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ABSTRACT

Diabetic macular edema (DME) is a common vision threat-

ening complication of diabetic retinopathy. In a large scale

screening environment DME can be assessed by detecting ex-

udates (a type of bright lesions) in fundus images. In this

work, two new methods for the detection of exudates are pre-

sented. The methods do not require a lesion training set so

the need to ground-truth data is avoided with significant time

savings and independence from human error. We evaluate our

algorithm with a new publicly available dataset from various

ethnic groups and levels of DME. Also, we compare our re-

sults with two recent exudate segmentation algorithms on the

same dataset. In all of our tests, our algorithms are either

outperforming or in line with existing methods. Additionally,

the computational time is one order of magnitude less than

similar methods.

Index Terms— One, two, three, four, five

1. INTRODUCTION

Diabetic retinopathy (DR) is a progressive eye disease that

currently affects 250 million of people worldwide. Diabetic

macular edema (DME) is a complication of DR and it is a

common cause of vision loss and blindness. DME occurs

from swelling of the retina in diabetic patients due to leak-

ing of fluid from microaneurysms within the macula. Oph-

thalmologists can infer the presence of the fluid that causes

the retina thickening in diabetic patients by the presence of

accompanying lipid deposits called exudates. They appear as

bright structures with well defined edges and variable shapes.

The approaches to exudate segmentation presented in

the literature can be roughly divided into four different cate-

gories. Thresholding methods base the exudate identification

on a global or adaptive grey level analysis. A first attempt

was presented in [1] and recently a more sophisticated method

based on image normalisation and distribution analysis was

presented in [2]. Region growing methods segment the im-

ages using the spacial contiguity of grey levels; a standard

region growing approach is used in [3], which is very compu-

tationally expensive by being employed to the whole image.

In [4] the computational issues are limited by employing

edge detection to limit the size of regions. Morphology meth-

ods employ greyscale morphological operators to identify all

structures with predictable shapes (such as vessels). These

structures are removed from the image so that exudates can be

identified [5, 6]. Classification methods build a feature vector

for each pixel or pixel cluster, which are then classified by

employing a machine learning approach into exudates or not

exudates [7, 8, 9] or additional types of bright lesions [10, 11]

(such as drusen and cotton wool spots).

In this paper we present two variations of a new exudate

segmentation method that falls into the category of threshold-

ing methods. Hence, the methods do not require any man-

ual segmented lesion map for training to achieve good per-

formance. In order to reduce the problem of noise we have

developed a new way to normalise the fundus images. We di-

rectly compare our method with an implementation of a mor-

phology based technique [6] and another thresholding based

technique [2]. We selected the techniques that were tested

with the largest datasets in the respective class.

In Section 2 we introduce the new public dataset used for

testing the algorithm; Section 3 presents the details of the two

automatic exudate segmentation methods; Section 4 presents

the results by comparing them to other two published tech-

niques; finally, Section 5 concludes the discussion.

2. MATERIALS

For the past 5 years, our group has been designing a semi-

automated, HIPAA-compliant, teleophthalmology network

for the screening of diabetic retinopathy and related condi-

tions by employing a single macula centred fundus image

acquired with a Zeiss Visucam PRO fundus camera. We have

randomly extracted a set of 169 images representative of var-

ious degree of DME and patient ethnicity (the appearance

of the retinal fundus greatly varies between ethnic groups).

Each image of the dataset was manually segmented by one of

the co-authors (E. Chaum, a practising Retina specialist). The

manual segmentation allowed us to test the algorithm and it

was not employed in the training phase. We have decided to



release the dataset to the research community on the website:

http://risa.uthsc.edu/dmed.

3. METHOD

3.1. Preprocessing

3.1.1. Background Estimation

In our approach we employ noth the green channel ■❣ of the

RGB colour space and the ■✐ channel of the HSI colour space.

We start the analysis by estimating the background by the

means of a large median filter, whose size is ✶

✸✵
the height

of the fundus image on ■✐. This approach has been used by

other authors (such as [12, 13]) and it has great computation

performance advantages over the method from Foracchia et

al., mainly because it does not use bilinear interpolation or

multiple passes. In other median filtering normalisation tech-

niques, the background is subtracted from the original image

in order to obtain a normalised version. In our approach, we

enhance the normalisation with the addition of a morpholog-

ical reconstruction step [14]. This seems to improve the re-

moval of nerve fibre layer and other structures at the edges of

the ON, at little or no expense for the exudates. The following

pseudocode illustrates this step in more details.

Algorithm 1 Background Estimation

1: function MORPHBGEST(■❣)

2: ❜❣❊st✥ MEDIANFILTER✭■❣✮
3: INITIALISE✭❜❣▼❛s❦✮ ✳ set all the pixels to 0

4: for ② ❂ ✵ to HEIGHT(■❣)�✶ do

5: for ① ❂ ✵ to WIDTH(■❣)�✶ do

6: if ■❣✭①❀ ②✮ ❁ ❜❣❊st✭①❀ ②✮ then

7: ❜❣▼❛s❦✭①❀ ②✮✥ ❜❣❊st✭①❀ ②✮
8: else

9: ❜❣▼❛s❦✭①❀ ②✮✥ ■❣✭①❀ ②✮
10: end if

11: end for

12: end for

13: ❜❣❊st✷ ✥ MORPHRECONSTR✭❜❣❊st❀ ❜❣▼❛s❦✮
14: return ❜❣❊st✷
15: end function

3.1.2. Image Normalisation

Once the background ❜❣❊st✷ is estimated, it is subtracted

from the original image. The subtraction operation is per-

formed with 16 bit signed precision in order to maintain

the negative pixels. The image obtained shows a peculiar

greylevel distribution: the highest peak of the histogram is

always centred on zero regardless of the ethnicity of the pa-

tient or disease stratification. The histogram provides a clear

distinction of two classes of structures: dark structures and

bright structures. Dark structures are located in the left side

of the histogram and represent the vasculature, the macula,

dark lesions (such as microaneurysms and haemorrhages) and

other structures due to the retinal pigment epithelium layer.

Their distribution seem to vary depending on the ethnicity;

the reason is related to the pigmentation of the patient, the

less the pigmentation the more the choroidal vasculature is

visible, hence it is visible as a bump in the negative side of

the histogram. On the other hand bright structures are found

in the positive side of the histogram which contains the optic

nerve, bright lesions (such exudates and cotton wool spots),

nerve fibre layer reflectance residuals (from the background

removal), artefacts due to dirty lenses and other structures

related to very bright retinal pigment epithelium layer. In

this case, the distribution is fairly constant across different

ethnicities.

Because of the alignment of the histogram after normal-

isation we can select all the exudate candidates ■❝❛♥❞ with

a hard threshold t❤❝❛♥❞. This has obvious computational ad-

vantages in comparison with any model fitting operations, that

not only do not seem to provide any quantifiable advantage for

the selection of a threshold, but are also more sensitive to sub-

optimal background estimation. We have selected t❤❝❛♥❞ ❂ ✸
given that the original image ■✐ has a grey level range be-

tween 0 and 255. This parameter has not been selected by

trial and error on the whole dataset, but by empirically choos-

ing a value slightly above 0 in order to accommodate small

background estimation errors.

3.2. Exudate detection

The exudate detection is performed by assigning a score for

each exudate candidate. The exudate candidates are selected

by running a 8-neighbour connected component analysis on

■❝❛♥❞. We have implemented two ways to assign this score,

one based on Kirsch’s Edges [15] and the other based on Sta-

tionary Wavelets. Both try to capture the higher edge values

of the exudates in comparison the one of other candidates.

3.2.1. Kirsch’s Edges

Kirsch’s edges try to capture the external edges of the lesion

candidate. This edge detector is based on the kernel ❦ eval-

uated at 8 different directions on ■❣. The kernel outputs are

combined together by selecting the maximum value found on

each pixel output. The result is stored in the final ■❦✐rs❝❤ im-

age.

❦ ❂

✷
✹

✺

✶✺
� ✸

✶✺
� ✸

✶✺
✺

✶✺
✵ � ✸

✶✺
✺

✶✺
� ✸

✶✺
� ✸

✶✺

✸
✺ (1)

As proposed by Sanchez et al., the average edge outputs of

■❦✐rs❝❤ under each lesion cluster are calculated and assigned

to the lesion in its entirety. The thresholds used to evaluate

the final output are t❤❢✐♥ ✷ ❢✵ ✿ ✵✿✺ ✿ ✸✵❣.
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Fig. 1. FROC curves. (a) the exudate segmentation performances on all images; (b) the performance on the images diagnosed

with DME only; (c) the exudate segmentation performances of our method using Kirsch’s edges in the macula area; each line

corresponds to a growing circular area centred on the fovea.

3.2.2. Stationary Wavelets

Quellec et al. [16] proposed a method for the detection of

retina microaneurysms in the wavelet space. We try to cap-

ture the strong peak at the centre of exudates by developing a

method that employs a similar wavelet as Quellec et al., but

that evaluates the results in image space. A stationary Haar

wavelet analysis is performed up to the second level on ■❣.

The process is inverted maintaining the last vertical, diago-

nal and horizontal details only, as these are the wavelet co-

efficients that seem to contain most of the foreground struc-

tures. By transforming back to the image space we obtain

a background-less image ■✇❛✈ with a strong response at the

centre of exudates. It is interesting to notice that the distri-

bution of ■✇❛✈ has similar properties as the image obtained

during the image normalisation phase (i.e. centred at 0 and

with the exudates located on the positive side).

Similarly to the previous approach, we estimate the

chance of being an exudate by evaluating the ■✇❛✈ area

which corresponds to each lesion cluster of ■❝❛♥❞. However,

instead of calculating the average coefficient, we attempt to

detect spikes in greyvalues as follows.

✇❛✈❙❝♦r❡ ❂
♠❛①✭♣①✇❛✈✮�♠✐♥✭♣①✇❛✈✮

♠❛①✭♣①✇❛✈✮
(2)

where ♣①✇❛✈ are the pixels of ■✇❛✈ corresponding to a

lesion candidate cluster. The thresholds used to evaluate the

final output are t❤❢✐♥ ✷ ❢✵ ✿ ✵✿✵✺ ✿ ✶❣.

4. RESULTS

In our results, we compare our two techniques described in

this paper with our implementation of [6] and [2]. In all in-

stances, we evaluate the performance of the lesion segmen-

tation algorithms on a lesion by lesion basis for each image.
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Sanchez2009 (AUC: 0.8)

Sopharak2008 (AUC: 0.13)

Our Method (with Wavelet) (AUC: 0.81)

Our Method (with Kirsch) (AUC: 0.86)

Fig. 2. ROC curves of the diagnosis of DME by employing

only the lesions segmented, i.e. an image is considered pos-

itive if it shows at least a lesion. All the segmented lesions

overlapping with the areas marked as “Other Bright Lesion”

in the ground-truth are not taken in consideration.

The analysis starts from the labelled image in the dataset and

each lesion is compared to the automatic segmentation one

by one. A lesion is considered a true positive (TP) if it over-

laps at least in part with the ground-truth; a false negative

(FN) if no corresponding lesion is found in the automatic seg-

mentation; a false positive (FP) if an exudate is found in the

automatic segmentation but no corresponding lesion has been

manually segmented. In the evaluation of the segmentation,

we did not employ any true negatives (TN). As such, we avoid

any evaluation of specificity, which is inherently high in im-

ages where the lesions represent a very small percentage of

the total image area. In order to compare the methods fairly,

all the images in the dataset have been resized to the resolu-

tion used in the original papers (but maintaining the original



width/height ratio). It should be noticed that in the test results

of this section all the FP corresponding to bright lesions other

than exudates have not been taken into account.

Fig. 1(a) shows the free-response receiver operating

characteristic (FROC) analysis [17] of the implemented algo-

rithms on the entire dataset. The global Sensitivity is evalu-

ated as ❚P
❚P✰❋◆

on each image and then averaged together.

The global Positive Predictive Value (PPV) is computed in a

similar way but employing ❚P
❚P✰❋P

. It can be noticed how

our two methods and the technique developed by Sanchez et

al. performed comparably, with our technique (with Kirsch’s

edges) performing somewhat better.

Similar results are shown in Fig. 1(b). In this case only

the 54 image with DME are used in order to have a better

evaluation of the segmentation performance. In this case both

of our methods seem to have a higher sensitivity than the other

two methods implemented.

When exudation is close to the fovea it is more likely to

cause vision loss. Therefore, we tested the ability of identify-

ing lesions close to the macula of our method with Kirsch’s

edges, which seems to be the best performing algorithm of

the previous tests. We have evaluated the lesion segmentation

on the most dangerous area which might be affected by exu-

dationi.e. A growing area around the fovea. All the lesions

outside these areas have been discarded. Fig. 1(c) shows how

the lesion segmentation improves when the lesion is closer to

the fovea. This means that our algorithm is more effective

on more sight threatening lesions. This is because the macu-

lar pigment in the area around fovea tends to be darker than

the rest of the image, therefore exudates have more contrast.

Also, when the area close to the vessels is discarded there are

less chances of false positives due to the reflections of nerve

fibre layer or to the muscular tissues of large vessels.

When developing an exudate segmentation method it

must be taken into account that, in itself, the localisation of

the lesions is not the final aim of an automatic diagnosis tool,

but rather only a step towards the final diagnosis. As such,

the detection of every single exudate in an image with many

of them is not as important as finding a single lesion on a

image with a single one. Therefore, we have evaluated the

algorithms based on their ability to discern patients with or

without DME by employing the hard threshold of a single

lesion. If one or more exudates are found, the image is diag-

nosed with DME, otherwise the patient is classified as being

negative. Fig. 2 shows the results of this experiment by the

means of a standard ROC analysis on our dataset. Again, our

methods seem to perform better or comparably to the other

algorithms. Although the area under the ROC curve (AUC)

is highest for our method with Kirsch’s edges, the technique

with wavelet shows a higher sensitivity at a higher specificity,

a useful aspect for the development of a automatic DME

screening tool.

The computational performance are evaluated on a Dual

Core 2.6 GHz machine with 4 GB of RAM. All the algorithms

are implemented in unoptimised Matlab code. Table 1 shows

the average time to segment an image.

Table 1. Computational Performance

Method Seconds per image

Sanchez et al. ✘39

Sopharak et al. ✘36

Our method (with Wavelet) ✘2.4

Our method (with Kirsch) ✘1.9

The reason for such performance discrepancy is likely to

be due to the bilinear interpolation and expectation maximiza-

tion for Sanchez et al. The calculation of the local standard

deviation for each pixel is the cause for the computational

performance degradation with the method by Sopharak et al.

5. DISCUSSION AND CONCLUSION

We have evaluated the global segmentation performance with

the real distribution of patients in a screening setting and on

only the patients showing signs of exudation. The results are

particularly encouraging especially because of the compari-

son with the other techniques by Sopharak et al. and Sanchez

et al. The method by Sanchez et al. is somewhat close to

ours tests, however, the image normalisation procedure gives

a substantial advantage to our method. The median filter with

morphological reconstruction approach maintains a good con-

trast of the foreground structures by limiting the effects of the

noise due to nerve fibre layer reflections and other small arte-

facts.

Also, we have evaluated our algorithms ability in identi-

fying patients with DME based on the segmentation of one

or more lesion in a fundus image. This is a naive method for

DME diagnosis because neither it takes into account the many

other features available in an image nor it employs any state

of the art classification techniques. However, this test pro-

vides a baseline of the possible screening performances that

can be achieved employing the output of the segmentation as

a classification feature.

Many other exudate segmentation methods have been

published throughout the years, however all of them seem to

employ different datasets and different evaluation methods.

This makes a direct comparison almost impossible, as is un-

derlined by many of the authors themselves. We contribute

to a solution to this problem by making available our hetero-

geneous, ground-truthed dataset to the research community.

The need of having a common dataset to compare different

techniques has been confirmed in this paper, where the two

algorithms implemented did not perform as well as in the

respective datasets employed by the original authors.
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