N

N

Testing Programmable Logic Controllers from Finite
State Machines specification

Julien Provost, Jean-Marc Roussel, Jean-Marc Faure

» To cite this version:

Julien Provost, Jean-Marc Roussel, Jean-Marc Faure. Testing Programmable Logic Controllers from
Finite State Machines specification. 3rd International Workshop on Dependable Control of Discrete
Systems - DCDS 2011, Jun 2011, Saarbriicken, Germany. pp.0-0. hal-00585242

HAL Id: hal-00585242
https://hal.science/hal-00585242

Submitted on 29 Apr 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00585242
https://hal.archives-ouvertes.fr

Testing Programmable Logic Controllers
from Finite State Machines specification

Julien Provost, Jean-Marc Roussel and Jean-Marc Faure
LURPA, ENS Cachan
61 Avenue du Président Wilson, 94235 Cachan Cedex, France.
Email: {provost,roussel,faure } @lurpa.ens-cachan.fr

Abstract—This paper shows, on the basis of experiments, that
execution of conformance tests of programmable logic controllers
with minimum-length test sequences built from specifications in
FSMs may yield spurious results. A new approach to build test
sequences is then proposed to remove, or at least strongly lessen,
this issue.

I. INTRODUCTION

Conformance test is a model-based functional test technique
whose aim is to check whether an implementation behaves
correctly with respect to a specification. In this paper, the
implementation is a PLC (Programmable Logic Controller)
which executes cyclically a control algorithm and it will be
assumed that the specification is described in the form of a
Finite State Machine (FSM) with inputs and outputs. Industrial
specifications of logic control are obviously not described as
FSMs but it has been shown [1] that any specification in the
IEC 60848 standardized language [2] can be translated into
this formalism. Moreover, the approach proposed in the pre-
vious reference can be applied to other industrial specification
languages; the assumption on the specification model is then
quite realistic.

Generally speaking, conformance test comprises two phases
(Fig. 1):

o Construction of a test sequence from the specification

model.

o Execution of this sequence on the implementation to

obtain a conformance verdict.

Many significant results have been obtained in the domain
of construction of test sequences from FSMs; the interested
reader is referred to [3] for a good synthesis. Execution of
a test sequence is not so widely addressed in the literature;
contributing to fill this gap is the overall objective of this paper
which is based on experimental results obtained with a specific
test-bench for PLCs.

Construction of a test sequence requires a test objective and
an optimization criterion be previously defined. In the sequel
of this paper, the objective is to fire at least once each transition
of the FSM; the coverage rate of transitions is then equal to
100%, what is mandatory for critical systems. The usual opti-
mization criterion of the test sequence is minimum-length, to
limit the duration of the execution. The first contribution of this
paper is to show, on the basis of experiments, that a sequence
built with this criterion (minimum-length test sequence) may

lead to spurious results, however: implementation errors may
be not detected while correct controllers may be declared non-
conform.

A detailed analysis of these experimental results has permit-
ted to pinpoint the origin of these issues: synchronous events
issued from the test-bench may be interpreted as asynchronous
by the controller under test; hence, the input sequence used by
the PLC to compute its outputs is not really that defined during
test sequence construction. This can be avoided by using a SIC
(Single Input Change) test sequence, in which the value of only
one input can change at one and the same time; synchronous
input values changes are then not possible. Nevertheless, it is
not always possible, with the test objective selected, to build
such a sequence from an FSM, as explained in [4]. To limit
the error risk during test execution in this case, the second
contribution of this work is a method to construct a sequence,
termed maximum consecutive SIC (mc-SIC) sequence, that
comprises a set of consecutive SIC test steps to explore entirely
the SIC-testable part of the FSM.

The outline of this paper is the following. The next section
is a brief reminder on conformance test of FSMs. Section III
describes the experiments which were performed by using
a minimum-length test sequence and discusses the results
obtained. Construction of a me-SIC test sequence is detailed in
section I'V; the minimum-length and mc-SIC test sequences are
then compared. Last, prospects for other strategies to construct
test sequences that limit the risk of spurious results during test
execution are sketched in the last section.

a

Finite State Pre-established : Implementation
Machine Test Sequence Under Test

Iy : " Iy
alp O —,---0l 5 -fC0o,u
bhnm,-- L-non v
c | .] 0 w

Input sequence | 1 | [Observed
U“ F’LL;,) outplut sequence
vinmon :
W :

00 Cpi-mmmmmmm =

Expected i

output sequence | Verdict
................................

b

Fig. 1. Test sequence construction (a) and execution (b)

II. BACKGROUND
A. PLCs behavior specification with FSMs

Among the numerous formalisms developed to describe the
behavior of discrete event systems (DES), finite state machines
(FSMs) with inputs/outputs, e.g. Mealy machines, are well
suited to formal specification of PLCs that receive and send
logic data from/to the plant. This formalism cannot be used
by control engineers obviously, but it is possible to translate
models in industrial standardized languages in this kind of
formal models, as presented in [1].

The contributions of this work will be illustrated with a
simple example: a logic controller with 3 logic inputs (a,
b and c¢), and 3 logic outputs (U, V and W) (Fig. 2). The
specification of this controller is given figure 3. The input and
output alphabets of this FSM are respectively the controller
inputs valuations (vy) and outputs valuations (vo) (Table I).
As the state space comprises 5 states (s1 = Sy initial state,
Sa2, S3, S4 and ss), the transition and output functions d(s, vy)
and \(s,vr) of the FSM are defined for 40 (5 - 23) couples
(s,vr). A couple (vr,vp) is associated to each transition
of the machine; the first element of this couple represents
the inputs valuation which provokes the transition from the
source state, the second element the outputs valuation emitted
when this transition is fired. The target state s; reached when
firing, from a source state s; a transition labeled vy /v is
defined through the transition function (s; = 6(ss,vy)), while
the emitted outputs valuation is defined through the output
function (vo = A(ss,vr)). In this example, the specification
is complete (the transition function is completely defined),
minimal (there are no equivalent states) and every state is
reachable.

a —> — U
Logic
b Controller v
C —> — W
Fig. 2. Inputs/Outputs of the controller

Input alphabet Output alphabet

10 %1 12 13 14 15 16 I7 0p 01 02 03 04 O5 06 OF
al0 1 01 01 0 1|U|O T 01 0 1 0 1
b0 01 1 001 1[V|OOT1 1 00 1 1

oo0o0OT1T1TT1T1T|WIOOUOUOT1T 111

TABLE I
CORRESPONDENCE INPUTS AND OUTPUTS VALUATIONS / FSM
ALPHABETS

B. Finite State Machine conformance test principle

This section recalls briefly the principle of the conformance
test of FSM; the reader is referred to [3] for further details.

The problem of conformance test of FSM can be described
as follows: Let S be a known machine (the specification) and
I an unknown machine (the implementation under test) which
can be only observed through its inputs and outputs, determine

i3/00 i5/00

i7/00 io/Ol iz/Ol

i7/00

i2/04 Z'3/04 ’L’4/02 i5/02

74'6/01

i3/00 i5/00

i7/()g i0/01 ig/()l
is/o1 ig/o1
Fig. 3. Graphical representation of the FSM

by a test that includes a finite sequence of inputs and expected
outputs whether I is equivalent to S or not.

In order to solve this problem, it is generally assumed
that the specification is minimal and strongly connected (each
state is reachable, immediately or not, from any other state).
Then, the equivalence between an implementation / and a
specification S consists in verifying that none of the following
errors happens during the test of I:

o Output error: sg being the active state, when the input ¢
occurs, I produces the output o’ instead of the expected
output o.

o Transfer error: s, being the active state, when the input
i occurs, the transition labeled /o is fired but the arrival
state is s} instead of s;.

The test sequence is constructed from S and must permit to
detect these two kinds of errors, for each state and each tran-
sition. Hence, each elementary test corresponds to a transition

Ss £> s¢ of S and is defined as follows:

1) Go to s, (synchronization).
2) Apply input ¢ and check whether the emitted output is o.
3) Check whether the arrival state is s; (identification).

C. Minimum-length test sequence construction

The construction of a test sequence, using the transition tour
method [5], can be automated to obtain a minimum-length test
sequence. This optimization problem is a particular solution of
a well-known problem in graph theory: the Chinese Postman
Problem [6]. The general formulation of this problem is the
following: Find a minimum-length closed walk that traverses
at least once each edge (or arc) of the graph that describes
the structure of the FSM. As this graph is directed, but not
weighted, the optimization problem is simplified.

For the example given figure 3 this sequence contains 40
test steps (Table II) and fulfills the test objective (coverage
rate of the transitions equals 100%). In practice, each elemen-
tary test permits to test sequentially two arcs of the FSM:
(ss,v1,8¢,v0) and (s, vy, S¢,v0). This is possible because
the inputs of the PLC under test can be scanned several times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Ssi| S1 S2 83 82 82 S4 S3 S2 S4 S3 S2 S4 S4 S4 S1 S2 S4

Main
module

Secondary
modules

Remote 1/0 module

Computer

St:| S2 S3 S2 S S4 S3 S2 S4 S3 S2 S4 S4 S4 S1 S2 S4 S1 Step In-E_Out- 00wt Verdict
|1 01010100 101071101 : —
/0 1 0 0 1 1 O 1 O O 1 0 O 1 O 1 O ! ‘
¢ |0 1.0 0 01 00 1 0 00 1 0 0 1 ot 7.7 ok °
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 .
S1 S2 S5 S3 S2 S5 S3 S2 S5 S5 S5 S1 S Sy S1 S3 S2
So S5 S3 S S5 S3 S2 S5 S S5 S1 S2 S5 S1 S3 S2 S|
1 10 1 0 0 1 O 1 O 1 1 O 1 O 1 1 Ethernet network
0 1 001 000GO0T1O0O0TLT1 01 (Modbus TCPIIP) e to wife
o1 1. 01 0 0O 1 0 O 1 0O 1 0 1 0 1 Test bench connection Controller under test: PLC
35 36 37 38 39 40
S1 83 S1 83 S1 83 Fig. 4. Experimental device
S3 S1 S3 S1 S3 S1
0O 1 0 1 0 1
o 1 1 0 0 1
1 1.0 1 0 0])
o comparing these values to the expected ones and deliver-
TABLE II

INPUTS VALUATIONS FOR THE MINIMUM-LENGTH TEST SEQUENCE

during one test step if the duration of the step is greater than
several PLC scanning cycles.

III. EXPERIMENTATION

This section focuses on execution of the conformance
test of a PLC from a minimum-length test sequence. The
experimental conditions are first given. As spurious test results
may be obtained, an explanation is then proposed and verified
by complementary experiments. The last sub-section provides
some guidelines for conformance test from FSM.

A. Experimental conditions

The test-bench used in this work is built from a remote
input/output module (RIOM) with 16 logic inputs and 16 logic
outputs that can be remotely set/reset from a computer via a
Modbus TCP/IP network (Fig. 4). Each output of this RIOM
is connected upstream from an input of the logic controller
under test, while each of its inputs is connected downstream
from an output of this controller. This open solution provides
high flexibility at a very low cost.

A modular PLC (Phoenix Contact ILC 170 ETH 2TX)
was selected for these experiments. I/O scanning can be
cyclic or periodic and the programming environment complies
with the IEC 61131-3 standard [7]. The control algorithm is
implemented in the form of a Structured Text code obtained
automatically from the specification according to the method
proposed in [8]. This solution allows either to generate an a
priori correct code or to artificially introduce implementation
errors. Once programmed, the controller is disconnected from
its programming environment for the entire test execution.

Once the controller initialized, test execution consists, for
each step of the test sequence, in:

« sending to the controller the input signals that correspond
to this step;

o waiting for outputs stabilization;

o reading the values of the output signals emitted by the
controller under test;

ing a verdict;

« recording the results.

It matters to underline that the test-bench cycle is not
synchronized with the PLC I/O scanning cycle so that the test
conditions be as close as possible to the operation conditions
of a closed-loop DES; the behavior of a plant is indeed not
synchronized with that of its controller.

B. Results and discussion

The first experiments with short test sequences were conclu-
sive. Unfortunately, erroneous detections of non-conformance,
which led to reject correct controllers, and non-detections
of non-conform controllers occurred during experiments with
longer test sequences. These issues appeared whatever the
PLC.

A detailed analysis of the results files showed that these
issues occurred always for test steps where several input values
were changed simultaneously by the test-bench, e.g. steps 2
or 3 of table II; test steps where only one input value was
changed never caused such issues. An explanation was then put
forward: synchronous input changes generated by the bench
may be seen as asynchronous by the controller (Fig. 5) because
all inputs are not read simultaneously. The input values used
by the implementation to compute its outputs are then different
from those planned.

Inputs change from

Possible interpretations by the PLC
the test bench

L L L

(0,0) then (1,1) (0,0) then (1,0)
then (1,1)

(0,0) then (1,1) (0,0) then (0,1)

then (1,1)

Fig. 5. Possible interpretations of synchronous changes of 2 inputs

C. Experimental verification

To verify this explanation, the following experiment has
been then carried out:

o The test-bench sends to the controller a set of 8 signals
that vary simultaneously and in an identical manner (from
0 to 1, then from 1 to 0) with a period far greater (more
than 10 times) than the maximal PLC cycle time. Hence,
the changes (rising and falling edges) of these 8 signals
are strictly synchronous.

o When the controller detects the first change of one of
its inputs, the current value of each input is copied on
the corresponding output (8 outputs are used, each one
associated to an input). Thus, the value of the output
vector is equal to the value of the input vector at the
moment when the first inputs change has been detected.

o The test-bench reads the emitted output values and
compares them with the expected values, which should
be identical to the input values sent to the controller
if no inputs reading error (synchronous changes seen
asynchronous) has occurred. A counter is incremented
when an error is detected, i.e. when the outputs vector
differs from the inputs one.

Table III gives the error rates according to the PLC operating
mode (cyclic or periodic I/O scanning) and the distribution
of the inputs on the PLC internal components (all inputs
connected on the main module, connected on the secondary
module, or distributed on both main and secondary modules).
These figures were obtained from series of 200,000 experi-
ments for each configuration and each distribution.

These results validate clearly the proposed explanation. As
the PLC scanning cycle is not synchronized with the test-
bench cycle, synchronous events issued from the bench may
be seen asynchronous. In the case of inputs distributed on
several modules (last two lines of table III), the errors rate
is strongly increased due to the communication between the
modules that induces extra delays.

The difficulty to implement theoretical results issued from
DES theory on real PLCs has already been underlined in [9]
when attempting to implement supervisors.

D. Guidelines for conformance test from FSM specifications

These experiments have clearly showed that using a
minimum-length test sequence obtained from an FSM to test
a PLC may yield spurious results. This approach relies indeed
on the implicit assumption that all inputs changes generated by
the test-bench are correctly detected by the controller under
test, even if several input values are simultaneous modified,
which is not always true. To overcome this issue, several
solutions can be imagined:

o synchronization of the test-bench with the controller

under test;

« test execution for the configurations of the controller that
lessen the error rate (slow periodic inputs scanning and
inputs distribution on a single module);

« multiple executions of the same test and statistical anal-
ysis of results;

e construction of a test sequence, termed Single Input
Change (SIC) test sequence, that does not include simul-
taneous changes of the input values.

The first solution requires additional communication be-
tween the test-bench and the controller be introduced and,
above all, does not represent the operation conditions of a real
closed-loop DES, as mentioned above. The second and third
solutions are not really suitable for controllers of highly critical
systems because they imply statistical analyses of results.
Hence, the last one shall be privileged and is discussed in
the next section.

Configuration Cvcli Periodic | Periodic
Distribution yeue 10ms 20ms

main module Change Oto 1 | 0.052 % | 0.022 % | 0.014 %
Change [to 0 | 1.597 % | 0.886 % | 0.455 %

secondary Change 0 to 1 | 0.073 % | 0.032 % | 0.013 %
module Change 1 to 0 | 2490 % | 1.059 % | 0.525 %
distributed on Change O to 1 | 30.05 % | 39.59 % | 1992 %
the two modules Change 1 to O | 37.62 % | 42.51 % | 21.66 %

TABLE III
ERROR RATES

IV. SIC-TESTABILITY AND
MC-SIC TEST SEQUENCE GENERATION

A. Formal definition of test sequences

During test execution, a test sequence is seen as an ordered
list of couples (inputs valuation, expected outputs valuation)
which represents its external view:

[(v?,voo), (v},vlo), s (v?,vg)] e (Vi xVo)* €))

These two valuations are not independent, however. The
outputs valuation is that associated to the transition which
goes from a source state s; to a target state s; for the inputs
valuation. Hence, an elementary conformance test step et is
defined by the following 4-tuple:

et = (85,01, 8t,00) €S X Vi x S x Vo
st = 0(8s,v1) 2)

where vo = A(ss, 1)

Thus, a test sequence is an ordered list of elementary test
steps, and a consistent test sequence 7S is a test sequence
such as the source state of the k" elementary test step is equal
to the target state of the (k — 1)*" step.

TS = [(807’0?,5(80,’0?),)\(SO,U?))7~-~ ,
(s, 07, 0(s",v7), A(s", vT))]
=4

|
Yk > 1,s* (sk_l,v’;_l) 3)

B. Properties of test sequences

A test sequence 7S may be:

P1: initializable, i.e. the source state of the first test step is
the initial state of the FSM, and the input valuation v‘I) is
such that this state is stable (the target and source states
are identical):

0
87 = SInit
“4)
{5(50, v9) = 0
P2: complete, i.e. there is at least one test step for each
element of the transition function:

V(s,vr) € (S x I), (s,v1,0(s,v1),A(s,v7)) €TS (5)

P3: based on a SIC test sequence.

To express formally this latter property, the SIC relation
between two inputs valuations must be first defined. The
definition below is based on the representation of an inputs
valuation by the subset of logic inputs that only contains the
inputs that are True (also noted 1) for this valuation. Thus,
two inputs valuations v; and v} satisfy a SIC relation iff!:

dim((vr\vy) U (v7\vr)) =1 (6)

For example, the inputs valuations used in steps 3 and 4
of the test sequence given table II satisfy a SIC relation since
dim(({a}\{}) U ({)\{a})) = dim({a} U{}) = 1

Unfortunately, any FSM does not always permit to construct
a test sequence that satisfies these three properties. Thus,
before considering the construction of a SIC test sequence,
the SIC-testability of the FSM — ability of this FSM to satisfy
the three properties previously pinpointed — must be checked.

C. Checking SIC-testability of an FSM

A detailed presentation of the algorithm to check whether
a specification is SIC-testable or not can be found in [4].
For room reasons, only its principles and an illustration
are presented in this paper. This algorithm is based on the
following two observations:

o An elementary test step (ss, vr, S, v0) is SIC-testable if

it can be included into an initializable SIC test sequence.
If the elementary test step (ss, vr, S¢,v0o) is SIC-testable,
the elementary test step (s, vr,S:,vo) is also SIC-
testable.

o If the elementary step (s, v1, ¢, vo) is SIC-testable, it is
always possible to add to the test sequence an elementary
step (S¢, V7, 0(8e,v7), A(se,v})) where vy and v} satisfy
a SIC relation.

On these bases, the set of elementary test steps which are
SIC-testable can be obtained by a fixed-point calculation on
the elementary test steps; this calculation begins with the set of
elementary steps which start from the initial state of the FSM
and satisfy d(srnit,vY) = srni. At the end of this iterative
calculation, the FSM is SIC-testable iff the final set contains
all elementary test steps that can be defined from its behavior
description; it is then possible to build a SIC and complete (and
also consistent and initializable) test sequence. Otherwise, this
final set defines the SIC-testable part of the FSM.

'dim(A) is the dimension of set A.
An input valuation can be represented either by a minterm or by the set of
input variables that are True (noted 1) for this valuation (see table IV).

-
Q
v 5 TS |o
= -~ = -~ -~ ~ ~
- Q) <) 3 3 3 S
~ — — — — — —~ -
s 8 5 g g 8 8 8 8
=] < © o o0 ~ 10 —
'S fS ‘S < ‘S ‘S S S
1 1 1 0, 0, 0, 1
o s s s @]
2, 3 3 2 2 1
S2 @ S5 S3 S4 S4 S1 S5 @
2, 1 1 1 2 2 2 3
v @R[[+ [=
4 5 4 3 2 3 4 3
o @[[[eofeo] s [« [@
4 3 4 5 4 3 2, 3
v @@ [« e

TABLE IV
TRANSITION FUNCTION AND SIC-TESTABLE PART CALCULATION

D. Illustration on the example

Table IV gives a tabular representation of the transition
function of the example. In this Huffman table [10], each cell
represents an elementary behavior (§(ss,v;) = s;), whose
source state sg, inputs valuation vy and target state s; are
respectively given by the corresponding line, column and
content of the cell.

Circled cells represent stable couples (s,vy), i.e. couples
(s,vr) such as d(s,v;) = s, and non-circled cells couples that
imply a change of the active state (§(ss,vr) = ¢ 7 Ss).

An initializable and complete test sequence starts from a
circled cell of the first line (s;,;; = s1) and covers all cells
of the table. To be consistent, the test sequence must be built
according to the following two rules:

R1: From circled cells, only horizontal changes of cells are
possible. Indeed, the inputs valuations of two successive
test steps can be different, but the source state of the
second step must be identical to the target state of the
first one.

From non-circled cells (source and target states of the
associated test step are different), only one vertical
change is possible. Indeed, these cells represent non-
stable couples (s, vr), the change of the active state leads
to the circled cell that represents (s, vr).

To build a SIC test sequence, rule R1 must be restricted:

R2:

R3: Since a SIC test sequence does not include simultaneous
changes of input values, an horizontal change must cor-
respond to a couple of inputs valuations which satisfy a
SIC relation.

Rule R3 implies that in the case of a controller with n logic
inputs, only n cells among (2" — 1) can be reached from a
circled cell.

Table IV also presents the result of the fixed point calcu-
lation for the example. The number % of the iteration during
which the test step was found SIC-testable is indicated at the
top-left corner of each cell. For example, the elementary test
step associated to the cell (s1, {a, b, c}) is obtained at iteration
0 (initialization). The test steps associated to cells (s1, {b, c})

and (ss, {b, c}) are obtained at iteration 1, since {a, b, c} and
{b, ¢} satisfy a SIC relation, and so on. Calculation stops at
the fifth iteration. The final set contains only 37 test steps; the
steps that do not belong to this set are represented by grayed
cells. Hence, the FSM is not SIC-testable; its SIC-testable part
is given by the cells which are not grayed.

E. Construction of the mc-SIC test sequence

When the FSM is not SIC-testable, a maximum consecutive
SIC (mc-SIC) test sequence must be built to limit the risk of
spurious results during test execution. This sequence is com-
posed of an initializable minimum-length SIC test sequence,
which is computed from the SIC-testable part, followed by a
minimum-length MIC test sequence, obtained from the non-
SIC-testable part. Both sequences start from and end on the
initial state of the FSM; there is no gap between the final state
of the SIC sequence and the initial state of the MIC sequence.

The construction of the SIC sequence is based on a directed
graph whose nodes represent all couples (s,v;) that can be
defined on the SIC-testable part. For a controller with n logic
inputs, the arcs between the nodes are defined as follows:

o only one arc starts from a node that corresponds to a
couple (s,vy) such as §(s,vy) # s; the target node of
this arc is the node that corresponds to ((s,vr),vr);

e n arcs start from a node that corresponds to a couple
(s,vr) such as (s, vr) = s; the target nodes of these arcs
correspond to couples (s, v}) such as vy and v} satisfy a
SIC relation.

The minimum-length SIC test sequence can then be ob-
tained by using the results of graph theory on a well-known
problem: the Traveling Salesman Problem [11]. The general
formulation of this problem is the following: Find a minimum-
length closed walk that traverses each node of the graph at
least once.

The inputs valuations for a mc-SIC test sequence of the
example are given Table V. This test sequence contains 45
SIC test steps, to test the 37 couples (s, vy) of the SIC-testable
part, and 5 MIC test steps, to test the 3 couples (s,vy) of
the non-SIC-testable part. Comparison to Table II shows that
the use of a mc-SIC test sequence instead of a MIC test
sequence increases the length of the test sequence (50 test
steps instead of 40) but strongly reduces the number of test
steps where synchronous changes of several inputs occur (only
3 couples (s, vy) are tested in these conditions with the mc-
SIC sequence, instead of 35 with the MIC sequence). Then,
the test execution on a PLC will last a bit longer, but the risk
of erroneous verdicts is widely lessened.

V. CONCLUSIONS AND PROSPECTS

The experiments presented in this paper have shown that
minimum-length is not always the right criterion to build a
test sequence for conformance test of PLCs; test execution
with such sequences may yield spurious results. SIC, if the
specification is SIC-testable, or mc-SIC test sequences must
be privileged to remove or lessen this risk and to improve the
confidence level in test results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ssi| S1 S2 S2 S4 S4 S3 S3 S2 S5 S1 S1 S3 S3 S2 S5 S5 S1

St:| S2 S2 S4 S4 S3 S3 S2 S5 S1 S1 S3 S3 S2 S5 S5 S1 S2
a:|1 0 0 O OO 151 1 1 1 001 1 1 11
b0 0 1 0 0O OO O 1 1 1 0O O0OO0OT1TO0
cc/0O 0O O O 1T O O 1 1 O 0 0 0O 1 0 0 O

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
S2 S5 S5 S5 S3 S1 S2 S4 S1 S3 S3 S1 S3 S3 S2 S4 S4

85 S5 S5 S3 S1 S2 S4 S1 S3 83 S1 S3 83 52 S4 S4 S1
1 1 0 11 1 1 o1 0 0 1 1 1 1
o0 0110111 00O0O0O0T1TO0O0
1 0 0 0 1 1 1.0 0 0 0 1

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

)
I
N
o
N

SO OW
OSO—=Oun
SO OoO®m
—_—OoOoOWun
—_—_—
SO ~un

TABLE V
INPUTS VALUATIONS FOR THE MC-SIC TEST SEQUENCE

On-going work focuses on construction of other kinds of
test sequences for non-SIC-testable specifications, e.g. test
sequences where the number of MIC test steps is minimized
according to the number of inputs changes in the steps, and on
construction of non error-prone test sequences for other test
objectives.

ACKNOWLEDGMENT

This work is funded by the French National Research
Agency (TESTEC project, Ref. TLOG 07-022)

REFERENCES

[1] J. Provost, J-M. Roussel, and J.-M. Faure, “Translating
Grafcet specifications into Mealy machines for conformance test
purposes,” Control Engineering Practice, 2010. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00547891

[2] IEC 60848, GRAFCET specification language for sequential function
charts. International Electrotechnical Commission, 2002, no. 2.

[3] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines - a survey,” in Proceedings of the IEEE, vol. 84, no. 8,
1996, pp. 1090-1123.

[4] J. Provost, J.-M. Roussel, and J.-M. Faure, “SIC-testability of sequential
logic controllers,” in Proceedings of 10th International Workshop on
Discrete Event Systems (WODES 2010), August 2010, pp. 203-208.
[Online]. Available: http://hal.archives-ouvertes.fr/hal-00512767

[5] S. Naito and M. Tsunoyama, “Fault detection for sequential machines by
transitions tours,” in Proceedings of the IEEE Fault Tolerant Computer
Symposium, 1981, pp. 238-243.

[6] K. Mei-Ko, “Graphic programming using odd or even points,” Chinese
Mathematics, vol. 1, pp. 273-277, 1962.

[7]1 IEC 61131-3, Programmable controllers - Part 3: Programming
languages. International Electrotechnical Commission, 1993.

[8] J. Machado, B. Denis, J.-J. Lesage, J.-M. Faure, and J. Ferreira
Da Silva, “Logic controllers dependability verification using a plant
model,” in Proceedings of the 3rd IFAC Workshop on Discrete-Event
System Design, DESDes’06, 2006, pp. 37-42. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00361815

[9] M. Fabian and A. Hellgren, “PLC-based implementation of supervisory

control for discrete event systems,” in Proceedings of the 37th IEEE

Conference on Decision and Control, 1998., vol. 3. IEEE, 1998, pp.

3305-3310.

D. Huffman, “The synthesis of sequential switching circuits,” Journal of

the Franklin Institute, vol. 257, no. 3, pp. 161 — 190, 1954.

G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale

traveling-salesman problem,” Journal of the Operations Research Society

of America, vol. 2, no. 4, pp. 393410, 1954.

(10]

(11]

