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COHOMOLOGICAL INVARIANTS OF CENTRAL SIMPLE ALGEBRAS OF DEGREE 4

In this paper, we prove a result of Rost, which describes the cohomological invariants of central simple algebras of degree 4 with values in H * ( -, µ 2 ) when the base field contains a square root of -1.

Introduction

In [START_REF] Rost | La forme trace d'une algbre simple centrale de degré 4[END_REF], Rost, Serre and Tignol defined a cohomological invariant of central simple algebras of degree 4 with values in H 4 ( -, µ 2 ) when the base field contains a square root of -1. On the other hand, taking the Brauer class of the tensor square of a central simple algebra of degree 4 yields a cohomological invariant with values in H 2 ( -, µ 2 ). In this paper, we prove a result of Rost (unpublished), which asserts that these two invariants are essentially the only ones (see Section 4 for a more precise statement). This paper is organized as follows. After proving somme preliminary results in Section 1, we determine the cohomological invariants of multicyclic algebras in Section 2. Section 3 is devoted to the construction of a generic central simple algebra of degree 4. Finally, in Section 4, we prove that a cohomological invariant which vanishes on cyclic algebras and biquaternion algebras is identically zero (which another result due to Rost). As a corollary, we obtain a complete description of cohomological invariants of central simple algebras of degree 4.

The proofs of all the results of this paper rely heavily on the use of valuations and residue maps. We let the reader refer to [START_REF] Garibaldi | Cohomological invariants in Galois cohomology[END_REF] for the basic definitions and results on these topics.

We are grateful to Alexander Merkurjev for providing us his private lecture notes on Rost's theorem.

Preliminaries

Let F be a field of characteristic different from 2. We will denote by Fields F and Alg F the category of fields extensions of F and the category of commutative F -algebras respectively.

The category of sets will be denoted by Sets, and by Rings the category of of commutative rings.

For any field extension K/F , we will denote by H * (K) the cohomology ring of K with coefficients in µ 2 . We then get a functor H * : Fields F -→ Rings.

If K/F is a field extension, then H * (K) carries a natural structure of a H * (F )module, given by the external law

H * (F ) × H * (K) -→ H * (K) (a, ξ) -→ a•ξ = Res K/F (a) ∪ ξ.
We start with some results on the cohomology of rational extensions.

Let n ≥ 1 be an integer, let t 1 , . . . , t n be algebraically independent indeterminates over k, and let K n = k(t 1 , . . . , t n ). Let us denote by P n the set of subsets of {1, . . . , n}. If I = {i 1 , . . . , i r } ∈ P n , we set

(t I ) = (t i1 ) ∪ • • • ∪ (t ir ).
Notice that this definition does not depend on the numbering of the elements of I, since the cup-product in H * (K) is commutative.

If I = ∅, then (t I ) = 1 (and thus a•(t I ) = Res K/k (a) in this case).

Lemma 1.1. The cohomology classes (t I ), I ∈ P n are linearly independent over H * (F ).

Proof. We proceed by induction on n. Assume that n = 1, and let a 0 , a 1 ∈ H * (F ) such that a 0 •1+a 1 •(t 1 ) = 0. Taking residues with respect to the valuation υ t1 shows that a 1 = 0. Then multiplying by (-t 1 ) and taking residues shows that a 0 = 0.

Assume now that the result is proved for n ≥ 1, and let us prove it for n + 1 indeterminates. Let a I ∈ H * (F ), I ∈ P n+1 such that

I a I •(t I ) = 0. Then we have J a J •(t J ) + J a J∪{n+1} •(t J ) ∪ (t n+1 ) = 0,
where J describes P n . Reasoning as in the case n = 1, we get

J a J •(t J ) = J a J∪{n+1} •(t J ) = 0,
and by induction we have a J = a J∪{n+1} = 0 for all J ∈ P n , that is a I = 0 for all I ∈ P n+1 . This concludes the proof.

Proposition 1.2. Let ξ ∈ H * (K n ) be a cohomology class which is unramified at every discrete k-valuation υ = υ ti , i = 1, . . . , n. Then there exist unique cohomology classes

a I ∈ H * (F ) such that ξ = I a I •(t I ).
Proof. We prove it by induction on n. Assume first that n = 1, and let a 1 ∈ H * (F ) be the residue of ξ with respect to the t 1 -adic valuation. Then ξ -Res K/F (a 1 )∪(t 1 ) is unramified at every discrete F -valuation υ = υ t1 by assumption on ξ and because a 1 is constant. By choice of a 1 , it is also unramified at υ t1 , so ξ -Res K1/F (a 1 ) ∪ (t 1 ) is a constant class, so we may finally write

ξ = Res K1/F (a 0 ) + Res K1/F (a 1 ) ∪ (t 1 ) = a 0 •1 + a 1 •(t 1 ).
Now assume that the result is proved for n ≥ 1, and let ξ ∈ H * (K n+1 ) be a cohomology class which is unramified at every discrete F -valuation υ = υ ti , i = 1, . . . , n+1. In particular, it is unramified at every discrete K n -valuation υ = υ tn+1 .

By the case n = 1, there exist b

0 , b 1 ∈ H * (K n ) such that ξ = b 0 •1 + b 1 •(t n+1 ).
Let υ be a discrete F -valuation on K n , υ = υ ti , i = 1, . . . , n, and let w the Fvaluation on K n+1 extending υ such that w(t n+1 ) = 0. Since ξ is unramified at υ, taking residues shows that Res κ(w)/κ(υ) (r υ (b 1 )) = 0. Now κ(w) = κ(υ)(t n+1 ), so Res κ(w)/κ(υ) is injective and r υ (b 1 ) = 0. Moreover, ξ ∪ (-t n+1 ) is also unramified at υ, and reasoning as before shows that r υ (b 0 ) = 0. Hence b 0 and b 1 are unramified at any discrete F -valuation υ on K n , υ = υ ti , i = 1, . . . , n. Now use the induction hypothesis to conclude that ξ =

I a I •(t I ) for some a I ∈ H * (F ).
The uniqueness of the classes a I comes from the previous lemma. This completes the proof.

Definition 1.3. Let F : Fields F -→ Sets be a covariant functor. A cohomological invariant of F over F is a natural transformation F -→ H * of functors Fields F -→ Sets.
Cohomological invariants of F form an H * (F )-module, that we will denote by Inv(F, H * ).

We will need in the sequel the notion of a classifying pair for a functor F.

Definition 1.4. Let F : Alg F -→ Sets be a covariant functor. Let R be an F -algebra, and let a ∈ F(R). We say that the pair (R, a) is classifying for F, if the following conditions hold:

(1)The ring R is a noetherian domain;

(2)For every field extension L/F , and every a ∈ F(L), there exists a maximal ideal m of R and a morphism of F -algebras f : R -→ L such that ker(f ) ⊃ m and F(f ) maps a onto a .

The Specialization Theorem (cf. [2, Theorem 12.2]) then immediately gives:

Lemma 1.5. Let F : Alg F -→ Sets be a subfunctor of H 1 ( -, G), where G is an algebraic group over F . Assume that (R, a) is classifying for F, and let α, β ∈ Inv(F, H * ). Let K be the quotient field of R. If α(a K ) = β(a K ), then α = β.

Invariants of multicyclic algebras

For all integers r, n ≥ 1, we will denote by CSA n : Alg F -→ Sets the functor of isomorphism classes of Azumaya algebras algebras of rank n.

Let R be a commutative ring. Assume that n char(R) and that R contains a primitive n-th root of 1, that we will denote by ζ n . For all u, v ∈ R × , the R-algebra {u, v} n,R generated by two elements e and f subject to the relations

e n = u, f n = v, f e = ζ n ef
is an Azumaya R-algebra of rank n, called a symbol algebra.

We will denote by MS n,r the subfunctor of CSA n r of isomorphism classes of tensor products of r symbols algebras of degree n.

We will denote by 1 the constant cohomological invariant of CSA n (where CSA n is now viewed as a functor from Fields F to Sets). If n = 2m, then for every field extension K/F and every central simple K-algebra A of exponent dividing n, the class m[A] is killed by 2, and therefore defines a cohomology class of H 2 (K) via the usual isomorphism. This defines a cohomological invariant of CSA n , as well as a cohomological invariant of MS n,r for all r ≥ 1, that we will denote by f m in both cases. In particular, we have

f m ({a 1 , b 1 } n,L ⊗ F • • • ⊗ F {a r , b r } n,L ) = (a 1 ) ∪ (b 1 ) + . . . + (a r ) ∪ (b r )
for every field extension L/F and all a i , b i ∈ L × .

If A is a central simple F -algebra, the trace form of A is the quadratic form

q A : A -→ F a -→ Trd A (a 2 ).
Lemma 2.1. Assume that n char(F ) and that µ n ∈ F . Assume also that n = 2m.

For all u, v ∈ F × , the trace form of {u, v} n,F is Witt-equivalent to n, nu, nv, (-1) m nuv .

Proof. One may check that Trd A (e i f j ) = 0 if (i, j) = (0, 0). It easily follows that the subspaces

F •1, F •e m , F •f m , F •e m f m and F •e i f j ⊕ F •e n-i f m-j ,
where 0 ≤ i ≤ j ≤ m, (i, j) = (0, 0), (0, m), (m, 0), (m, m) are mutually orthogonal. Moreover, the 2m 2 -2 planes above are hyperbolic since e i f j is isotropic. The result then follows from the fact that the reduced traces of 1, e m , f m and e m f m are respectively n, nu, nv and (-1) m nuv. This concludes the proof.

Assume that n char(F ) and that µ n ∈ F . Moreover, assume that -1 ∈ F ×2 (this condition is automatically satisfied if n ≡ 0 [START_REF] Lewis | The Hasse invariant of the trace form of a central simple algebra[END_REF]).

If A = {u 1 , v 1 } n,F ⊗ F • • • ⊗ F {u r , v r } n,F
, it follows from the previous lemma that q A is Witt-equivalent to n r u 1 , v 1 , . . . , u r , v r . Therefore, q A ∈ I 2r F , and we have e 2r (q

A ) = (u 1 ) ∪ (v 1 ) ∪ • • • ∪ (u r ) ∪ (v r ).
This defines an element of Inv(MS n,r , H * ) that we denote by e 2r .

Proposition 2.2. Let F be a field of characteristic different from 2, and let n = 2m.

(1)Assume that n char(F ), and that

ζ n ∈ F, where ζ n is a primitive n th -root of 1. Then Inv(MS n,1 , H * ) is a free H * (F )-module with basis 1, f m . (2)Assume moreover that -1 ∈ F ×2 . Then for all r ≥ 2, Inv(MS n,r , H * ) is a free H * (F )-module with basis 1, f m , e 2r .
Proof. We first prove [START_REF] Albert | Structure of Algebras[END_REF]. Let α ∈ Inv(MS n,1 , H * ). Let t 1 , t 2 be two indeterminates over F , and let

K = F (t 1 , t 2 ). Set A = {t 1 , t 2 } n,K , and let υ = υ ti , i = 1, 2 be a discrete F -valuation. By assumption on υ, t 1 , t 2 ∈ O × υ ,

and we have

A {t 1 , t 2 } n,Oυ ⊗ Oυ K. It follows from [2, Theorem 11.7] that the class α K ({t 1 , t 2 } n,K ) is unramified at υ. By Proposition 1.2, there exist a 0 , a 1 , a 2 , a 3 ∈ H * (F ) such that α K ({t 1 , t 2 } n,K ) = a 0 •1 + a 1 •(t 1 ) + a 2 •(t 2 ) + a 3 •(t 1 ) ∪ (t 2 ).
Now let υ be the (t 1 -1)-adic valuation on F (t 2 ). Applying [START_REF] Garibaldi | Cohomological invariants in Galois cohomology[END_REF]Theorem 11.7] shows by specialization that

α K ({1, t 2 } n,F (t2) ) = a 0 •1 + a 2 •(t 2 ), that is α K (M n (F (t 2 ))) = a 0 •1 + a 2 •(t 2 ). Now M n (F (t 2 )
) is unramified at υ t2 , and therefore, so is α K (M n (F (t 2 ))). Taking residues then yields a 2 = 0. Similar arguments show that a 1 = 0, and thus

α K ({t 1 , t 2 } n,K ) = a 0 •1 + a 3 •(t 1 ) ∪ (t 2 ). Let R = F [t 1 , t -1 1 , t 2 , t -1 2 ]. It is clear that the pair (R, {t 1 , t 2 } n,R
) is classifying for MS n,1 . The previous equality shows that the invariants α and a 0 •1 + a 3 •f m coincide on a classifying pair, hence they are equal by Lemma 1.5.

Moreover, if a

0 •1 + a 3 •f m = 0, then applying this equality to {t 1 , t 2 } n,K shows that a 0 •1 + a 3 •(t 1 ) ∪ (t 2 )
. Lemma 1.1 then yields a 0 = a 3 = 0. This proves [START_REF] Albert | Structure of Algebras[END_REF].

Assume now that -1 ∈ F ×2 . The fact that 1, f m , e 2r are linearly independent over H * (F ) if r ≥ 2 easily comes from Lemma 1.1. Let us prove by induction on r that 1, f m and e 2r span Inv(MS n,r , H * ) for all r ≥ 1 and every base field F . For r = 1, this follows from [START_REF] Albert | Structure of Algebras[END_REF]. Assume that the result is proved for r ≥ 1, and let α ∈ Inv(MS n,r+1 , H * ). Let K/F be a field extension, and let A be a symbol algebra over K.

Any field extension L/K yields a field extension L/F . The maps

β L : B -→ MS n,r (L) H * (L) -→ α L (B ⊗ L A L )
fit together into a cohomological invariant of MS n,r . By induction, there exists

α i,K (A) ∈ H * (K) such that β = α 0,K (A)•1 + α 1,K (A)•f m + α 2,K (A)•e 2r , where α 2,K (A) = 0 if r = 1.
By linear independence of 1, f m , e 2r (resp. of 1, f m if r = 1), these classes are unique. It easily follows that α i,K (A) only depends on the isomorphism class of A. Moreover, it follows from the uniqueness of α i,K (A) and the fact that α is a cohomological invariant that the maps α i,K fit together into a cohomological invariant

α i ∈ Inv(MS n,1 , H * ).
By (1), we may write

α i = a i •1 + b i •f m , for some a i , b i ∈ H * (F ) (with a 2 = b 2 = 0 if r = 1). Taking K = F (u 1 , v 1 , . . . , u r+1 , v r+1 ), where u i , v i are indeterminates, B = {u 1 , v 1 } n,K ⊗ K • • • ⊗ K {u r , v r } n,K and A = {u r+1 , v r+1 } n,K , we get α K ({u 1 , v 1 } n,K ⊗ K • • • ⊗ K {u r+1 , v r+1 } n,K ) = a 0 •1 + b 0 •(u r+1 ) ∪ (v r+1 )+ (a 1 •1+b 1 •(u r+1 )∪(v r+1 ))∪ r i=1 (u i )∪(v i )+(a 2 •1+b 2 •(u r+1 )∪(v r+1 ))∪ r i=1 (u i )∪(v i ).
The F -automorphism of K which exchanges u 1 and u r+1 , v 1 and v r+1 , and leaves invariant the other indeterminates induces maps MS n,r+1 (K) -→ MS n,r+1 (K) and H * (K) -→ H * (K). Notice that the first one maps the isomorphism class of

{u 1 , v 1 } n,K ⊗ K • • • ⊗ K {u r+1 , v r+1 } n,K onto itself.
Since α commutes with induced maps, we then get

α K ({u 1 , v 1 } n,K ⊗ K • • • ⊗ K {u r+1 , v r+1 } n,K ) = a 0 •1 + b 0 •(u 1 ) ∪ (v 1 )+ (a 1 •1 + b 1 •(u 1 ) ∪ (v 1 )) ∪ r+1 i=2 (u i ) ∪ (v i ) + (a 2 •1 + b 2 •(u 1 ) ∪ (v 1 )) ∪ r+1 i=2 (u i ) ∪ (v i ).
Comparing with the previous equality and using Lemma 1.1, we get that b 0 = a 1 , and

b 1 = a 2 = 0. Therefore, {u 1 , v 1 } n,K ⊗ K • • • ⊗ K {u r+1 , v r+1 } n,K has same image by α and by a 0 •1 + a 1 •f m + b 2 •e 2(r+1) . Now let R = F [u i , u -1 i , v i , v -1 i , i = 1, . . . , r + 1]. The pair (R, {u 1 , v 1 } n,R ⊗ R • • • ⊗ R {u r+1 , v r+1 } n,R ) is classifying for MS n,r+1
. It follows from the previous considerations that the invariants α and

a 0 •1 + a 1 •f m + b 2 •e are equal.
This finishes the proof by induction.

Central simple algebras of degree 4

We start this section by giving a parametrization of central simple algebras of degree 4.

Let R be a commutative ring such that 2 ∈ R × . If a ∈ R × , we will denote by

R[ √ a] the étale quadratic R-algebra R[X]/(X 2 -a).
Let L be a biquadratic étale R-algebra, that is an R-algebra L generated by two elements α, β subject to the relations

α 2 = d, β 2 = d , αβ = βα,
for some d, d ∈ R × . Such an algebra will be denoted by

F [ √ d, √ d ].
The group G of automorphisms of the R-algebra

L = F [ √ d, √ d ] is isomorphic to Z/2Z × Z/2Z
, generated by the automorphisms σ and τ which are uniquely determined by the following relations:

σ(α) = α, σ(β) = -β, τ (α) = -α, τ (β) = β. Let a ∈ R[ √ d] × , b ∈ R[ √ d ] × , c ∈ R[ √ dd ] × ,

and set

n a = N R[ √ d]/R (a), n b = N R[ √ d ]/R (b), n c = N R[ √ dd ]/R (c). Notice that n a , n b , n c ∈ R × and that we have n a = aτ (a), n b = bσ(b), n c = cσ(c) = cτ (c).
Assume that n c = n a n b , and let 1, e σ , e τ , e στ be the canonical basis of the L-vector space M ap(G, L). We define a product law on Map(G, L) by imposing the relations By definition, the elements e ρ , ρ ∈ G are invertible with respect to this product law. Notice that the missing products e ρ e ρ , ρ, ρ ∈ G may be obtained using the relations above, so that the product law on Map(G, L) is completely determined. For example, we have e τ e στ = e -1 σ e σ e τ e στ = e -1 σ (e στ ) 2 = a -1 e σ c = a -1 σ(c)e σ .

One can check that we obtain an Azumaya R-algebra of rank 4, that we will denote by (a, b, c, L/R). Notice that if we set e = e σ and f = e τ , then we have (a, b, c, L/R) = L ⊕ Le ⊕ Lf ⊕ Lef , and

e 2 = a, f 2 = b, (ef ) 2 = c, eλ = σ(λ)e, f λ = τ (λ)f, for all λ ∈ L.
Notice for later use that we have f e = a -1 σ(cb -1 )ef , since

f e = e -1 (ef ) 2 f -1 = a -1 cb -1 f = a -1 σ(cb -1 )ef.
Lemma 3.1. Let F be a field of characteristic different from 2. Then every central simple F -algebra of degree 4 is isomorphic to some (a, b, c, L/F ). Moreover, one may assume that a, b, c / ∈ F × .

Proof.

Assume first that A is a division F -algebra. By a theorem of Albert (see [1, Theorem 11.9] for example), A contains a biquadratic étale F -algebra L. By Skolem-Noether's theorem, σ and τ extend to inner automorphisms Int(e) and Int(f ), for some e, f ∈ A × . This rewrites eλ = σ(λ)e, f λ = τ (λ)f, for all λ ∈ L. 

= f 2 e = f (f e) = f a -1 σ(cb -1 )ef = τ (a -1 σ(cb -1 ))f (ef ) = cτ (a) -1 σ(b) -1 (f e)f = cτ (a) -1 σ(b) -1 a -1 σ(cb -1 )(ef )f = cτ (a) -1 σ(b) -1 a -1 σ(c)σ(b) -1 eb = cτ (a) -1 σ(b) -1 σ(c)a -1 σ(b) -1 σ(b)e = n c n -1 a σ(b) -1 e. Since e is invertible, we get b = n c n -1 a σ(b) -1 , that is n c = n a n b .
The proof of the linear independence of 1, e, f, ef over L is straightforward and left to the reader. Hence A contains a subalgebra isomorphic to (a, b, c, L/F ), and therefore A (a, b, c, L/F ) since they have same dimension over F . Assume now that A is not a division algebra. Then A M 2 (Q), where Q = (d, d ) is a (not necessarily division) quaternion F -algebra.

Let L = F [ √ d, √ d ],
and let us consider the F -algebra (d, 1, d, L/F ), where α 2 = d, β 2 = d and βα = αβ. In particular, we have

e 2 = d, f 2 = 1, (ef ) 2 = d, eα = αe, eβ = -βe, f α = -αf, f β = βf.
Notice that we also have f e = dσ(d -1 )ef = ef .

Set i = e, j = βf, i = f, j = αe. It is straightforward to check that the F -algebra B generated by i and j is isomorphic to Q, and that the F -algebra B generated by i and j is isomorphic to (1, d 2 ) M 2 (F ). Moreover one may check B is contained is the centralizer of B. Since B is a central simple F -algebra, we get

(d, 1, 1, L/F ) B ⊗ F B Q ⊗ F M 2 (F ) M 2 (Q) A.
We now prove the last part. Write A (a, b, c, L/F ), for some biquadratic étale

F -algebra L = F [ √ d, √ d ]. Replacing f by (1 + α + β)f , one may assume that b / ∈ F × . Indeed, if b ∈ F × , we then have [(1 + α + β)f ] 2 = (1 + α + β)(1 -α + β)f 2 = b(1 + d -d + 2β) / ∈ F × .
Write a = a 0 + a 1 α. Notice that, for all s ∈ F × , we have

[(s + α + β)e] 2 = (s 2 + d -d + 2sα)(a 0 + a 1 α) = (a 0 (s 2 + d -d)2sa 1 d) + (a 1 (s 2 + d -d ) + 2a 0 s)α, and 
[(s + α + β)ef ] 2 = (s + α + β)(s -α -β)c = c(s 2 -d -d -2sαβ).
Thus, after replacing e by (s + α + β)e for a suitable s ∈ F × , one may also assume that a, c / ∈ F × . This concludes the proof.

Remark 3.2. For any biquadratic F -algebra L, we have M 4 (F ) (1, 1, 1, L/F ).

Indeed, the subalgebra B generated by e and β is isomorphic to (1, d ) M 2 (F ), and its centralizer C is the subalgebra generated by f and αe, which is isomorphic to (1, d 2 ) M 2 (F ). Since B is a central simple F -algebra, we have Proof. Recall from [START_REF] Lewis | The Hasse invariant of the trace form of a central simple algebra[END_REF] that for every central simple F -algebra of degree n, we have det(q A ) = det(q Mn(F ) ), w 2 (q A ) = w 2 (q Mn(F )

(1, 1, 1, L/F ) B ⊗ F C M 2 (F ) ⊗ F M 2 (F ) M 4 (F ).
) + n(n -1) 2 [A].
Since q A and q Mn(F ) have same dimension and determinant, the quadratic form q A ⊥ -q Mn(F ) lies in I 2 (F ), and the second equality may be rewritten as

c(q A ⊥ -q Mn(F ) ) + n(n -1) 2 [A],
where c denotes the Clifford invariant. In particular, if n = 4, we have

c(q A ⊥ -q Mn(F ) ) = 6[A] = 2[A].
Let us introduce some notation. Let E be an F -algebra. For u ∈ E × , we denote by q E,u the quadratic form q E,u :

E -→ F x -→ Tr E/F (ux 2 ).
If u = 1, we denote it by q E .

Let ρ be an F -automorphism of L satisfying ρ 2 = Id E . If u ∈ E × , ρ(u) = u, we denote by q E,ρ,u the quadratic form q E,ρ,u :

E -→ F x -→ Tr E/F (uxρ(x))
If u = 1, we denote it by q E,ρ .

Finally, if α, β ∈ F × , we set α, β = 1, -α ⊗ 1, -β . Now assume that A = (a, b, u, L/F ). It is easy to check that we have

Trd A (x + ye + zf + tef ) = Tr L/F (x)
, for all x, y, z, t, ∈ L.

This implies that the subspaces L, Le, Lf and Lef are mutually orthogonal. It follows from the previous observation that we have

q A q L ⊥ q L,σ,a ⊥ q L,τ,b ⊥ q L,στ,c .
Let ρ be an F -automorphism of L, and assume that ρ = Id L , so we may write

L ρ = F [ √ ∆], and L = L ρ [ √ ∆ ]
. Notice that uxρ(x) ∈ L ρ , so that we have Tr L/F (uxρ(x)) = 2Tr L ρ /F (uxρ(x)). Now if x = x 0 + x 1 α where α 2 = ∆ and x i ∈ L ρ , we have xρ(x) = x 2 0 -∆ x 2 1 , and therefore q L,ρ,u 2, -2∆ ⊗ q L ρ ,u .

Write u = u 0 + u 1 √ ∆, u i ∈ F , and set n u = u 2 0 -∆u 2 1 . The representative matrix of the previous quadratic form in the basis 1, √ ∆ is

2u 0 2u 1 ∆ 2u 1 ∆ 2u 0 ∆ .
If u 0 = 0, this 2-dimensional quadratic form is isotropic, hence hyperbolic. If u 0 = 0, this form then represents 2u 0 and has determinant 4n u ∆, so it is isomorphic to 2u 0 ⊗ 1, n u ∆ . We then get

q L,ρ,u u 0 ⊗ -n u ∆, ∆ ,
where this form has to be understood as the hyperbolic form of dimension 4 if u 0 = 0. Taking u = 1, we get q L,ρ -∆, ∆ ,

and thus q L,ρ,u ⊥ -q L,ρ 1, -∆ ⊗ u 0 , u 0 n u ∆, 1, ∆ . Since c(ϕ ⊗ ϕ ) = [(disc(ϕ), disc(ϕ ))] for every even-dimensional forms ϕ, ϕ , we get c(q L,ρ,u ⊥ -q L,ρ ) = [(∆ , n u )].
Remark 3.2 shows that q A ⊥ -q M4(F ) is Witt-equivalent to (q L,σ,a ⊥ -q L,σ ) ⊥ (q L,τ,b ⊥ -q L,τ ) ⊥ (q L,στ,c ⊥ -q L,στ ).

We then finally get

c(q A ⊥ -q M4(F ) ) = [(d , n a )] + [(d, n b )] + [(d, n c )].
Since the quaternion algebras (d, n a ) and (d , n b ) are split, we get

c(q A ⊥ -q M4(F ) ) = [(dd , n a )] + [(dd , n b )] + [(d, n c )] = [(dd , n a n b )] + [(d, n c )] = [(dd , n c )] + [(d, n c )] = [(d , n c )].
This concludes the proof.

We now define a classifying pair for CSA 4 . Let us consider the affine variety V ⊂ A 6 defined by the equation

x 2 -uy 2 -vz 2 + uvt 2 + uv = 0.
This is a rational variety, with coordinate ring

F [V] = F [X, Y, Z, T, U, V ]/(X 2 -U Y 2 -V Z 2 + U V T 2 + U V ).
Let us denote by x, y, z, t, u, v the images of X, Y, Z, T, U, V in F [V] respectively. Notice that u and v are algebraically independent over F . Indeed, we have a surjective F -algebra morphism

F [V] -→ F [V, Z] P (x, y, z, t, u, v) -→ P (0, i, Z, i, V Z 2 , V )
which maps u and v onto V Z 2 and V . Since V Z 2 and V are algebraically independent over F , so are u and v. Now let us consider the open subset U of V defined by the equations

u = 0, v = 0, t = 0, y 2 -vt 2 = 0, z 2 -u = 0.
Then U is also a rational variety, whose coordinate ring

F [U] is the localization of F [x, y, z, t, u, v] at u, v, t, y 2 -vt 2 and z 2 -u. Set R 0 = F [U]
. Then R 0 is a noetherian ring, whose quotient field F 0 is a rational extension of F . Moreover, u, v ∈ R 0 are algebraically independent over F . In particular, there exists a transcendence basis of F 0 /F containing u and v.

Set w = u(y 2 -vt 2 ) ∈ R × 0 and let L 0 = R 0 [ √ u, √ uw]
. We now define three elements a 0 , b 0 , c 0 ∈ L × 0 by

a 0 = z + √ u ∈ R 0 [ √ u] × , b 0 = y t + √ uw tu ∈ R 0 [ √ uw] × , c 0 = x + √ w ∈ R 0 [ √ w] × .
Let us check that n a0 n b0 = n c0 . We have We set

n a0 n b0 = (z 2 -u)(y 2 u 2 -uw) t 2 u 2 = (z 2 -u)(y 2 u -w) t 2 u .
x = γ 0 , y = µ 0 γ 1 λ 1 µ 1 , z = λ 0 , t = γ 1 λ 1 µ 1 , u = λ 2 1 d, v = µ 2 0 -µ 2 1 d .
Using the equality

(λ 2 0 -λ 2 1 d)(µ 2 0 -µ 2 1 d) = (γ 2 0 -γ 2 1 d
), and the fact that λ 1 , µ 1 , γ 1 ∈ F × , one may check that p = (x, y, z, t, u, v) ∈ U(E). Then evaluation at p yields an F -algebra morphism f : R 0 -→ E such that

A 0 ⊗ R0 E A.
Now it suffices to notice that ker(f ) = (x -x, y -y, z -z, t -t, u -u, v -v) is a maximal ideal to conclude.

Cohomological invariants of CSA 4

We now prove the following theorem, due to Rost (unpublished): Theorem 4.1 (Rost). Let F be a field of characteristic different from 2. Assume that -1 ∈ F ×2 . Then the map

Inv(CSA 4 , H * ) -→ Inv(MS 2,2 , H * ) × Inv(MS 4,1 , H * )
is injective. In other words, a cohomological invariant which is zero on biquaternion algebras and cyclic algebras is identically zero.

Proof. Let α ∈ Inv(CSA 4 , H * ). Let (R 0 , A 0 ) be the classifying pair of CSA 4 defined in the previous section, and let F 0 be the quotient field of R 0 . Finally, set

A 0 = A 0 ⊗ R0 F 0 = (z + √ u, y t + √ uw tu , x + √ w, F 0 [ √ u, √ uw]/F 0 ). Let υ be a discrete F -valuation on F 0 . If υ = υ π , with π = u, v, t, y 2 -vt 2 , z 2 -u, then u, v, w, t ∈ O × υ and z + √ u, y t + √ uw tu , x + √ w ∈ O υ [ √ u, √ uw] × .
We then get that

A 0 (z + √ u, y t + √ uw tu , x + √ w, O υ [ √ u, √ uw]/O υ ) ⊗ Oυ F 0 ,
and therefore α F0 (A 0 ) is unramified at υ by [START_REF] Garibaldi | Cohomological invariants in Galois cohomology[END_REF]Theorem 11.7] .

Assume now that υ = υ π , with π = t, z 2 -u or y 2 -tv 2 . Then u, v ∈ O × υ , and thus we have (u) ∪ (v) = j υ ((u) ∪ (v)), where j υ : H 2 (κ(υ)) → H 2 ((F 0 ) υ ) is the canonical injection. Now in all three cases, the quadratic form 1, -u, -v, uv is isotropic over κ(υ). It is clear if π = z 2 -u or y 2 -vt 2 , and follows from the equalities 0 = x 2 -uy 2 -vz 2 + uvt 2 + uv = x 2 -uy 2 -vz 2 + uv mod t, if π = t. Thus (u) ∪ (v) = 0, and therefore (u) ∪ (v) = 0 as well. It follows that the quaternion algebra (u, v) F0 is split over (F 0 ) υ . Hence, by Proposition 3.3, 2[A 0 ] splits over (F 0 ) υ . By a theorem of Albert, A 0 ⊗ F0 (F 0 ) υ is a biquaternion algebra. By assumption, we get

Res (F0)υ/F0 (α F0 (A 0 )) = α (F0)υ (A 0 ⊗ F0 (F 0 ) υ ) = 0.
Consequently, ∂ υ (α F0 (A 0 )) = 0 and α F0 (A 0 ) is once again unramified at υ. Finally, α F0 (A 0 ) is unramified at every discrete F -valuation υ = υ u , υ v . In particular, it is unramified at every F 1 -valuation, where F 1 = F (u, v). Since there exists a transcendence basis of F 0 /F containing u and v, the field extension F 0 /F 1 is rational, and we deduce that α F0 (A 0 ) = Res F0/F1 (β), for some β ∈ H * (F 1 ). Let υ 1 be a discrete F -valuation on F 0 , which different from the u-adic and the v-adic valuations. Let us show that β is unramified at υ 1 .

Let u, v, t 1 , t 2 , t 3 be a transcendence basis of F 0 /F , and let us extend υ 1 to a discrete F -valuation on F 0 by setting

υ F1 = υ 1 , υ(t i ) = 0, i = 1, 2, 3.
Then the corresponding ramification index is 1 and κ(υ 1 ) = κ(υ)(t 1 , t 2 , t 3 ), so that κ(υ)/κ(υ 1 ) is a rational extension. Since α F0 (A 0 ) is unramified at υ, we get

0 = ∂ υ (α F0 (A 0 )) = Res κ(υ)/κ(υ1) (∂ υ1 (β)).
Since κ(υ)/κ(υ 1 ) is rational, the map Res κ(υ)/κ(υ1) is injective, and we get that β is unramified at υ 1 . By Proposition 1.2, we have

β = a 0 •1 + a 1 •(u) + a 2 •(v) + a 3 •(u) ∪ (v), a i ∈ H * (F ). Hence we get α F0 (A 0 ) = a 0 •1 + a 1 •Res F0/F1 ((u)) + a 2 •Res F0/F1 ((v)) + a 3 •Res F0/F1 ((u) ∪ (v)).
Let us consider the (v -1)-adic valuation on F 0 , and let F 2 its residue field. Since A 0 is unramified at this valuation, one may specialize A 0 to a central simple

F 2 - algebra B. Then 2[A 0 ] specializes to 2[B]. But 2[A 0 ] = [(u, v)]
specializes to 0, and therefore B is a biquaternion algebra. Then α F2 (B) = 0 by assumption, and therefore a 0 •1 + a 1 •Res F2/F1 ((u)) = 0. In other words, Res F2/F1 (a 0 •1 + a 1 •(u)) = 0. Since F 1 ⊂ F 2 ⊂ F 0 , and F 0 /F 1 is rational, the map Res F2/F0 is injective and thus

a 0 •1 + a 1 •(u) = 0 in H * (F 1 ).
By Lemma 1.1, we get a 0 = a 1 = 0. Considering the u -1-adic valuation shows that a 2 = 0 in a similar way, so that α F0 (A 0 ) = a 3 •Res F0/F1 ((u) ∪ (v)). By Lemma 1.1, we get a 3 = 0, and thus α = 0. This concludes the proof.

Since Res

We now describe the cohomological invariants of CSA 4 . Let F be a field of characteristic different from 2. Assume that -1 ∈ F ×2 , and let K/F be a field extension. By [START_REF] Rost | La forme trace d'une algbre simple centrale de degré 4[END_REF], for every central simple K-algebra A of degree 4, there exists a 2-fold Pfister form q 2 and a 4-fold Pfister form q 4 such that q A ∼ q 2 + q 4 ∈ W (K).

Taking the cohomology class e 4 (q 4 ) ∈ H 4 (K) yields a cohomological invariant of Inv(CSA 4 , H * ). This invariant restricts to zero on cyclic algebras, and its restriction to MS 2,2 obviously coincide with the invariant e 4 defined in Section 2. Therefore, we still denote this invariant by e 4 .

Corollary 4.2. Let F be a field of characteristic different from 2. Assume that -1 ∈ F ×2 . Then Inv(CSA 4 , H * ) is a free H * (F )-module with basis 1, f 2 , e 4 .

Proof. We first prove that 1, f 2 , e 4 are linearly independent. Assume that we have a 0 •1 + a 1 •f 2 + a 2 •e 4 = 0 for some a i ∈ H * (F ).

Since the restriction of e 4 to MS 4,1 is zero, it follows that a 0 + a 1 •f 2 = 0 ∈ Inv(MS 4,1 , H * ). By Proposition 2.2 (1), we get a 0 = a 1 = 0. Thus, we get a 2 •e 4 = 0 ∈ Inv(CSA 4 , H * ). In particular, a 2 •e 4 = 0 ∈ Inv(MS 2,2 , H * ). By Proposition 2.2 (2), we get a 3 = 0.

We now prove that 1, f 2 , e 4 span Inv(CSA 4 , H * ) as an H * (F )-module. Let α ∈ Inv(CSA 4 , H * ). By Proposition 2.2, we have

α | MS 2,2 = a 0 •1 + a 1 •f 2 + a 2 •e 4 ,
for some a i ∈ H * (F ), and also

α | MS 4,1 = b 0 •1 + b 1 •f 2 ,
for some b i ∈ H * (F ). Since M 4 (F ) {1, 1, } 4,F

(1, 1) ⊗ F (1, 1), we may apply M 4 (F ) to both equalities to get a 0 = b 0 . Now we have M 2 ((u, v)) (1, 1) ⊗ F (u,v) (u, v) {u 2 , v 2 } 4,F (u,v) , and applying M 2 ((u, v)) to both equalities yields

a 1 •(u) ∪ (v) = b 1 •(u) ∪ (v) ∈ H * (F (u, v)).
It follows from Lemma 1.1 that a 1 = b 1 . Since e 4 is zero on MS 4,1 , we conclude that α and a 0 •1 + a 1 •f 2 + a 2 •e 4 coincide on MS 4,1 and MS 2,2 . By the previous theorem, we get α = a 0 •1 + a 1 •f 2 + a 2 •e 4 , and this concludes the proof.

e 2 σ

 2 = a, e 2 τ = b, e 2 στ = c, e σ e τ = e στ , e σ λ = σ(λ)e σ , e τ λ = τ (λ)e τ , for all λ ∈ L, and extending by distributivity.

  Since Int(e) | L = σ, we have Int(e 2 ) | L = (Int(e) | L ) 2 = σ 2 = Id L , so a = e 2 ∈ C A (L) = L (since L is a maximal subfield of A) . Since e ∈ A × , we have a ∈ L × . Similarly, b = f 2 ∈ L × and c = (ef ) 2 ∈ L × . Associativity of the product law of A implies that σ(a) = a, τ (b) = b, στ (c) = c, n c = n a n b . Indeed, we have e 3 = ee 2 = ea = σ(a)e = e 2 e = ae, and since e is invertible, we get σ(a) = a. Similar arguments show that τ (b) = b and στ (c) = c. We also have be

Proposition 3 . 3 .

 33 Let F be a field of characteristic different from 2, and let A = (a, b, c, L/F ). Then 2[A] = [(d , n c )] ∈ Br(F ).

Now y 2 Lemma 3 . 4 .

 234 u-w = uvt 2 , and thus n a0 n b0 = (z 2 -u)v. Now z 2 v-uv = x 2 -uy 2 +uvt 2 = x 2 -w = n c0 , and we are done. Hence we may consider the Azumaya algebraA 0 = (a 0 , b 0 , c 0 , L 0 /R 0 ). The pair (R 0 , A 0 ) is a classifying pair for CSA 4 .Proof. Let E/F be a field extension, and let A be a central simple E-algebra of degree 4. By Lemma 3.1, we have A (a, b, c, L/E), with a, b, c / ∈ E × . Write L = E[ √ d, √ d ], with generators α, β. Write a = λ 0 + λ 1 α, b = µ 0 + µ 1 β, c = γ 0 + γ 1 αβ.

  F0/F1 ((u) ∪ (v)) corresponds to [(u, v)] = 2[A 0 ] in Br 2 (F 0 ) via the usual isomorphism, the previous equality rewrites α F0 (A 0 ) = a 3 •f 2,F0 (A 0 ).By Lemma 1.5, we get α = a 3 •f 2 . By assumption on α, we then have 0 = α F1 ({u, v} 4,F1 ) = a 3 •(u) ∪ (v) ∈ H * (F 1 ).

Email: berhuy@ujf-grenoble.fr Address: Université Grenoble I, UFR de Mathématiques, Institut Fourier 100 rue des maths, BP 74, F-38402 St Martin d'Hères Cedex, France