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Abstract

We consider a Fisher-KPP equation with density-dependent diffu-
sion and advection, arising from a chemotaxis-growth model. We study
its behavior as a small parameter, related to the thickness of a diffuse
interface, tends to zero. We analyze, for small times, the emergence of
transition layers induced by a balance between reaction and drift ef-
fects. Then we investigate the propagation of the layers. Convergence
to a free-boundary limit problem is proved and a sharp estimate of the
thickness of the layers is provided.

Key Words: density-dependent diffusion, Fisher-KPP equation, chemo-

taxis, drift effect, singular perturbation.2

1 Introduction

In this paper we consider a Fisher-KPP equation with density-dependent
diffusion and advection, namely

(P ε)





ut = ε∆(um)−∇ · (u∇vε) +
1

ε
u(1− u) in (0,∞) × Ω

∂(um)

∂ν
= 0 on (0,∞) × ∂Ω

u(0, x) = u0(x) in Ω ,

1 The first author is supported by the French Agence Nationale de la Recherche within
the project IDEE (ANR-2010-0112-01).

2AMS Subject Classifications: 35K65, 35B25, 35R35, 92D25.
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with ε > 0 a small parameter and vε(t, x) a smooth given function. Here Ω
is a smooth bounded domain in R

N (N ≥ 2), ν is the Euclidian unit normal
vector exterior to ∂Ω and m ≥ 2. We are concerned with the behavior of
the solutions uε(t, x) as ε → 0.

Assumption 1.1 (Initial data). Throughout this paper, we make the fol-
lowing assumptions on the initial data.

(i) Let Ω0 be a nonempty open bounded set with a smooth boundary and
such that Ω0 ⊂ Ω. Let ũ0 : Ω0 → R be C0 in Ω0 and C2 in Ω0, strictly
positive on Ω0 and such that ũ0(x) = 0 for all x ∈ ∂Ω0. Define the
map u0 : Ω → R by

u0(x) :=

{
ũ0(x) if x ∈ Ω0

0 if x ∈ Ω \Ω0 .

(ii) Ω0 is convex.

(iii) there exists δ > 0 such that, if n denotes the Euclidian unit normal
vector exterior to the “initial interface” Γ0 := ∂Ω0, then

∣∣∣∣
∂ũ0
∂n

(y)

∣∣∣∣ ≥ δ for all y ∈ Γ0 . (1.1)

Remark 1.2. Note that the comparison principle allows to relax the regular-
ity assumption on ũ0. See [2] for details.

Assumption 1.3 (Structure of vε). We assume that

vε(t, x) = v(t, x) + εvε1(t, x) , (1.2)

with v and vε1 smooth functions on [0,∞) × Ω. We assume that, for all
T > 0, there exists C > 0 such that, for all ε > 0 small enough, it holds that
‖vε1‖C1,2([0,T ]×Ω) ≤ C. Finally we assume

∂vε

∂ν
= 0 on (0,∞) × ∂Ω . (1.3)

Remark 1.4. In the sequel we smoothly extend v(t, x) in time and space on
the whole of R×R

N , as well as vε1(t, x) in space on [0,∞)× R
N . Moreover

since we are investigating local in time phenomena we will assume in the
sequel, without loss of generality, that the extensions v(t, x) and vε1(t, x)
vanish outside of a large time-space ball.

Problem (P ε) is a simpler version of a chemotaxis-growth system with
logistic nonlinearity, where vε(t, x) is not a given function but is coupled
to u either through the parabolic equation εvt = ∆v + u − γv or through
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the elliptic equation 0 = ∆v + u − γv, supplemented with the Neumann
boundary condition (1.3) (see e.g. [21]). Note that, in the case of linear dif-
fusion (corresponding to m = 1) and a bistable nonlinearity, the asymptotic
behavior of the corresponding system as ε → 0 has been studied using the
Green’s function associated to the homogeneous Neumann boundary value
problem on Ω for the operator −∆+ γ (see [8] and [1]) .

Motivation and biological background. Before describing our results,
let us briefly comment about the relevance of (P ε) in population dynamics
models. The evolution equation in Problem (P ε) combines logistic growth,
chemotaxis and degenerate diffusion. We recall below how these terms ap-
pear in mathematical models that attempt to capture remarkable biological
features.

Reaction diffusion equations with a logistic nonlinearity were introduced
in the pioneering works [12], [18]. The simplest equation reads

ut = ∆u+ u(1− u) ,

and has been widely used to model phenomena arising in population genetics
[12] or in biological invasions [22]. Its main mathematical property is to
sustain travelling wave solutions with a semi-infinite interval of admissible
wave speeds, with the minimal one having a crucial biological interpretation.

Chemotaxis, i.e. the tendency of biological individuals to direct their
movements according to certain chemicals in their environment, is induced
in (P ε) by the advection term −∇ · (u∇vε): the population, whose density
is u(t, x), has an oriented motion in the direction of a positive gradient
of the chemotactic substance, whose concentration is vε(t, x). The first
PDE model to describe such movements was proposed in [17] and involves
linear diffusion for u and a parabolic equation coupling v to u. The Keller-
Segel model has received considerable attention in mathematical literature,
particularly focusing on the finite-time blow-up of solutions (see [16] for a
recent review). This provides a mathematical tool to analyze aggregation
phenomena as observed in bacteria colonies. Chemotaxis systems involving
linear diffusion and a growth term, either logistic or bistable, have later been
considered in, e.g., [21], [8], [1] and [24] .

Variants of the Fisher-KPP equation involving a degenerate diffusion
have been proposed in order to take into account population density pres-
sure. Actually one can introduce density-dependent birth or death rates as
an attempt to control the size of a population. Nevertheless as shown in [13],
the introduction of a nonlinearity into the dispersal behavior of a species,
which behaves in an otherwise linear way, may lead, in an inhomogeneous
environment, to a similar regulatory effect. Moreover this assumption is
consistent with ecological observations as reported for instance in [9], where
it is shown that arctic ground squirrels migrate from densely populated areas
into sparsely populated areas, even when the latter is less favorable (due to
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reduced availability of burrow sites or exposure to intensive predation). For
such species, migration to avoid crowding, rather than random motion, is
the primary cause of dispersal. To describe such movements, the authors in
[22] and [13] use the directed motion model where individuals can only stay
put or move down the population gradient; this model yields the degenerate
equation

ut = ∆(u2) +G(x)u , (1.4)

in which the population regulates its size below the carrying capacity set
by the supply of nutrients. Later in [14] a larger class of equations with
degenerate diffusion and nonlinear reaction was considered, namely

ut = ∆(um) + f(u) , m ≥ 2 . (1.5)

Note that in the absence of f(u), equation (1.5) reduces to the so-called
porous medium equation

ut = ∆(um) , (1.6)

which has been extensively investigated in the literature. We refer to the
book [23] and the references therein. The main feature of this equation is
that it is degenerate at the points where u = 0. As a consequence, a loss of
regularity of solutions occurs and disturbances propagate with finite speed,
a property which has a relevant interpretation in a biological context (see
for instance [6]).

Formal asymptotic analysis. Problem (P ε) possesses a unique solution
uε(t, x) in a sense that is explained in Section 3. As ε → 0, the qualita-
tive behavior of this solution is the following. In the very early stage, the
nonlinear diffusion term ε∆(um) is negligible compared with the drift term
−∇u · ∇vε and the reaction term ε−1u(1 − u). Hence, in some sense, the
equation is well approximated by a coupling between the transport equation
ut +∇u · ∇vε = 0 and the ordinary differential equation ut = ε−1u(1 − u).
Therefore, as suggested by the analysis in [2], uε quickly approaches the
values 0 or 1, and an interface is formed between the regions {uε ≈ 0} and
{uε ≈ 1} (emergence of the layers). Note that, in this very early stage,
the balance of the transport equation and the ordinary differential equation
will generate an interface not exactly around Γ0 but in a slightly drifted
place. Once such an interface is developed, the diffusion term becomes large
near the interface, and comes to balance with the drift and the reaction
terms so that the interface starts to propagate, on a much slower time scale
(propagation of the front).

Our goal in this paper is to provide a rigorous analysis that supports
this formal approach and makes it more precise. To study the interfacial
behavior, we consider the asymptotic limit of (P ε) as ε → 0. Then the limit
solution will be a step function ũ(t, x) taking the value 1 on one side of a
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moving interface, and 0 on the other side. We show that this sharp interface,
which we will denote by Γt, obeys the law of motion

(P 0)





Vn = c∗ +
∂v

∂n
on Γt

Γt

∣∣
t=0

= Γ0 ,

where Vn is the normal velocity of Γt in the exterior direction, c∗ the minimal
speed of travelling waves solutions of a related degenerate one-dimensional
problem (see Section 5 for details) and n the outward normal vector on Γt.

Plan. The organization of this paper is as follows. We present our results in
Section 2. In Section 3, we briefly recall known results concerning the well-
posedness of Problem (P ε); in particular, it admits a comparison principle
so that the sub- and super-solutions method can be used to investigate
the behavior of the solutions uε. In Section 4, we prove a generation of
interface property for Problem (P ε). In Section 5 we investigate the motion
of interface. Finally, we prove our main result in Section 6.

2 Results and comments

The question of the convergence of Problem (P ε) to (P 0) has been addressed
in [11]. However, the author considers only a very restricted class of initial
data, namely those having a specific profile with well-developed transition
layers. In other words the generation of interface from arbitrary initial data
is not studied. In the present paper we study both the emergence and the
propagation of interface. Moreover we prove a sharp O(ε) estimate of the
thickness of the transition layers of the solutions uε.

The authors in [15] prove the convergence of the solutions of (P ε) with
arbitrary initial data with convex compact support to solutions of (P 0),
when there is no advection (i.e. vε ≡ 0). They provide an O(ε| ln ε|) estimate
of the thickness of the transition layers. Therefore, even in the particular
case vε ≡ 0, our O(ε) estimate was not known.

As mentioned in the introduction, the drift term and the reaction term
in (P ε) are of the same magnitude for small times. Therefore the emergence
of the layers, initiated by the ODE ut = ε−1u(1 − u), will occur in the

neighborhood of a slightly drifted initial interface Γε,drift
0 . To analyze such a

phenomenon we shall use the Lagrangian coordinates. Recall that we have
smoothly extended v(t, x) in time-space on the whole of R×R

N , with v ≡ 0
outside of a large time-space ball. Then, for (t0, x0) ∈ R × R

N , we denote
by ϕ(t0,x0) the solution, defined on R, of the Cauchy problem





dX

dt
(t) = ∇v (t,X(t)) ,

X(t0) = x0 .

(2.1)
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We denote by Φ the associated flow defined on R× R× R
N , that is

Φ(t1, t2, x3) := ϕ(t2,x3)(t1) . (2.2)

Recall that Γ0 = ∂Ω0 = ∂(Supp u0) is the initial interface. From t = 0 to

tε := ε| ln ε| (generation time) , (2.3)

we let each point on Γ0 evolve with the law (2.1) and then define a drifted

initial interface Γε,drift
0 by

Γε,drift
0 := {Φ(tε, 0, x) : x ∈ Γ0} . (2.4)

Next we consider the free boundary problem

(P 0
ε,drift)





Vn = c∗ +
∂v

∂n
on Γε,drift

t

Γε,drift
t

∣∣
t=0

= Γε,drift
0 .

Well-posedness of (P 0) and of (P 0
ε,drift). Using the level set formulation

(see, e.g., [5]), the motion law in Problem (P 0) can be rewritten as a first
order Hamilton-Jacobi equation with a convex Hamiltonian. This approach,
combined with the results in [19], has been used in [11] in order to prove the
following.

Theorem 2.1 ([11], Well-posedness of (P 0)). Let Ω0 ⊂⊂ Ω be a smooth
subdomain of Ω and let Γ0 = ∂Ω0 be the given smooth initial interface.
Then there exists Tmax(Γ0) > 0 such that Problem (P 0) has a unique smooth
solution on [0, T ] for any 0 < T < Tmax(Γ0). More precisely, there exists a
family of smooth subdomains (Ωt)t∈(0,T ] with Ωt ⊂⊂ Ω such that, denoting
Γt = ∂Ωt, Γ :=

⋃
0≤t≤T ({t}×Γt) is the unique solution to Problem (P 0) on

[0, T ].

Moreover, Tmax(Γ0) depends smoothly on Γ0. Therefore we can choose
ε0 > 0 small enough and T > 0 such that

0 < T < inf
0≤ε≤ε0

Tmax(Γε,drift
0 ) , (2.5)

which guarantees the existence of a unique smooth solution on [0, T ] to both
(P 0) and (P 0

ε,drift) for any 0 < ε ≤ ε0. We denote by Γε,drift =
⋃

0≤t≤T ({t}×

Γε,drift
t ) the smooth solution to (P 0

ε,drift) and by Ωε,drift
t the region enclosed by

Γε,drift
t . In the sequel we work on [0, T ], with T satisfying (2.5), and define

QT := (0, T ) × Ω.

Our main result, Theorem 2.2, contains generation, motion and thickness
of the transition layers properties. It asserts that: given an initial data u0,
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the solution uε quickly (at time tε = ε| ln ε|) becomes close to 1 or 0, except

in a small neighborhood of the drifted interface Γε,drift
tε , creating a steep

transition layer around Γε,drift
tε (generation of interface). The theorem then

states that the solution uε remains close to the step function associated with
(P 0

ε,drift) on the time interval [tε, T ] (motion of interface); in other words,
the motion of the transition layer is well approximated by the limit interface
equation (P 0

ε,drift). Moreover, the estimate (2.6) in Theorem 2.2 implies that,
once a transition layer is formed, its thickness remains within order O(ε) for
the rest of time.

Theorem 2.2 (Generation, motion and thickness of the layers). Let η ∈
(0, 1/2) be arbitrary. Then, there exists C > 0 such that, for all ε > 0 small
enough and all

tε = ε| ln ε| ≤ t ≤ T ,

we have

uε(t, x) ∈





[0, 1 + η] if x ∈ NCε(Γ
ε,drift
t )

[1− η, 1 + η] if x ∈ Ωε,drift
t \ NCε(Γ

ε,drift
t )

{0} if x ∈ (Ω \ Ωε,drift
t ) \ NCε(Γ

ε,drift
t ) ,

(2.6)

with Nr(Γ
ε,drift
t ) := {x : dist(x,Γε,drift

t ) < r} the tubular r-neighborhood of

Γε,drift
t .

Note that (2.6) shows that, for any 0 < a < 1, for all tε ≤ t ≤ T , the
a-level set

Lε
t(a) := {x : uε(t, x) = a}

lives in a tubular O(ε) neighborhood of the interface Γε,drift
t . In other words,

we provide a new O(ε) estimate of the thickness of the transition layers of
the solutions uε. Concerning the localization of the level sets Lε

t(a), it is
made with respect to a slightly drifted free boundary problem (P 0

ε,drift).

Nevertheless, since the solution of (P 0
ε,drift) on [0, T ] is continuous w.r.t. the

initial hypersurface Γε,drift
0 , we recover, as ε → 0, the original free boundary

problem (P 0) and obtain the expected result. More precisely, let us define
the step function ũ(t, x) by

ũ(t, x) :=

{
1 in Ωt

0 in Ω \ Ωt

for t ∈ (0, T ] , . (2.7)

As a consequence of Theorem 2.2, we obtain the following convergence result
which shows that ũ is the sharp interface limit of uε as ε → 0.

Corollary 2.3 (Convergence). As ε → 0, uε converges to ũ, defined in
(2.7), everywhere in

⋃
0<t≤T ({t} × Ωt) and

⋃
0<t≤T

(
{t} × (Ω \Ωt)

)
.
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3 Comparison principle, well-posedness for (P ε)

Since the diffusion term degenerates when u = 0 a loss of regularity of
solutions occurs. We define below a notion of weak solution for Problem
(P ε), which is very similar to the one proposed in [3] for the one dimensional
problem with homogeneous Dirichlet boundary conditions. Concerning the
initial data, we suppose here that u0 ∈ L∞(Ω) and u0 ≥ 0 a.e. Note that in
this section, and only in this section, we assume, for ease of notation, that
ε = 1 and that vε ≡ v; we then denote the associated Problem (P ε) by (P ).
In the sequel f(u) = u(1− u).

Definition 3.1. A function u : [0,∞) → L1(Ω) is a solution of Problem
(P ) if, for all T > 0,

(i) u ∈ C
(
[0,∞);L1(Ω)

)
∩ L∞(QT )

(ii) for all ϕ ∈ C2(QT ) such that ϕ ≥ 0 and
∂ϕ

∂ν
= 0 on ∂Ω, it holds that

∫

Ω
u(T )ϕ(T )−

∫ ∫

QT

(uϕt + um∆ϕ+ u∇v · ∇ϕ)

=

∫

Ω
u0ϕ(0) +

∫ ∫

QT

f(u)ϕ . (3.1)

A sub-solution (a super-solution) of Problem (P ) is a function satisfying (i)
and (ii) with equality replaced by ≤ (respectively ≥).

Theorem 3.2 (Existence and comparison principle). Let T > 0 be arbitrary.
The following properties hold.

(i) Let u− (u+) be a sub-solution (respectively a super-solution) with ini-
tial data u−0 (respectively u+0 ).

If u−0 ≤ u+0 a.e. then u− ≤ u+ in QT ;

(ii) Problem (P ) has a unique solution u on [0,∞) and

0 ≤ u ≤ max(1, ‖u0‖L∞(Ω)) in QT ; (3.2)

(iii) u ∈ C(QT ).

Since (1.3) holds, the proof of Theorem 3.2 is standard and follows the
same steps of that of [3, Theorem 5]. The continuity of u follows from [10].

The following lemma proved in [15], will be very useful when constructing
smooth sub- and super-solutions in later sections.
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Lemma 3.3 (Being sub- and super-solutions). Let u be a continuous non-
negative function in QT . Define

Ωsupp
t := {x ∈ Ω : u(t, x) > 0} Γsupp

t := ∂Ωsupp
t ,

for all t ∈ [0, T ]. Suppose the family Γsupp :=
⋃

0≤t≤T ({t} × Γsupp
t ) is suffi-

ciently smooth and let νsuppt be the outward normal vector on Γsupp
t . Suppose

moreover that

(i) ∇(um) is continuous in QT

(ii) Lε[u] := ut−∆(um)+∇·(u∇v)−f(u) = 0 in {(t, x) ∈ QT : u(t, x) >
0}

(iii)
∂(um)

∂νsuppt

= 0 on ∂Ωsupp
t , for all t ∈ [0, T ] .

Then u is a solution of Problem (P ). Similarly a function satisfying (i) and
(ii)—(iii) with equality replaced by ≤ (≥) is a sub-solution (respectively a
super-solution) of Problem (P ).

4 Emergence of the transition layers

In this section, we investigate the generation of interface which occurs very
quickly around Γε,drift

tε . We prove that, given a virtually arbitrary initial
datum u0, the solution uε of (P ε) quickly becomes close to 1 or 0 in most
part of Ω. More precisely — recalling that Φ(t1, t2, x3), defined in (2.2),
denotes the flow associated with the Cauchy problem (2.1)— the following
holds.

Theorem 4.1 (Emergence of the layers). Let η ∈ (0, 1/2) be arbitrary. Then
there exists M0 > 0 such that, for all ε > 0 small enough, the following holds
with tε = ε| ln ε|.

(i) for all x ∈ Ω, we have that

0 ≤ uε(tε, x) ≤ 1 + η ; (4.1)

(ii) for all x ∈ Ω, we have that

if u0(Φ(0, t
ε, x)) ≥ M0ε then uε(tε, x) ≥ 1− η ; (4.2)

(iii) for all x ∈ Ω, we have

if dist(Φ(0, tε, x),Ω0) ≥ M0ε then uε(tε, x) = 0 , (4.3)

where we recall that Ω0 = {x : u0(x) > 0} (see Assumption 1.1).

In order to prove the above theorem, we shall construct sub- and super-
solutions. As mentioned before, in this very early stage, we have to take
into account both the reaction and the drift terms. We start with some
preparations.
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4.1 A related ODE and the flow Φ

An ODE. The solution of the problem without diffusion nor advection,
namely ūt = ε−1 f(ū) supplemented with the condition ū(0, x) = u0(x), is
written in the form ū(t, x) = Y

(
t
ε , u0(x)

)
, where Y (τ, ξ) denotes the solu-

tion of the ordinary differential equation Yτ (τ, ξ) = f(Y (τ, ξ)) supplemented
with the initial condition Y (0, ξ) = ξ. Nevertheless, in order to take care of
the term −u∆vε, we need a slight modification of f .

Let f̃ be the smooth odd function that coincides with f(u) = u(1 − u)
on [0,∞): f̃ has exactly three zeros −1 < 0 < 1 and

f̃ ′(−1) = −1 < 0 , f̃ ′(0) = 1 > 0 , f̃ ′(1) = −1 < 0 , (4.4)

i.e. f̃ is of the bistable type. Next, we define

f̃δ(u) := f̃(u) + δ .

For |δ| small enough, this function is still of the bistable type: if δ0 is small
enough, then for any δ ∈ (−δ0, δ0), f̃δ has exactly three zeros α−(δ) < a(δ) <
α+(δ) and there exists a positive constant C such that

|α−(δ) + 1|+ |a(δ)| + |α+(δ)− 1| ≤ C|δ| , (4.5)

|µ(δ) − 1| ≤ C|δ| , (4.6)

where µ(δ) is the slope of f̃δ at the unstable zero, namely

µ(δ) := f̃ ′
δ(a(δ)) = f̃ ′(a(δ)) . (4.7)

Now for each δ ∈ (−δ0, δ0), we define Y (τ, ξ ; δ) as the solution of the
ordinary differential equation

{
Yτ (τ, ξ ; δ) = f̃δ(Y (τ, ξ ; δ)) for τ > 0

Y (0, ξ ; δ) = ξ ,
(4.8)

where ξ varies in (−C0, C0), with

C0 := ‖u0‖L∞(Ω) + 1 . (4.9)

We claim that Y (τ, ξ ; δ) has the following properties.

Lemma 4.2 (Behavior of Y ). There exist positive constants δ0 and C such
that the following holds for all (τ, ξ ; δ) ∈ (0,∞)× (−C0, C0)× (−δ0, δ0).

(i) If ξ > a(δ) then Y (τ, ξ ; δ) > a(δ)
If ξ < a(δ) then Y (τ, ξ ; δ) < a(δ)

(ii) |Y (τ, ξ ; δ)| ≤ C0
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(iii) 0 < Yξ(τ, ξ ; δ) ≤ Ceµ(δ)τ

(iv)

∣∣∣∣
Yξξ

Yξ
(τ, ξ ; δ)

∣∣∣∣ ≤ C(eµ(δ)τ − 1).

Properties (i) and (ii) are direct consequences of the bistable profile of
f̃δ. For proofs of (iii) and (iv) we refer to [1].

The flow Φ. Let us briefly recall well known facts concerning the flow
Φ(t1, t2, x3). By definition we have

∂Φ

∂t1
(t, t0, x0) = ∇v(t,Φ(t, t0, x0)) . (4.10)

Next, note that, by uniqueness,

Φ(t, t0,Φ(t0, t, x0)) = x0 ,

for all (t, t0, x0) ∈ R×R× R
N . Differentiating this identity with respect to

t0, we get

∂Φ

∂t2
(t, t0, x) +D3Φ(t, t0, x)

∂Φ

∂t1
(t0, t, x0) = 0RN ,

where x := Φ(t0, t, x0) and where D3Φ(t1, t2, x3) denotes the Jacobian ma-
trix of Φ w.r.t. the third variable. Hence, using (4.10) we infer that

∂Φ

∂t2
(t, t0, x) +D3Φ(t, t0, x)∇v(t0, x) = 0RN , (4.11)

which is of crucial importance for our analysis.

4.2 Proof of (4.1) and (4.2)

We use the notation z+ = max(z, 0). Our sub- and super-solutions are given
by

w±
ε (t, x) :=

[
Y

(
t

ε
, u0(Φ(0, t, x)) ± ε2C⋆(eµ(±εM)t/ε − 1) ;±εM

)]+
,

(4.12)
or equivalently by

w±
ε (t,Φ(t, 0, x)) :=

[
Y

(
t

ε
, u0(x)± ε2C⋆(eµ(±εM)t/ε − 1) ;±εM

)]+
.

(4.13)
Here Y (τ, ξ ; δ) is the solution of (4.8), µ(δ) the slope defined in (4.7),
Φ(t1, t2, x3) the flow defined in (2.2) and M is chosen such that, for all
ε > 0 small enough, M ≥ C0‖∆vε‖L∞(QT ), with C0 defined by (4.9).
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Lemma 4.3 (Sub- and super-solutions for small times). There exists C⋆ > 0
such that, for all ε > 0 small enough, (w−

ε , w
+
ε ) is a pair of sub- and super-

solutions for Problem (P ε), in the domain [0, tε]× Ω.

Before proving the lemma, we remark that w−
ε (0, x) = w+

ε (0, x) = u0(x).
Consequently, by the comparison principle, we have

w−
ε (t, x) ≤ uε(t, x) ≤ w+

ε (t, x) for all (t, x) ∈ [0, tε]× Ω . (4.14)

Proof. In order to prove that (w−
ε , w

+
ε ) is a pair of sub- and super-solutions

for Problem (P ε) — if C⋆ is appropriately chosen— we check the sufficient
conditions stated in Lemma 3.3.

On the one hand, concerning the sub-solution w−
ε , for (t, x) such that

x ∈ Ωsupp
t [w−

ε ] := {x : w−
ε (t, x) > 0} we have, at point (t, x),

∇(w−
ε )

m = (mY m−1Yξ)
( t

ε
, u0(Φ(0, t, x)) − ε2C⋆(eµ(−εM)t/ε − 1) ;

−εM
)
∇x(u0(Φ(0, t, x)) .

If (t, x) → (t0, x0) such that x0 ∈ Γsupp
t0

[w−
ε ] := ∂Ωsupp

t0
[w−

ε ] then the equality
above implies

lim
(t,x)→(t0,x0)

∇(w−
ε )

m(t, x) = 0RN ,

and conditions (i) and (iii) of Lemma 3.3 are checked for the sub-solution.
On the other hand, concerning the super-solution w+

ε , note that ξ :=
u0(Φ(0, t, x))+ ε2C⋆(eµ(εM)t/ε − 1) is positive. Therefore the cubic profile of
f̃δ shows that, for t > 0,

Ωsupp
t [w+

ε ] = Ω

Γsupp
t [w+

ε ] := ∂Ωsupp
t [w+

ε ] = ∂Ω .

Recall that u0 = 0 in a neighborhood V of ∂Ω; if x is sufficiently close to
∂Ω, Φ(0, t, x) lives in V for all t ∈ [0, tε] (with ε > 0 sufficiently small).
Therefore (4.12) shows that w+

ε is independent on x near ∂Ω and condition
(iii) of Lemma 3.3 for the super-solution is checked (and condition (i) is
obviously checked).

Then it remains to prove that

Lε[w−
ε ] := (w−

ε )t − ε∆(w−
ε )

m +∇ · (w−
ε ∇vε)−

1

ε
f(w−

ε ) ≤ 0 ,

in {(t, x) ∈ [0, tε] × Ω : w−
ε (t, x) > 0} and that Lε[w+

ε ] ≥ 0 in {(t, x) ∈
[0, tε] × Ω}. We will only prove the latter inequality since the proof of the
former is similar.

12



We compute

∂tw
+
ε =

1

ε
Yτ +

∂

∂t
[u0(Φ(0, t, x))] Yξ + εµ(εM)C⋆eµ(εM)t/εYξ

∇w+
ε = ∇x [u0(Φ(0, t, x))] Yξ

∇ [(w+
ε )

m] = ∇x [u0(Φ(0, t, x))] (Y
m)ξ

∆ [(w+
ε )

m] = |∇x [u0(Φ(0, t, x))] |
2(Y m)ξξ +∆x [u0(Φ(0, t, x))] (Y

m)ξ ,

where the function Y and its derivatives are taken at the point

(τ, ξ ; δ) := (t/ε, u0(Φ(0, t, x)) + ε2C⋆(eµ(εM)t/ε − 1) ; εM) .

Note that

∂

∂t
[u0(Φ(0, t, x))] = ∇u0(Φ(0, t, x)) ·

∂Φ

∂t2
(0, t, x) ,

and that

∇x [u0(Φ(0, t, x))] = (D3Φ(0, t, x))
T∇u0(Φ(0, t, x)) ,

with (D3Φ(t1, t2, x3))
T the transpose of the Jacobian matrix of Φ w.r.t. the

third variable.
Therefore, using f(w+

ε ) = f̃(w+
ε ) = f̃εM(Y ) − εM and the equation

Yτ = f̃εM(Y ), we infer that

Lε[w+
ε ] = E1 + E2 + εYξE3 ,

where

E1 = M + Y∆vε

E2 = ∇u0(Φ(0, t, x)) ·
(

∂Φ
∂t2

(0, t, x) +D3Φ(0, t, x)∇v(t, x)
)
Yξ

E3 = C⋆µ(εM) eµ(εM)t/ε + (D3Φ(0, t, x))
T∇u0(Φ(0, t, x)) · ∇vε1(t, x)

−∆x [u0(Φ(0, t, x))]
(Y m)ξ
Yξ

− |∇x [u0(Φ(0, t, x))] |
2 (Y m)ξξ

Yξ
.

We note that, for ε > 0 sufficiently small, δ = εM ∈ (−δ0, δ0) and that,
in the range 0 ≤ t ≤ tε = ε| ln ε|,

ξ = u0(Φ(0, t, x)) + ε2C⋆(eµ(εM)t/ε − 1) ∈ (−C0, C0) ,

so that estimates of Lemma 4.2 on Y (τ, ξ; δ) will apply.
Since we have chosen M ≥ C0‖∆vε‖L∞(QT ), E1 ≥ 0 holds. Moreover,

(4.11) implies E2 = 0. In the sequel we denote by C various positive con-
stants which may change from place to place but do not depend on ε. From

Lemma 4.2 (ii)—(iv) we see that
∣∣∣ (Y

m)ξ
Yξ

∣∣∣ = |mY m−1| ≤ C and that

∣∣∣∣
(Y m)ξξ

Yξ

∣∣∣∣ ≤ m(m− 1)|Y m−2Yξ|+mY m−1

∣∣∣∣
Yξξ

Yξ

∣∣∣∣ ≤ C + C(eµ(εM)t/ε − 1) ,
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since m ≥ 2. Hence

E3 ≥ (C⋆µ(εM)− C)eµ(εM)t/ε − C .

Since µ(εM) → 1 as ε → 0, by choosing C⋆ ≫ C we see that E3 ≥ 0 for all
ε > 0 small enough.

Recalling that Yξ > 0, we get Lε[w+
ε ] ≥ 0 and the lemma is proved.

We are now in the position to prove (4.1) and (4.2).

Proof. Let η ∈ (0, 1/2) be arbitrary. Then [1, Lemma 3.11] provides a
constant CY > 0 such that, for all ε > 0 small enough, for all ξ ∈ (−C0, C0),

Y (| ln ε|, ξ ;±εM) ≤ 1 + η ; (4.15)

if ξ ≥ CY ε then Y (| ln ε|, ξ ;±εM) ≥ 1− η . (4.16)

By setting t = tε = ε| ln ε| in (4.14), we obtain

Y
(
| ln ε|, u0(Φ(0, t

ε, x))− C⋆ε2eµ(−εM)| ln ε| + C⋆ε2 ;−εM
)+

≤ uε(tε, x)

≤ Y
(
| ln ε|, u0(Φ(0, t

ε, x)) + C⋆ε2eµ(εM)| ln ε| − C⋆ε2 ; εM
)+

. (4.17)

Therefore, the assertion (4.1) of Theorem 4.1 is a direct consequence of
(4.17) and (4.15). Next we prove (4.2). Note that in view of (4.6), we
have εeµ(−εM)| ln ε| → 1 as ε → 0. Therefore, for ε > 0 small enough (since
Yξ > 0),

uε(tε, x) ≥ Y

(
| ln ε|, u0(Φ(0, t

ε, x))−
3

2
C⋆ε+ C⋆ε2 ;−εM

)+

. (4.18)

Choose M0 ≫ 0 so that M0ε−
3
2C

⋆ε+C⋆ε2 ≥ max(CY ε, a(−εM)), with CY

as in (4.16). Then, for any x ∈ Ω such that u0(Φ(0, t
ε, x)) ≥ M0ε, we have

u0(Φ(0, t
ε, x))−

3

2
C⋆ε+ C⋆ε2 ≥ CY ε .

Combining this, (4.18) and (4.16), we see that

uε(tε, x) ≥ 1− η .

This completes the proof of (4.2).
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4.3 Proof of (4.3)

Let us recall that a finite speed of propagation property, as is (4.3), is proved
in [15]: the authors construct a super-solution using a related travelling wave
U of minimal speed, and they obtain an O(ε| ln ε|) estimate of the thickness
of the transition layers. We borrow some ideas from this paper but, in order
to obtain the improved O(ε) estimate, we again use the solution Y of the
ordinary differential equation (4.8).

Let zε be the solution of the Cauchy problem (recall that vε(t, x) has
been extended on [0,∞) × R

N in Remark 1.4)

(Qε)




zt = ε∆(zm)−∇ · (z∇vε) +

1

ε
f(z) in (0,∞) × R

N

z(0, x) = u0(x) in R
N .

Lemma 4.4 (Super-solutions for (Qε) for small times). Choose K ≥ 1 and
C⋆ > 0 appropriately. For all x0 ∈ ∂Ω0 = ∂Supp u0, denote by n0 the unit
outward normal vector to ∂Ω0 at x0. For t ≥ 0, x ∈ R

n, define the function

z+ε (t, x) :=

K

[
Y

(
t

ε
, −(Φ(0, t, x) − x0) · n0 + ε2C⋆(e

µ(εM)t/ε − 1) ; εM

)]+
.

Here Y (τ, ξ ; δ) is the solution of (4.8), µ(δ) the slope defined in (4.7),
Φ(t1, t2, x3) the flow defined in (2.2) and M is chosen such that, for ε > 0
small enough, M ≥ C0‖∆vε‖L∞(QT ). Then, for all ε > 0 small enough,

u0(x) ≤ z+ε (0, x) for all x ∈ R
N , (4.19)

and

Lε[z+ε ] := (z+ε )t − ε∆(z+ε )
m +∇ · (z+ε ∇vε)−

1

ε
f(z+ε ) ≥ 0 , (4.20)

in the domain [0, tε]× R
N .

Proof. Recall that Ω0 is convex. Therefore, in view of (1.1), we can choose
K ≥ 1 sufficiently large so that, for all x0 ∈ ∂Ω0 and all x ∈ Ω0,

u0(x) ≤ −K(x− x0) · n0 . (4.21)

We prove (4.19). If Φ(0, 0, x) = x /∈ Ω0 this is obvious since u0(x) = 0.
Let us now assume that Φ(0, 0, x) = x ∈ Ω0. Since Ω0 is convex, it lies on
one side of the tangent hyperplane at x0 so that (x − x0) · n0 < 0. Recall
that Y (0, ξ ; δ) = ξ so that z+ε (0, x) = −K(x − x0) · n0 and (4.19) follows
from (4.21).
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We now prove (4.20). As in the proof of Lemma 4.3, straightforward
computations combined with (4.8) and (4.11) yield

εLε[z+ε ] = Kf(Y )− f(KY ) + εK(M + Y∆vε)

+ε2KYξ

{
C⋆µ(εM) eµ(εM)t/ε −D3Φ(0, t, x)n0 · ∇vε1(t, x)

+∆x[Φ(0, t, x) · n0]K
m−1 (Y

m)ξ
Yξ

− |∇x[Φ(0, t, x) · n0]|
2Km−1 (Y

m)ξξ
Yξ

}
.

Note that Kf(Y ) − f(KY ) = K(K − 1)Y 2 ≥ 0. Then, by using similar
arguments to those in the proof of Lemma 4.3, we see that Lε[z+ε ] ≥ 0, if
C⋆ > 0 is sufficiently large.

We now prove (4.3).

Proof. We shall first prove that property (4.3) holds for zε the solution of the
Cauchy Problem (Qε). Recall that a(δ) is the unstable zero of f̃δ = f̃ + δ
so that a(εM) < 0. Moreover, in view of (4.5) and (4.6), we can choose
M0 > 0 large enough so that, for ε > 0 small enough,

−M0ε+C⋆εe
(µ(εM)−1)| ln ε| − C⋆ε

2 < a(εM) .

For x ∈ Ω such that dist(Φ(0, tε, x),Ω0) ≥ M0ε, we choose x0 ∈ ∂Ω0 such
that dist(Φ(0, tε, x),Ω0) = ‖Φ(0, tε, x)−x0‖ and define z+ε as in Lemma 4.4.
It follows from Lemma 4.4 and the comparison principle that, for all ε > 0
small enough, all (t, x) ∈ [0, tε]×R

N ,

0 ≤ zε(t, x) ≤ z+ε (t, x) . (4.22)

Since, for t = tε = ε| ln ε|,

− (Φ(0, tε, x)− x0) · n0 + ε2C⋆(e
µ(εM)tε/ε − 1)

= −‖Φ(0, tε, x)− x0‖+ C⋆εe
(µ(εM)−1)| ln ε| − C⋆ε

2

≤ −M0ε+ C⋆εe
(µ(εM)−1)| ln ε| − C⋆ε

2

< a(εM) ,

it follows from Lemma 4.2 (i) that

Y

(
tε

ε
, −(Φ(0, tε, x)− x0) · n0 + ε2C⋆(e

µ(εM)tε/ε − 1) ; εM

)
< a(εM) < 0 ,

and therefore z+ε (t
ε, x) = 0, which in turn implies zε(tε, x) = 0. Hence (4.3)

holds for zε the solution of (Qε).
Now, a straightforward modification of [15, Corollary 4.1] shows that

there exists T̃ > 0 such that, for all ε > 0 small enough,

uε(t, x) = zε(t, x) ,

for all (t, x) ∈ (0, T̃ )× Ω. This proves (4.3) for uε the solution of (P ε).
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5 The propagating front

The goal of this section is to construct efficient sub- and super-solutions that
control uε during the latter time range, when the motion of interface occurs.
We begin with some preparations.

5.1 Materials

In the linear diffusion case (m = 1), it is well-known that the equation
ut = ∆u+u(1−u) admits travelling wave solutions with some semi-infinite
interval of admissible wave speed. The same property holds for the nonlinear
diffusion case, namely equation ut = ∆(um)+u(1−u), m > 1. Nevertheless,
it turns out that the travelling wave with minimal speed c∗ > 0 is both
compactly supported from one side and sharp. In the following, U denotes
the unique solution of





(Um)′′(z) + c∗U ′(z) + U(z)(1 − U(z)) = 0 for all z ∈ R

U(−∞) = 1

U(z) > 0 for all z < 0

U(z) = 0 for all z ≥ 0 .

(5.1)

Lemma 5.1 (Behavior of U). For all z ∈ (−∞, 0) we have U ′(z) < 0. The
travelling wave U is smooth outside 0 and

U ′(0)





= 0 if 1 < m < 2

∈ (−∞, 0) if m = 2

= −∞ if m > 2 .

Moreover, there exist C > 0 and β > 0 such that the following properties
hold.

|(Um)′(z)| ≤ CU(z) for all z ∈ R , (5.2)

0 < 1− U(z) ≤ Ce−β|z| for all z ≤ 0 , (5.3)

|zU ′(z)| ≤ CU(z) for all z ≤ −1 . (5.4)

For more details and proofs we refer the reader to [4], [7], [15], as well
as to [20] for related results.

Another ingredient is a “cut-off signed distance function” dε(t, x) which
is defined as follows. Let d̃ε = d̃ ε,drift be the signed distance function to
Γε,drift, the smooth solution of the free boundary problem (P 0

ε,drift), namely

d̃ε(t, x) :=

{
−dist(x,Γε,drift

t ) for x ∈ Ωε,drift
t

dist(x,Γε,drift
t ) for x ∈ Ω \Ωε,drift

t ,
(5.5)
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where dist(x,Γε,drift
t ) is the distance from x to the hypersurface Γε,drift

t . We

remark that d̃ε = 0 on Γε,drift and that |∇d̃ε| = 1 in a neighborhood of Γε,drift:
there exists d0 > 0 such that, for all ε > 0 small enough, |∇d̃ε(t, x)| = 1
if |d̃ε(t, x)| < 2d0. By reducing d0 if necessary we can assume that d̃ε is
smooth in {(t, x) ∈ [0, T ]× Ω : |d̃ε(t, x)| < 3d0} .

Next, let ζ(s) be a smooth increasing function on R such that

ζ(s) =





s if |s| ≤ d0

−2d0 if s ≤ −2d0

2d0 if s ≥ 2d0 .

We then define the cut-off signed distance function dε = d ε,drift by

dε(t, x) := ζ
(
d̃ε(t, x)

)
. (5.6)

Note that

if |dε(t, x)| < d0 then |∇dε(t, x)| = 1 , (5.7)

and that the equation of motion (P 0
ε,drift) is recast as

(dεt + c∗ +∇dε · ∇v) (t, x) = 0 on Γε,drift
t = {x ∈ Ω : dε(t, x) = 0} .

(5.8)
Moreover, there exists a constant D > 0 such that, for all ε > 0 small
enough,

|∇dε(t, x)|+ |∆dε(t, x)| ≤ D for all (t, x) ∈ QT . (5.9)

Finally, in view of (5.7) and (5.8), the mean value theorem provides a con-
stant N > 0 such that, for all ε > 0 small enough,

∣∣dεt + c∗|∇dε|2 +∇dε · ∇v
∣∣ (t, x) ≤ N |dε(t, x)| for all (t, x) ∈ QT .

(5.10)

5.2 Sub- and super-solutions

We define

u±ε (t, x) := (1± q(t))U

(
dε(t, x)∓ εp(t)

ε

)
, (5.11)

where
p(t) := −e−t/ε + eLt +K

q(t) := σ(e−t/ε + εLeLt) ,

and where U and dε were defined in subsection 5.1. In the following lemma,
Ωsupp
t [u±ε ], Γ

supp
t [u±ε ], Γ

supp[u±ε ] and νsuppt [u±ε ] are defined as in Lemma 3.3.
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Lemma 5.2 (Sub- and super-solutions for the propagating front). Choose
σ > 0 small enough so that

c∗(m− 1)D2(1 + 2σ)m−2σ ≤
1

2
, (5.12)

where D is the constant that appears in (5.9). Choose K ≥ 1. Then, if
L > 0 is large enough, we have, for ε > 0 small enough,

Lε[u−ε ] ≤ 0 ≤ Lε[u+ε ] in (0, T ) × Ω , (5.13)

∂(u−ε )
m

∂νsuppt [u−ε ]
= 0 on ∂Ωsupp

t [u−ε ] for all t ∈ [0, T ] , (5.14)

∂(u+ε )
m

∂νsuppt [u+ε ]
= 0 on ∂Ωsupp

t [u+ε ] for all t ∈ [0, T ] . (5.15)

Proof. Properties (5.14) and (5.15) follow from (Um)′(0) = 0 (see (5.2)).
We prove below that Lε[u+ε ] ≥ 0, the proof of Lε[u−ε ] ≤ 0 following the
same lines. Note that we only need to consider the case dε(t, x) ≤ εp(t)
since, if dε(t, x) > εp(t) then u+ε (t, x) = 0. Straightforward computations
and equation (5.1) yield

ε(u+ε )t = εq′U + (1 + q)(dεt − εp′)U ′

ε∇u+ε = (1 + q)U ′∇dε

ε2∆(u+ε )
m = (1 + q)m|∇dε|2(−c∗U ′ − U(1− U)) + ε(1 + q)m∆dε(Um)′ ,

where arguments are omitted. Thus we get

εLε[u+ε ] = E1 + E2 + E3 ,

where

E1 = U ′(1 + q)
[
dεt − εp′ + c∗(1 + q)m−1|∇dε|2 +∇dε · ∇vε

]
=: U ′(1 + q)E⋆

1

E2 = U
{
−(1 + q) + (1 + q)m|∇dε|2 + U

[
(1 + q)2 − (1 + q)m|∇dε|2

]
+ εq′

}

E3 = −ε(1 + q)m∆dε(Um)′ + ε(1 + q)∆vεU .

In the sequel we define a(t) := 1 + q(t) and denote by Ci various positive
constants which do not depend on ε.

Since ‖∆vε‖L∞(QT ) is uniformly bounded w.r.t. ε > 0 (see Assumption
1.3), we deduce from (5.9) and (5.2) that |E3| ≤ εC3(a

m + a)U so that

E2 + E3 ≥ U
{
− a+ am + U

(
a2 − am

)
− εC3a

m − εC3a

+
(
|∇dε|2 − 1

)
am(1− U) + εq′

}
. (5.16)
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We claim that, for ε > 0 small enough,

|(|∇dε|2 − 1)(1 − U)| ≤ εC2 . (5.17)

Indeed, if −d0 < dε(t, x) ≤ εp(t), it follows from (5.7) that, for ε > 0 small
enough, |∇dε(t, x)| = 1. Next, if dε(t, x) ≤ −d0, (5.3) implies that

0 < (1− U)

(
dε(t, x)− εp(t)

ε

)
≤ (1− U)(−

d0
ε
) ≤ Ce−β

d0
ε ,

and (5.17) holds for ε > 0 small enough. Therefore (5.16) and (5.17) imply

E2 + E3 ≥ U
{
−a+ am + U

(
a2 − am

)
− ε(C2 + C3)a

m − εC3a+ εq′
}
.

(5.18)

Next, since

E⋆
1 = dεt + c∗|∇dε|2 +∇dε · ∇v − εp′ + c∗(am−1 − 1)|∇dε|2 + ε∇dε · ∇vε1 ,

using (5.10), (5.9) and Assumption 1.3, we see that

E⋆
1 ≤ N |dε(t, x)| − εp′(t) + c∗(am−1 − 1)|∇dε|2 + ε∇dε · ∇vε1

≤ N |dε(t, x)− εp(t)|+ ε(Np(t)− p′(t)) + c∗(am−1 − 1)D2 + εCD

≤ N |dε(t, x)− εp(t)|+ ε(Np(t)− p′(t))

+c∗(m− 1)D2(1 + 2σ)m−2q(t) + εCD .

The last inequality above comes from the fact that, for ε > 0 small enough,
we have 0 ≤ q(t) ≤ σ(1 + εLeLT ) ≤ 2σ, which in turn implies that

0 ≤ am−1 − 1 ≤ (m− 1)(1 + 2σ)m−2q(t) . (5.19)

In the following, we distinguish two cases.
First, assume that 0 ≤ dε(t, x) ≤ εp(t) so that, for ε > 0 small enough,

E⋆
1 ≤ ε(2Np(t) − p′(t)) + c∗(m− 1)D2(1 + 2σ)m−2q(t) + εCD

≤ e−t/ε(−ε2N − 1 + c∗(m− 1)D2(1 + 2σ)m−2σ)

+eLt(ε2N − εL+ εc∗(m− 1)D2(1 + 2σ)m−2σL) + ε2NK + εCD .

In view of (5.12) we get

E⋆
1 ≤ ε

(
eLt(2N −

1

2
L) + 2NK + CD

)
≤ 0 ,

if L > 0 is sufficiently large. This implies that E1 = aU ′E⋆
1 ≥ 0.

Now, assume that dε(t, x) ≤ 0 so that

dε(t, x)− εp(t)

ε
≤ −K ≤ −1 . (5.20)
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If E⋆
1 ≤ 0 the conclusion E1 ≥ 0 follows. Let us now assume E⋆

1 > 0. The
above study for the case 0 ≤ dε(t, x) ≤ εp(t) implies a fortiori that

ε(Np(t)− p′(t)) + c∗(m− 1)D2(1 + 2σ)m−2q(t) + εCD ≤ 0 .

Therefore
|E⋆

1 | ≤ N |dε(t, x)− εp(t)| ,

and we deduce from (5.20) and (5.4) that

|E1| ≤ εC1aU .

Summarizing, we obtain that, in any cases,

εLε[u+ε ] ≥ U
{
−a+ am + U

(
a2 − am

)
− εC4a

m + εq′
}
,

since a = 1 + q > 1 and with C4 := C1 +C2 + 2C3. Since U < 1, a > 1 and
m ≥ 2, the inequality −a+am+U

(
a2 − am

)
≥ −a+a2 = q+ q2 ≥ q holds.

Therefore, using |a| ≤ 1 + 2σ and substituting the expressions for q(t) and
q′(t), we see that

εLε[u+ε ] ≥ U
{
εσLeLt − εC4(1 + 2σ)m + σε2L2eLt

}

≥ Uε {σL−C4(1 + 2σ)m}

≥ 0 ,

if L > 0 is sufficiently large.
This completes the proof of Lemma 5.2.

6 Proof of Theorem 2.2

By fitting the sub- and super-solutions for the generation into the ones for
the motion, we are now in the position to prove our main result.

Let η ∈ (0, 1/2) be arbitrary. Choose σ that satisfies (5.12) and

σ ≤
η

2
. (6.1)

By Theorem 4.1, there exists M0 > 0 such that (4.1), (4.2) and (4.3) hold
with the constant η replaced by σ/2. Recall that u±ε are the sub- and super-
solutions constructed in (5.11).

Lemma 6.1 (Ordering initial data). There exists K̃ > 0 such that for all
K ≥ K̃, all L > 0, all ε > 0 small enough, we have

u−ε (0, x) ≤ uε(tε, x) ≤ u+ε (0, x) , (6.2)

for all x ∈ Ω.
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Proof. We first prove

u−ε (0, x) = (1− σ − εσL)U

(
dε(0, x) +Kε

ε

)
≤ uε(tε, x) . (6.3)

If x is such that dε(0, x) ≥ −Kε, this is obvious since the definition of U
then implies u−ε (0, x) = 0. Next assume that x is such that dε(0, x) < −Kε.
Let us denote by d(t, x) the signed distance function to Γt. Note that, in
view of hypothesis (1.1), the mean value theorem provides the existence of
a constant K̃0 > 0 such that

if d(0, y) ≤ −K̃0ε then u0(y) ≥ M0ε . (6.4)

Moreover in view of the definition of Γε,drift
0 in (2.4) and the compactness of

Γ0, there exists K0 > 0 such that, for ε > 0 small enough,

if dε(0, x) ≤ −K0ε then d(0,Φ(0, tε, x)) ≤ −K̃0ε . (6.5)

Hence, if we choose K ≥ K0, we deduce from (6.5), (6.4) and (4.2) (with η
replaced by σ/2) that uε(tε, x) ≥ 1− σ

2 . Since U ≤ 1, this proves (6.3).
Next we prove

uε(tε, x) ≤ (1 + σ + εσL)U

(
dε(0, x) −Kε

ε

)
= u+ε (0, x) . (6.6)

In view of the definition of Γε,drift
0 in (2.4) and the compactness of Γ0, there

exists K1 > 0 such that

if dε(0, x) ≥ K1ε then dist(Φ(0, tε, x),Ω0) ≥ M0ε . (6.7)

If x is such that dε(0, x) ≥ K1ε then it follows from (6.7) and Theorem 4.1
(iii) that uε(tε, x) = 0, which proves (6.6). Next assume that x is such that
dε(0, x) < K1ε. Since U is non increasing we have

(1 + σ + εσL)U

(
dε(0, x) −Kε

ε

)
≥ (1 + σ)U(K1 −K) ≥ 1 +

σ

2
,

if K ≫ K1 (recall that U(−∞) = 1). Then (6.6) follows from (4.1) (with η
replaced by σ/2).

We now prove Theorem 2.2.

Proof. We fix K ≥ 1 large enough so that Lemma 6.1 holds, and L > 0 large
enough so that Lemma 5.2 holds. Therefore, from the comparison principle,
we deduce that

u−ε (t, x) ≤ uε(t+ tε, x) ≤ u+ε (t, x) for 0 ≤ t ≤ T − tε . (6.8)
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Note that, since

lim
ε→0

u±ε (t, x) =

{
1 if dε(t, x) < 0

0 if dε(t, x) > 0 ,
(6.9)

for t > 0, (6.8) is enough to prove the convergence result, namely Corollary
2.3. We now choose C large enough so that

(1−
3

4
η)U(−C + eLT +K) ≥ 1− η . (6.10)

Note that this choice forces

C ≥ eLT +K . (6.11)

In the sequel we prove (2.6).
Obviously, if ε > 0 is small enough, the constant map z+ ≡ 1 + η is a

super-solution. Therefore we deduce from Theorem 4.1 (i) that uε(t+tε, x) ∈
[0, 1 + η], for all 0 ≤ t ≤ T − tε.

Next we take x ∈ Ωε,drift
t \ NCε(Γ

ε,drift
t ), i.e.

dε(t, x) ≤ −Cε . (6.12)

For ε > 0 small enough, we have

u−ε (t, x) ≥ (1− σ − εσLeLT )U(−C + eLT +K)

≥ (1− 3
2σ)U(−C + eLT +K)

≥ (1− 3
4η)U(−C + eLT +K)

≥ 1− η ,

where we have successively used (6.1) and (6.10). In view of (6.8) this
implies that uε(t+ tε, x) ≥ 1− η, for all 0 ≤ t ≤ T − tε.

Finally we take x ∈ (Ω \ Ωε,drift
t ) \ NCε(Γ

ε,drift
t ), i.e.

dε(t, x) ≥ Cε . (6.13)

Using (6.11) we see that, for ε > 0 small enough, dε(t, x) − εp(t) ≥ 0 so
that u+ε (t, x) = 0, which, in view of (6.8) implies that uε(t + tε, x) = 0, for
0 ≤ t ≤ T − tε.

This completes the proof of Theorem 2.2.
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