La Méthode De Newton 
  
Tan Lei 
  

Professeur à l'Université d'Angers. (page web) ANS la vie courante, des problèmes mathématiques se modélisent souvent sous forme d'équations. Résoudre ces problèmes revient alors à trouver des solutions à ces équations.

Les dimensions d'une feuille de papier

Voici un exemple : prenons une feuille de papier A4 standard. Sa largeur est de 21 cm (nous l'avons un peu arrondie pour simplifier le calcul [1]). Sa longueur mesure entre 29 cm et 30 cm. Comment expliquer ce rapport « étrange » entre longueur et largeur ? En effet, pour des raisons économiques et esthétiques, ce rapport a été choisi pour qu'après avoir été plié en deux, le papier reprenne la même forme, c'est-à-dire le même rapport longueur/largeur. Ainsi, en notant x la longueur de notre feuille A4, le rapport longueur/largeur avant le pliage est de x 21. Après le pliage, la nouvelle longueur est 21cm, et la nouvelle largeur x 2, avec donc comme rapport 21 (x 2). La longueur x de la feuille A4 est donc solution de l'équation Newton fournit toujours des solutions approchées des équations, et ce avec autant de précision que nécessaire (voir l'article original de Newton, ajouté à la fin de cet article).

Qu'est-ce qu'un « algorithme itératif » ? C'est tout simplement l'opération consistant à répéter un grand nombre de fois la même opération mathématique. Tapez par exemple un nombre au hasard, disons 5, sur une calculatrice. Puis appuyez, disons une trentaine de fois, sur la touche (en espérant qu'elle fonctionne, cette fameuse touche !).

Vous allez voir défiler sur l'écran une succession de nombres décimaux, et ces nombres s'approchent de plus en plus de 1. Essayez cette fois-ci 0 001 à la place de 5, qu'observez vous ? Ce que vous êtes en train de faire, c'est d'itérer l'opération « racine carrée ». Et cette itération vous fournit au fur et à mesure des approximations de plus en plus précises du nombre 1 (ce qui n'est pas très intéressant en soi).

Vous pouvez bien sûr itérer d'autres opérations comme x , sin ou cos si votre calculatrice le permet, tout en variant le choix du nombre de départ. Vous allez constater qu'itérer x en commençant par 1 05 ou 0 95 donne des résultats très différents, tandis qu'itérer sin (ou cos) donne toujours le même résultat final.

Personnellement j'ai été très étonnée lors de la découverte de ces curieux phénomènes. Pas vous ?

Cependant, cette valeur avec toutes ses décimales n'est qu'une approximation de , puisque ce nombre réel n'est pas un nombre décimal [START_REF]C'est-à-dire : il faut, pour l'écrire, une infinité de chiffres après la virgule[END_REF], de même que 1 3 33333333 , , ne sont pas des nombres décimaux. Une des questions est alors de trouver une bonne approximation de ces nombres par des nombres décimaux, en fonction de la façon dont ils sont définis. Cette question n'a pas grand intérêt pour les nombres qui sont des fractions (comme 1 3), car le développement décimal d'un tel nombre est toujours périodique (comme celui de 1 3 où le chiffre 3 se répète indéfiniment dans le développement).

La touche « racine carrée » est en panne

Imaginons qu'un jour la touche ne fonctionne pas. Ou qu'on ait besoin d'une valeur approchée avec beaucoup plus de précision. Ou encore que l'on tombe sur un autre problème dont aucune touche de la calculatrice ne nous fournisse de réponse.

Heureusement, après avoir transformé ces problèmes en équations, nous pouvons utiliser un algorithme itératif inventé par le génial mathématicien et physicien Isaac Newton (1642-1727). Cette méthode de 

Essayons avec x

. On obtient, successivement : 
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Avec un polynôme de degré 3

Essayons maintenant la méthode de Newton z (z) P (z) pour un polynôme un peu plus compliqué :

ici z désigne un nombre complexe inconnu et a est le nombre complexe -0 00508 33136 . (En fait on aurait pu prendre n'importe quel nombre complexe pour a, mais celui-ci a été choisi spécifiquement pour illustrer par la suite l'apparition du fameux lapin de Douady. Voir le paragraphe « Choix de a » ci-dessous. )

Les solutions de l'équation P (z) sont 1,et -

. On pourrait croire naïvement qu'une sorte de graphe séparateur jouerait le rôle de la médiatrice (comme dans le cas précédent) : ce graphe séparerait le plan en trois régions, et une valeur initiale (qui est un nombre complexe) prise dans une région donnée nous donnerait des approximations de la racine du polynôme située dans cette région. Par exemple :

-882 882

-P P (z) z ) = z -a + 2 1 z + a + 2 1 ( -1 + 0 i = 0 2 1 + a 2 1 -a
Arthur Cayley (1821-1895) avait tenté en vain de justifier cette intuition (voir son article, ajouté à la fin de cet article). Nous allons tout de suite comprendre pourquoi. Voici ce que notre ordinateur dessine :

Une expérience numérique

x 1 y 1 4 = x + i -P 2 1 + a 2 1 -a
Ainsi, plutôt qu'un simple graphe séparateur, on voit apparaître un surprenant « fractal » qui partage le carré en trois grands lacs, un autour de chaque solution, mais également en beaucoup de petits lacs rouges, verts ou bleus, qui s'entremêlent de manière très compliquée...

Ah ! Si Cayley avait vu cela !

Observons ce fractal de plus près. Voici un agrandissement dans la fenêtre -0 22 22.

La couleur noire indique le lieu des « mauvaises » valeurs de test initiales : si l'on choisit au départ un

x y 0 nombre complexe au sein de cette partie, la méthode de Newton n'approchera jamais d'une solution de P .

Même si ce lieu est relativement petit, on voit tout de même des taches piégées dans son intérieur, des sortes de lacs noirs (en termes mathématiques, l'intérieur de cet ensemble n'est pas vide). La présence de ces lacs met en doute l'efficacité globale de la méthode de Newton.

En plus, ces lacs noirs ne sont pas dans une partie isolée, bien délimitée, du plan. Au contraire ils s'entremêlent partout avec les lacs rouges, verts ou bleus.

Ceci illustre le phénomène « chaotique » de cette méthode itérative : en partant d'un point de la frontière d'un de ces lacs, la moindre erreur numérique nous fait basculer soit d'une solution vers une autre, soit vers un piège de couleur noire.

Il faut dire que la présence de ces taches noires est due à notre choix spécifique du nombre complexe a.

En choisissant un autre nombre pour a, le fractal engendré peut très bien ne plus avoir de taches noires.

On peut même prédire à peu de choses près tous les choix de a pour lesquels cela se produit.

Une question se pose alors : dans ces cas-là, peut-on affirmer que la méthode de Newton est enfin globalement efficace ? Eh bien, ce n'est pas si simple que ça.

Il existe aujourd'hui des logiciels qui produisent des valeurs « aléatoires », c'est-à-dire imitant le hasard. On aimerait dire que la chance qu'un tel logiciel produise un nombre complexe noir est minime, lorsqu'il n'y a pas de tache noire à l'intérieur [START_REF]En termes mathématiques, ce serait dire que le lieu noir est de mesure de Lebesgue nulle[END_REF]. Or ce n'est pas toujours le cas : pour certains choix de a, il n'y a pas de taches noires (l'intérieur de l'ensemble noir est vide), pourtant la probabilité pour qu'un point choisi au hasard soit noir n'est pas nulle [START_REF] Buff | Ensembles de Julia quadratiques de mesure de Lebesgue strictement positive[END_REF].

Lapins

Essayons maintenant de comprendre un peu mieux la structure du fractal de Newton présenté ci-dessus, donc calculé avec le nombre a que nous avons choisi ci-dessus.

La première observation est qu'il y a des taches noires un peu partout à la frontière des lacs colorés, et que ces taches ont des tailles très variées.

La deuxième est que ces taches ont toutes une drôle de forme : elles ressemblent un peu à un lapin à deux oreilles.

Adrien Douady (1935Douady ( -2006) ) Une ressemblance frappante avec le lieu noir que nous avons appelé « lapin », n'est ce pas ? D'ailleurs ce fractal s'appelle le lapin de Douady.

Choix de

Alors pour quelle raison le fractal produit par l'itération du polynôme quadratique ci-dessus apparaît-il dans notre fractal de Newton ?

C'est dû à un phénomène de renormalisation, démontré par Douady et Hubbard : pour des bons choix de a, et pour la méthode de Newton associée au polynôme (qui dépend de a), itérer un nombre pair de fois, par exemple 2n fois, cette méthode dans une région proche de 0, revient à itérer n fois un polynôme quadratique de la forme z (où c dépend de a). Donc si l'on veut voir apparaître le fractal engendré par un c spécifique, par exemple le lapin de Douady, il ne reste plus qu'à ajuster le nombre a. 

a P (z) z ) = z -a + 2 1 z + a + 2 1 ( -1 2 + c 2 + c = 0 2 + c = c ; c 2 + c ; ( 2 + c 2 + c ; ( 2 + c 2 + c 2 + c ; solution de l'équation (c ) .
Essayons donc de résoudre cette équation. En divisant par c, elle devient : c(c )

. Cette nouvelle équation a trois solutions, et celle qui nous convient est approximativement -0 1225612 7448618i. Notons la par c . Ainsi pour tout choix de c proche de c , le troixième terme ci-dessus est proche de 0, et itérer z devrait nous donner un lapin. Nous en avons choisi un au hasard, notamment c 0 12 75i, et ça marche ! Revenons à la méthode de Newton. Cette fois-ci il faut choisir un a tel que le sixième itéré de 0 par cette méthode soit proche de 0. Il existe 18 valeurs de a rendant ce terme du sixième itéré nul, et celle qui nous convient est approximativement -0 0051054 3313825i. Notons la par a . Ainsi n'importe quel choix de a proche de a devrait nous donner un fractal de Newton avec des lapins sautillant dedans. Là encore nous en avons choisi un au hasard, notamment a 0 00508 33136i. Et des beaux lapins apparaissent bel et bien dans notre fractal.

(A titre d'information, le sixième itéré de 0 pour ce choix de a est -0 0001958 0005808i.)

Coutures et accouplements

Cette relation avec les lapins n'explique pas encore toute la structure du lieu noir. Il faut encore comprendre comment ces multiples lapins se sont reliés les uns et les autres.

En fait, bien que ce ne soit pas du tout évident à l'oeil nu, ce fractal est obtenu en recousant ensemble deux fractals plus simples, et donc plus facils à comprendre. Mais nous n'allons pas entrer dans les détails ici. Nous nous contentons juste d'illustrer ces deux fractals ainsi que la couture.

Voici le premier fractal, provenant de l'itération de

Q(z) 1 503 

)z

Ce fractal est appelé « ensemble de Julia » de Q. Vous remarquerez que de multiples lapins y sont déjà présents.

2 + c 2 + c = 0

+ 1 2 + 1 = 0 + 0 0 0 2 + c = - + 0 + 0 0 0 = - + 0 -0 = z 3 + ( -0 i 2
Et voici le deuxième, provenant de l'itération de z 2 12i)z

Faisons maintenant tourner notre fractal de Newton de 90 pour mieux visualiser la couture : puis sur une sphère [START_REF]La sphère est liée au plan par une projection stéréographique, voir une belle image de projection stéréographique (sur ce site)[END_REF]) :

La théorie derière cette couture a été connue depuis 1997 (voir les références mathématiques ci-dessous). Mais l'illustration en film présente de grandes difficultés techniques, de nature à la fois informatique et mathématique. Arnaud Chéritat a du surmonter toutes ces difficultés afin de réaliser ces remarquables vidéos pour nous. Je lui en suis très reconnaissante.

Au passage ce procédé de couture a été appelé « accouplement » avec humour par Adrien Douady.

Solutions et points fixes

Essayons maintenant de comprendre pourquoi la méthode de Newton se stabilise à une certaine solution r de l'équation P (z) (pour un P quelconque).

Pour cela remplaçons z par une telle solution r dans z (z) P (z). Eh bien, c'est pour approcher le graphe du polynôme P par une droite (une tangente) f (z) z )P (z ) (z ).

Cette fonction f admet la même valeur et la même dérivée en z que le polynôme P . On peut donc imaginer que la solution de f (z) est proche de celle de P (z) . L'équation f (z) est tellement simple qu'on peut la résoudre directement, soit 

  aide d'une calculatrice, vous trouverez 29 698485, d'où la longueur en centimètres de notre feuille A4 (et voilà pourquoi A4 est aussi 21 9 7) !

  La « touche » méthode de NewtonAlors quelle est la méthode de Newton pour trouver des solutions approchées de l'équation x 82 ? Notons P (x) 82 pour simplifier la présentation (cela rend également la méthode plus conceptuelle). Newton a réalisé que pour cela, il suffisait d'itérer l'opération x (où P désigne la dérivée de P ), soit x ou encore un peu comme si la calculatrice avait une touche « x (x) P (x) » et qu'on appuie un grand nombre de fois sur cette touche. Nous allons voir un peu plus tard, dans le paragraphe « Solutions et points fixes », la raison mathématique d'utiliser la formule précise x (x) P (x) plutôt qu'une autre. A présent contentons nous de faire quelques expériences numériques.

  c'est le « bassin » d'attraction de la solution ; et à sa droite, celui de . Alors pourquoi partir d'un nombre complexe alors qu'un réel suffisait ? En effet, dans d'autres problèmes plus compliqués, on risque de tomber sur une équation dont la solution recherchée n'est pas réelle. Tester sur des valeurs initiales qui sont des nombres complexes permet donc de repérer également ce genre de solutions. Ce n'est pas tout. Aller des réels vers les complexes nous permet à la fois d'élargir notre champ de vision (comme illustré par de nombreux dessins ci-dessous), et d'avoir accès à de puissants outils mathématiques relevant de l'analyse complexe. Il y a d'ailleurs des problèmes mathématiques purement réels qui n'ont pu être résolus que grâce à l'utilisation des nombres complexes, c'est ce qu'on appelle encore « complexifier » le problème.

Faisons

  une nouvelle expérience numérique, en remplaçant cette fois la calculette par un ordinateur : Plaçons-nous dans une fenêtre carrée du plan, disons -1 4 6, -1 5 5. Découpons ce carré en 400 00 pixels. Pour chaque pixel (donné sous la forme d'un nombre complexe z y), demandons à notre ordinateur d'itérer l'opération z (z) P (z) un grand nombre de fois (par exemple mille fois), et colorions le pixel z en bleu si le résultat est un nombre complexe proche de 1, en vert s'il est proche de -, en rouge, s'il est proche de -... Enfin colorions le pixel en noir si rien de tout cela se produit.

  fait partie des premiers mathématiciens à avoir observé cela. Il a très vite compris que ces lapins proviennent de l'itération d'une autre opération, plus simple cette fois-ci, celle de z -0 12 75i) Faisons l'expérience comme lui, en colorant un pixel dans le carré -1 5 5 en rouge si ses itérés par cette opération s'échappent du carré, et en noir sinon.Voici le résultat :

  Alors comment procéder précisément ? Pour cela, il faut d'abord savoir comment produire le lapin de Douady. Nous allons voir que le choix de c, tout comme celui de a, est relativement flexible. Commençons par itérer z à partir de z . Nous obtenons, successivement, la théorie de Douady et Hubbard, pour obtenir un fractal qui ressemble à un lapin, il faut choisir un c parmi ceux qui rendent le troisième terme ci-dessus relativement petit, donc un c proche d'une

  Voici enfin la couture en vidéo (film réalisé par Arnaud Chéritat), d'abord dans le plan :

  Nous observons que r Cela veut dire que faire opérer la méthode de Newton ne change pas la valeur r : si vous avez tapé r comme valeur initiale, vous pouvez appuyer tant que vous voulez sur la touche « méthode de Newton », vous obtiendrez toujours r. En termes mathématiques, r est un point fixe. Ce que nous avons fait est un exemple d'une méthode assez courante en mathématique : on transforme la résolution d'une équation en la recherche d'un point fixe d'une opération appropriée.Mais on aurait pu choisir une opération plus simple. Par exemple la touche « z (z) », qui remplace z par z (z) : bien sûr si r est une solution de P (z) , appuyer sur cette touche produira toujours r.Alors pourquoi choisir une opération aussi compliquée que celle de Newton, avec la division par la

z 2 P

 2 et voilà d'où vient la division par la dérivée ! La relation entre la solution de P et celle de f se voit facilement sur une figure (ici dans le cas réel) : Poussons-nous un peu plus loin dans notre compréhension : pourquoi l'itération de la méthode de Newton donne-t-elle des valeurs s'approchant de plus en plus d'une solution r (si l'on est parti d'une valeur assez proche), et ce de manière extrêmement rapide ? Pour comprendre cela calculons la dérivée de l'opération z Nous trouvons remplaçons z par la solution r dans cette expression : la dérivée s'annule elle aussi en r.Non seulement la méthode de Newton laisse la valeur r invariante, mais en plus elle y admet une dérivée nulle. On dit que r est un point fixe super-attractif. Cette terminologie illustre le fait que la solution r attire vers elle, de toutes ses forces, les valeurs voisines.Alors pourquoi la vitesse de convergence a-t-elle un quelconque lien avec le fait que la dérivée s'annule en r ? (z)P (z)Nous pouvons essayer de comprendre cela en considérant un exemple plus simple, mais typique de ce genre de situation. Prenons l'opération « élever un nombre au carré », c'est-à-dire « x ». La valeur 0 est fixe (0 !), et la dérivée (2x) est nulle en 0. La valeur 0 est donc bel et bien un point fixe superattractif.Faisons ensuite un test (sur une calculatrice par exemple) de la vitesse de convergence en prenant 0 5 comme valeur initiale. Nous obtenons : En gros le nombre de zéros après la virgule double à chaque itération. Rapide, n'est ce pas ?! Vous pouvez par exemple le comparer avec l'itération de l'opération « diviser un nombre par 100 », c'està-dire « x 100 » (avec donc une dérivée 1 100 qui n'est pas nulle). Qui est-ce qui va l'emporter en fin de compte ? Graphe séparateur Et l'histoire d'un graphe séparant les trois solutions d'un polynôme (quelconque) P (z) de degré 3, dans tout cela ? Une idée si naturelle... vous n'avez peut-être pas envie de l'abandonner complètement. Eh bien, vous avez raison. Pour le voir, rajoutons un facteur h devant le terme P (z) P '(z), notre « touche méthode de Newton » devient z Ce facteur va modifier la vitesse à laquelle la méthode de Newton permet de s'approcher d'une racine de P . Plus h est petit, moindre est la vitesse. Nous fabriquons ainsi toute une famille de « fractals de Newton », un pour chaque valeur de h. Quand h décroît, devenant de plus en plus petit, ces fractals se transforment progressivement en un graphe. Ce graphe sépare le plan en trois régions, contenant chacune une solution de P (z) . Et nous avons enfin trouvé le graphe séparateur que Cayley cherchait ! Voici ce qui se passe avec notre P (z) spécifique, c'est-àPour citer cet article : Tan Lei, La méthode de Newton et son fractal. Images des Mathématiques, . En ligne, URL : http://images.math.cnrs.fr/La-methode-de-Newton-et-son.html

  

  

  

  

  

  

  

  

  

  Remettons ce dernier terme (toujours à la place de x) dans la formule de Newton, et ainsi de suite, cela nous donne -219 25 , puis -251 227 ... On voit que ces valeurs restent imaginaires pures et donc ne se rapprocheront jamais de nos solutions .
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	Que se passerait-il si nous prenions comme valeur initiale un autre nombre complexe x y ? Il n'est
	pas très difficile de démontrer que, si x est positif, nous allons nous rapprocher de	, et si au

Après seulement quelques coups d'essai, on est déjà très près de la vraie solution . Voilà une méthode bien efficace...

[3] [4] 

On pourrait montrer que, en commençant par n'importe quel nombre proche de (à la place de

x ici), les valeurs obtenues en itérant le procédé vont toujours s'approcher de .

Nous allons maintenant tester cette méthode avec des nombres complexes (nous expliquerons pourquoi à la fin de ce paragraphe), c'est-à-dire des nombres sous la forme x y, avec i un nombre (imaginaire) dont le carré est -1, et x deux nombres réels habituels (voir le film Dimensions mentionné ci-dessous pour une explication animée et détaillée des nombres complexes). Le nombre x est appelé la partie réelle, et y la partie imaginaire.

Un tel nombre serait proche de si x est proche de et y est proche de 0. En particulier les nombres imaginaires purs, c'est-à-dire ceux dont la partie réelle est nulle, ceux la forme 0 y, sont très loin de .

Faisons le test avec i comme valeur initiale, cette fois-ci avec un crayon sur une feuille de papier (A4 par exemple !) au lieu d'une calculatrice.

Mettons i (à la place de x) dans la formule de Newton contraire x est négatif, nous allons nous rapprocher de . La droite des nombres complexes imaginaires purs, qui n'est rien d'autre que l'axe des y, est à la fois la médiatrice des deux solutions, et la ligne de séparation de deux comportements différents des suites de valeurs itératives. À sa gauche,