim
t→∞

1

Var(St)
Varµ(S

T
t ) = 0 (7.3)

lim
t→∞

1

Var(St)
(MT

t )
2 is uniformly integrable. (7.4)

We can replace (7.2) by

1

Var(St)
((M∗)Tt )

2 is uniformly integrable. (7.5)

7.1. Study of
∫

(gT )
2 dµ/Var(St). We already saw that in the reversible case

Varµ(gT ) = 4

∫ T

0
s β(s) ds ≤ 4T η(T ),

We immediately see using (4.12) that if T
t → 0, then

∫

(gT )
2 dµ/Var(St) → 0 as t→ +∞.

If t≪ T then β has to decay quickly enough for
∫

(gT )
2 dµ/Var(St) to be bounded. The

limiting case T = ct will be the more interesting in view of the second “boundary” term.
Note that actually we only need to study the uniform integrability of (gT )

2/Var(St), but
the material we have developed do not furnish any better result in this direction.

7.2. Study of Varµ(S
T
t )/Var(St). If µ is reversible, we have

Varµ(S
T
t ) = 2

∫ t

0

∫ s

0

(
∫

PT f Pu+T f dµ

)

du ds

= 4

∫ t
2

0
(t− s)β(s + T ) ds

≤ 4t (η(T + (t/2)) − η(T )) ,

so that, for Varµ(S
T
t )/Var(St) to go to 0, it is enough to have

η(T + t
2 )− η(T )

η( t4 )
→ 0.



32 PATRICK CATTIAUX, DJALIL CHAFAÏ, AND ARNAUD GUILLIN

A similar estimate holds in the non-reversible case provided (Hpos) holds. This time we
see that the good situation is the one where t≪ T .

7.3. The martingale brackets. It remains to calculate the expectation of the martingale
brackets 〈MT 〉t.

Eµ

(

〈MT 〉t
)

= t

∫

Γ(gT ) dµ

= 2t

∫
(
∫ t

0
Psf (f − PT f) ds

)

dµ

= 4t (2 η(T/2) − η(T )) .

Hence we certainly need (2 η(T/2) − η(T )) /η(t/4) to be bounded. As for the first term
this requires at least that t is of the same order as T .

7.4. The good rates. According to what precedes, we have to consider the case when T
and t are comparable. For simplicity we shall choose T = t/2, so that the final condition
in section 7.3 will be automatically satisfied. The final condition in section 7.2 becomes

lim
t→+∞

η(t)− η(t/2)

η(t/4)
= 0 , (7.6)

while the discussion in section 7.1 yields to

lim
t→+∞

∫ t
0 s β(s) ds

t
∫ t/2
0 β(s) ds

= 0 , (7.7)

It is thus interesting to get a family of β′s satisfying (7.7) and (7.6). Actually since β is
non increasing,

∫ t

t/2
β(s)ds ≤

∫ t/2

0
β(s)ds

so that
∫ t/2

0
β(s)ds ≤

∫ t

0
β(s)ds ≤ 2

∫ t/2

0
β(s)ds .

Hence, (7.7) is equivalent to

lim
t→+∞

∫ t
0 s β(s) ds

t
∫ t
0 β(s) ds

= 0 . (7.8)

Functions satisfying this property are known, according to Karamata’s theory (see [BGT87]
chapter 1). Recall the definition

Definition 7.9. A non-negative function l is slowly varying if for all u > 0,

lim
t→+∞

l(ut)

l(t)
= 1.

Using the direct half of Karamata’s theorem (see [BGT87] Proposition 1.5.8 and equa-
tion (1.5.8)) for (7.8) to hold it is enough that

β(s) =
l(s)

s
for some slowly varying l. (7.10)

Indeed if (7.10) holds,
∫ t
0 s β(s) ds ∼ t l(t) so that (7.8) is equivalent to

lim
t→+∞

l(t)
∫ t
0 β(s) ds

= 0 ,

which is exactly [BGT87] Proposition 1.5.9a.
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The converse half of Karamata’s theorem ([BGT87] Theorem 1.6.1) indicates that this
condition is not far to be necessary too.

Furthermore, according to [BGT87] Proposition 1.5.9a. if (7.10) is satisfied, then η is
slowly varying too, so that (7.6) is also satisfied. These remarks combined with the explicit
value of Varµ(St) show that the latter is then equivalent to 4t η(t) at infinity.

We have obtained

Proposition 7.11. (7.7) and (7.6) are both satisfied as soon as (7.10) is. In this situation
Varµ(St)/t is equivalent to 4 η(t) at infinity.

Of course if we replace (7.7) by (7.5) we do not need the full strength of (7.10) since
(7.6) is satisfied as soon as η is slowly varying.

7.5. Study of (MT
t )

2/Var(St). Now on we shall thus take T = t/2 and simply denote
MT

t by Mt. In order to show that (Mt)
2/Var(St) is uniformly integrable, we can use

Proposition 4.14 yielding the following :

Proposition 7.12. If the process is reversible and strongly mixing and if η given in (4.9)
is slowly varying (in particular if (7.10) is satisfied), then there is an equivalence between

(1)
St

2
√

tη(t)
converges in distribution to a standard Gaussian law as t→ +∞,

(2)

(

1

tη(t)

∫ t

0
Γ(gt/2)(Xs) ds

)

t≥1

is uniformly integrable, where gt/2 := −
∫ t/2
0 Psf ds.

We shall say (as Denker himself said when writing his theorem) that the previous
proposition is not really tractable. Indeed in general we do not know any explicit expression
for the semigroup (hence for gt). The main interest of the previous discussion is perhaps
contained in the feeling that anomalous rate shall only occur when (7.10) is satisfied.

In the next section we shall even go further in explaining:

7.6. Why is it delicate? The previous theorem reduces the problem to show that

sup
t

Eµ

[

γ

(

1

Var(St)

∫ t

0
Γ(gt/2)(Xs) ds

)]

<∞.

The first idea is to use the convexity of γ, yielding

Eµ

[

γ

(

1

Var(St)

∫ t

0
Γ(gt/2)(Xs) ds

)]

≤ 1

t
Eµ

[
∫ t

0
γ

(

1

h(t)
Γ(gt/2)(Xs)

)

ds

]

≤
∫

γ

(

1

h(t)
Γ(gt/2)

)

dµ

so that our problem reduces to show that Γ(gt)/h(2t) is µ uniformly integrable, or, since
we assume that η is slowly varying, that Γ(gt)/η(t) is µ uniformly integrable.

The simplest case, namely if ∇gt/
√

h(t) is strongly convergent in L
2(µ), holds if and

only if η(t) has a limit at infinity, i.e. in the Kipnis- Varadhan situation. The situation
when η(t) goes to infinity is thus more delicate.

It is so delicate that we shall see a natural generic obstruction. In what follows we
assume that η(t) → +∞ as t→ +∞.

For simplicity we consider the one dimensional situation with

L = ∂2x2 + ∂x(log p) ∂x

p being a density of probability on R which is assumed to be smooth (C∞) and everywhere
positive with p(x) → 0 as x → ∞. µ(dx) = p(x)dx is thus a reversible measure, and we
assume that the underlying diffusion process is strongly mixing.
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We already know that
∫

|∂xgt|2 dµ ∼ 4 η(t). If |∂xgt|2/η(t) is uniformly integrable, we
may find a function h ∈ L

1(µ) such that a sequence |∂xgtn |2/η(tn) weakly converges to
h in L

1(µ). This implies that p |∂xgtn |2/η(tn) converges to p h = ν in D′(R), the set of
Schwartz distributions. Notice that ν ∈ L

1(R) and satisfies
∫

ν(x)dx = 4.
Of course we may replace f by Pεf for any ε ≥ 0 up to an error term going to 0. Thanks

to (hypo-)ellipticity we know that Pεf is C∞, hence we may and will assume that f is
C∞, so that gt is C

∞ too.
Accordingly the derivatives

∂x(p |∂xgtn |2/η(tn)) =
p ∂xgtn
η(tn)

(

2 ∂2x2gtn + ∂x(log p) ∂xgtn
)

→ ∂xν

in D′(R). But

∂2x2gtn = Lgtn − ∂x(log p) ∂xgtn = f − Ptnf − ∂x(log p) ∂xgtn ,

so that

∂xν = lim
1

η(tn)

(

2 p ∂xgtn (f − Ptnf) − ∂xp (∂xgtn)
2
)

= − ∂x(log p) ν .

Indeed the first term in the limit goes to 0 in D′(R) since for a smooth ϕ with compact
support

∫

ϕ
1

η(tn)
2 p ∂xgtn (f − Ptnf) dx ≤ ‖ϕ‖∞

2

η(tn)
‖∂xgtn‖L2(µ)‖f − Ptnf‖L2(µ)

≤ ‖ϕ‖∞
4

√

η(tn)

∥

∥

∥

∥

∥

∂xgtn
√

η(tn)

∥

∥

∥

∥

∥

L2(µ)

‖f‖
L2(µ),

and we assumed that η goes to infinity, while for the second term we know that p |∂xgtn |2/η(tn)
converges to ν and that ∂xp is smooth.

Hence ν solves ∂xν = −∂x(log p) ν in D′(R), i.e. ν = c/p which is not in L
1(R) unless

c = 0 in which case
∫

ν dx 6= 4. Accordingly |∂xgt|2/η(t) cannot be uniformly integrable.
Hence, contrary to all the cases we have discussed before, anomalous rate of convergence

cannot be uniquely described by the behavior of the semigroup. We need to use pathwise
properties of the process. (This sentence may look strange since the semigroup uniquely
determines the process, but the important word here is “path”.)

In the situation of lemma 3.23 the good strategy is to use some cut-off of g as we did
in the previous section, which in a sense is generic for this situation.

8. Fluctuations out of equilibrium

In this section we shall mainly discuss the CLT and FCLT out of equilibrium. But
before, we shall show that in the strong mixing case (i.e. uniformly ergodic situation), the
(CLT) ensures the (FCLT).

Proposition 8.1 (From CLT to FCLT). Assume that the process is strongly mixing (i.e.
uniformly ergodic) and that Varµ(St) = th(t) for some slowly varying function h. If (CLT)
holds under Pµ with s2t = Varµ(St) = th(t) then (FCLT) holds with s2t = Varµ(St) = th(t).

Proof. Since h is slowly varying, Var(St/ε) ∼ th(1/ε)/ε as ε→ 0. For 0 ≤ s < t, define

S(s, t, ε) =

√

ε

h(1/ε)

∫ t/ε

s/ε
f(Xu) du.

To prove our statement it is thus enough to show that, for indices 0 ≤ s1 < t1 ≤ s2 <
t2 · · · < tN the joint law of (S(si, ti, ε))1≤i≤N converges to the law of a Gaussian vector
with appropriate diagonal covariance matrix. Up to an easy induction procedure, we shall
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only give the details for N = 2 and 0 = s1 < t1 = s = s2 < t2 = t. For 0 < s < t and
λ ∈ R define

V (ε, s, t, λ) = exp (i λ S(s, t, f, ε)) , H(x, s, t, ε) = Ex [V (ε, s, t, λ)] .

As usual we denote by H̄ the centered H − µ(H).
We only have to show that

lim
ε→0

Eµ[V (ε, 0, s, λ)V (ε, s, t, θ)] = es λ
2/2 e(t−s) θ2/2.

The main difficulty here is that t1 = s2 = s. We introduce an auxiliary time

sε = (s/ε)− (s/ε
1
4 ).

We then have

Eµ [V (ε, 0, s, λ)V (ε, s, t, θ)] =

= Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)V (ε, s(1− ε

3
4 ), s, λ)V (ε, s, t, θ)

]

= Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)V (ε, s, t, θ)

]

+

+Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)

(

V (ε, s(1 − ε
3
4 ), s, λ)− 1

)

V (ε, s, t, θ)
]

= Aε +Bε .

Now

Aε = Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)P

s/ε
3
4
H(Xsε , s, t, ε)

]

= µ(H(., s, t, ε))Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)

]

+

+Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)P

s/ε
3
4
H̄(Xsε , s, t, ε)

]

= µ(H(., s, t, ε))Eµ [V (ε, 0, s, λ)] +

+µ(H(., s, t, ε))Eµ

[(

V (ε, 0, s(1 − ε
3
4 ), λ) − V (ε, 0, s, λ)

)]

+

+Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)P

s/ε
3
4
H̄(Xsε , s, t, ε)

]

= A1,ε +A2,ε +A3,ε .

Note that

lim
ε→0

A1,ε = es λ
2/2 e(t−s) θ2/2 ,

according to the CLT. For the two remaining terms we have

(1/
√
2) |A2,ε| ≤ Eµ

[

√

ε

h(1/ε)

∫ s/ε

s(1−ε
3
4 )/ε

|f |(Xu) du

]

≤
√

ε

h(1/ε)

s

ε
1
4

µ(|f |) ,

hence goes to 0 as ε→ 0. Similarly

|A3,ε| ≤ Eµ

[∣

∣

∣
P
s/ε

3
4
H̄(Xsε , s, t, ε)

∣

∣

∣

]

=

∫

∣

∣

∣
P
s/ε

3
4
H̄(., s, t, ε)

∣

∣

∣
dµ ≤ α(s/ε

3
4 ) ,

also goes to 0 as ε→ 0.
In the same way

(1/
√
2) |Bε| ≤ Eµ

[

√

ε

h(1/ε)

∫ s/ε

s(1−ε
3
4 )/ε

|f |(Xu) du

]

,

hence goes to 0 as ε→ 0 exactly as A2,ε. The proof is completed. �
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Corollary 8.2. If Varµ(St) = t h(t) for some slowly varying function h, we may replace
the CLT by the FCLT in all results of section 4.2 (in particular Theorem 4.18), in Theorem
6.14 and in Proposition 7.12.

8.1. About the law at time t.

Theorem 8.3. [DMT95] Thm 5.2.c, and [DFG09] Thm 3.10 and Thm 3.12.
Under the assumptions of Proposition 5.10, there exists a positive constant c such that

for all x,

‖Pt(x, ·) − µ‖TV ≤ cV (x)ψ(t),

where ‖·‖TV is the total variation distance and ψ (which goes to 0 at infinity) is defined

as follows: ψ(t) = 1/(ϕ ◦H−1
ϕ )(t) for Hϕ(t) =

∫ t
1 (1/ϕ(s))ds, if limu→+∞ ϕ′(u) = 0 and

ψ(t) = e−λt for a well chosen λ > 0 if ϕ is linear.
In particular for any probability measure ν such that V ∈ L

1(ν), if we denote by P ∗
t ν

the law of the process at time t starting with initial law ν,

lim
t→+∞

‖P ∗
t ν − µ‖TV = 0.

The second result is mentioned (in the case of a brownian motion with a drift) in
[CGG07] and proved for a stopped diffusion in dimension one in [CCL+09] Theorem 2.3.
The proof given there extends immediately to the uniformly elliptic case below thanks to
the standard Gaussian estimates for the density at time t of such a diffusion, details are
left to the reader

Theorem 8.4. In the diffusion situation (2.4), assume that the diffusion matrix a is
uniformly elliptic and bounded. Assume in addition that the invariant measure µ(dx) =

e−W (x) dx is reversible, and that 2Γ(W,W )(x) − LW (x) ≥ −c > −∞.
Then for all t > 0 and all x, Pt(x, dy) = r(t, x, y)µ(dy) with r(t, x, .) ∈ L

2(µ). Further-
more if eW ∈ L

1(ν), P ∗
t ν(dy) = r(t, ν, y)µ(dy) with r(t, ν, .) ∈ L

2(µ).
Consequently, if the diffusion is uniformly ergodic (or strongly mixing) and if eW ∈

L
1(ν), we have again

lim
t→+∞

‖P ∗
t ν − µ‖TV = 0.

8.2. Fluctuations out of equilibrium. Let ν be a given initial distribution. A direct
application of the Markov property shows that

Lemma 8.5. Assume that

lim
t→+∞

‖P ∗
t ν − µ‖TV = 0.

Let u(ε) > ε going to 0 as ε goes to 0. For any bounded H1, ...,Hk, denote H(Z.) =
⊗Hi(Zti). Then

lim
ε→0

∣

∣

∣

∣

∣

Eν

[

H

(

v(ε)

∫ ./ε

./u(ε)
f(Xs) ds

)]

− Eµ

[

H

(

v(ε)

∫ ./ε

./u(ε)
f(Xs) ds

)]∣

∣

∣

∣

∣

= 0 .

As a consequence we immediately obtain

Theorem 8.6. Let ν satisfying the assumptions of Theorem 8.4 or Theorem 8.3. If the
FCLT holds under Pµ (i.e. at equilibrium) with v(ε) → 0 as ε → 0 but v(ε) ≫ ε, then
it also holds under Pν (i.e out of equilibrium) provided one of the following additional
assumptions is satisfied

• ν is absolutely continuous w.r.t. µ
• ν = δx for µ almost all x,
• f is bounded.
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Proof. Choose u(ε) such that u(ε) → 0 as ε → 0, but with u(ε) ≫ v(ε). We may apply
the previous lemma and to conclude it is enough to show that

lim
ε→0

v(ε)

∫ t/u(ε)

0
f(Xs) ds

in Pν probability, which is immediate when f is bounded and follows from the almost sure
ergodic theorem in the two others cases. �

Several authors have tried to obtain the FCLT started from a point i.e. under Px for all
x, not only for µ almost all x, see [DL01a, DL03]. Here is a result in this direction:

Theorem 8.7. Assume that P ∗
t ν is absolutely continuous with respect to µ for some t > 0,

that the state space E is locally compact and that f is continuous. Then if the assumptions
of Theorem 8.4 or Theorem 8.3 are fulfilled, then (FCLT) holds under Pν as soon as it
holds under Pµ.

Proof. Note that, if P ∗
t ν is absolutely continuous w.r.t. µ, we may apply the previous

theorem to the additive functional
∫ ./ε
t f(Xs) ds, i.e. we may replace 0 by some fixed t. It

thus remains to control v(ε)
∫ t
0 f(Xs) ds for the same fixed t. But since f is continuous,

since X. is Pν almost surely continuous and E is locally compact,
∫ t
0 f(Xs) ds is Pν almost

surely bounded, hence goes to 0 when ε→ 0 once multiplied by v(ε). �

Corollary 8.8. If L given by (2.4) is elliptic or more generally hypoelliptic, the previous
theorem applies to all initial ν satisfying the assumptions of Theorem 8.4 or Theorem 8.3.
In particular it applies to ν = δx for all x.
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Bull. Soc. Math. France 66 (1938), 210–220. MR 1505091

[DR00] J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes., Ann.
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