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Abstract: Three-particle correlations in quark and gluon jets arapated for the first time in perturba-
tive QCD. We give results in the double logarithmic appraxiion and the modified leading logarithmic
approximation. In both resummation schemes, we use theafamm of the generating functional and
solve the evolution equations analytically from the stsgpescent evaluation of the one-particle distri-
bution. We thus provide a further test of the local partonrbadiuality and make predictions for the
LHC.
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1 Introduction

The observation of quark and gluon jets has played a crudi@lin establishing QCD as the theory of
strong interaction within the standard model of particlggits. The jets, narrowly collimated bundles of
hadrons, reflect configurations of quarks and gluons at sligiences. Powerful schemes, like the double
logarithmic approximation (DLA) and the modified leadingdoithmic approximation (MLLA), which
allow for the perturbative resummation of soft-collineadaard-collinear gluons before the hadroniza-
tion occurs, have been developed over the past 30 years (évieav see [1]). One of the most striking
predictions of perturbative QCD, which follows as a consggpe of angular ordering (AO) within the
MLLA and the local parton hadron duality (LPHD) hypothes?, [is the existence of the hump-backed
shape [1] of the inclusive energy distribution of hadrorgel confirmed by experiments at colliders.
Indeed, the shape and normalization of single inclusiviidigions are compared with an experiment;
a constani ", which normalizes the number of soft gluons to the numbehafged detected hadrons
(mostly pions and kaons), turns out to be close to uriid§*(~ 1), giving support to the similarity be-
tween parton and hadron spectra [1]. Thus, the study of shawbservables like the inclusive energy
distribution and the transverse momentimspectra of hadrons [3] has shown that the perturbative stage
of the process, which evolves from the hard scale or leadanpp virtuality) ~ E to the hadronization
scaleQ), is dominant. In particular, these issues suggest thatatimhization stage of the QCD cascade
plays a subleading role and, therefore, that the LPHD hygsighis successful while treating one-particle
inclusive observables.

The study of particle correlations in intrajet cascadesiclvfare less inclusive observables, focuses
on providing tests of the partonic dynamics and the LPHD 4ln this observable was computed for
the first time at smalk (energy fraction of the jet virtuality taken away by one paitin MLLA for
particles staying close to the maximum of the one-partighéridution. In [5], the previous solutions
were extended, at MLLA, to all possible valuesioby exactly solving the QCD evolution equations.
This observable was measured by the OPAL Collaboratiarn #m annihilation at theZ® peak, that is,
for v/s = 91.2 GeV at LEP [6]. Though the agreement with predictions preskin [5] was improved,

a discrepancy still subsists pointing out a possible failof the LPHD for less inclusive observables.
However, these measurements were redone by the CDF Caltadrom pp collisions at the Tevatron for
mixed samples of quark and gluon jets [7]. The agreement pvitdictions presented in [4] turned out
to be rather good, especially for particles having veryelesergy fractionsa; ~ x,). A discrepancy
between the OPAL and CDF analysis showed up and still stagieam Therefore, the measurement of
the two-particle correlations at higher energies at the ldld€omes crucial. Furthermore, going one step
beyond, in this article we give predictions for the threetipke correlations inside quark and gluon jets.
This observable and the two-patrticle correlations can basored on equal footing at the LHC so as to
provide further verifications of the LPHD for less inclusivieservables.

2 Kinematics and evolution equations

A generating functionak (E, ©; {u}) can be constructed [1] that describes the azimuth averagytohp
content of a jet of energy’ with a given opening half-angl®; by virtue of the exact AO (MLLA),
which satisfies an integro-differential system of evolatiequations. In order to obtaiexclusive n-
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Figure 1: Three-particle yield and angular ordering insidegh energy jet.

particle distributionsDXL)(kl-, E) one takes variational derivatives of/ 4 overw(k;) with appropriate
particle momenta; = 1...n, and setsu = 0 afterwards;inclusive distributions are generated by
taking variational derivatives around= 1. Let us introduce the-particle differential correlations for
A=G,Q,Qjets as,

AN =2 Inpm (2L —1 2Q) 1
1n(z) P P A > QO ( )
together WithA(") = A(”) ,,(1) for later use;x; corresponds to the Feynman energy fraction of the jet

taken away by one particle™and z is the energy fraction of the intermediate parton. For imsta for

123

of three hadrons is displayed in Fig.1 after a quark or a glubnjet of energyE with half opening
angle ©y and virtuality Q = EOg, has been produced in a high energy collision. The kinemnatica
variable characterizing the process is given by the trasevmomentunkt; = zE©; > Qg [or (1 —
2)E©1 > Qo] of the first splitingA — BC. The partonC' fragments into three offspring such that
three hadrons of energy fractions, x5, andxzs can be triggered from the same cascade following the
condition®y > ©1 > O, > O3, which arises from exact AO in MLLA [1]. We make use of variel
$7E90, mij =Wk Y = Li+y; + i = In(Q/Qo)
and\ = ln(QO/AQCD). The two variables entering the evolution equations zaemd ©1, such that

1 < z<1=0</</. Accordingly, the anomalous dimension related to the dogptonstant can
be parametrized as

(3)
three-particle correlations = 3, the observable to be measured re@f Ai};‘o‘AS. The production

1'3E®1 0 =

E—ln—,y—ln ln%,yjzln

QS(QQ) 2 1
T

2 2 :2Nc ) {4+ = )
7 (Q%) Yo +y) Boll+ 5+ + )

wherey = 4N (HN nfTR), with Tr = 1/2 andny the number of light quark flavors. From
AO and the initial condition at threshold;s F©y, > x3E©, > z3FEO©3 > (g, one has the bounds
g—% <07 <0y = 0<y < y;forthe integrated evolution equations. The evolution éigua satisfied
by (1) are derived from the MLLA master equation for the gatiag functionalZ 4 (E, ©; u(k;)). For
three-particle correlations, one takes the f%jf secondﬁ and finally thirdm
functional derivatives of 4 (F, ©; u(k;)) over the probing functions(k;) so as to obtain the differential



system of evolution equations:

Qéy) = FC’YSG(:S) — ZE’Y& <G§ ) - 50’}’3(;(3)) ) @
Gy = 8GO —ard (617 =50dGP) + (a—b)f | (G G+ G G2+ GP2G1) - (3)

— o (G Gs+GE Go + G2 ) | + (a— 033 [(G1GaGs)i— o G1GaGy]

whereA(? = A — 4;4; andA®) = A®) — 414,45 — AT) A5 — A 4, — AT) Ay, The subscripts

¢ andy in Egs. (2) and (3) denot@/o¢ and d/dy, respectively The first terms of Egs. (2) and (3)
are of classical origin and, therefore, universal. Comastoc —4, a, (a — b), and(a — ¢), which are
O(y/as) suppressed, better account for energy conservation atveaiex of the splitting process, as
compared with the DLAD(1). The hard constants are obtained after integration overethdar part of
the DGLAP splitting functions [1] as performed in [4, 5]. lInetequation for the gluon initiated jet (3),
the first and second constant:; = 3) = 0.935 andb(ny = 3) = 0.915 were obtained in the frame of
the single inclusive distribution and two-particle coaténs respectively [4]. The third constat f)
appearing for the first time in this frame reads

1

11 4 CF ny=3
c(ny) = 1N, [?NC + gnfTR <1 - 2F> = 0.917.

[

21 MLLA and DLA solutions of the evolution equations

Equation (3) is self-contained and can be solved iterativsl setting G(®) = Cg’l)%GngGg and
G(.Q.) — C(Q)G-G in the left- and right-hand sides of (3) Accordingly, thdusion of (2) is also
obtained by setting)(®) QleQQQg and Q” = C QZQ] in the left-hand side of (2) and

GB) = C§1)23G1G2G3 in the right-hand side of the same equation such that thatiitersolutions can
be written in the compact form

@) _ (0@ (2) 2 (2) ) @ , N2 e
CA123 - <CA12 a 1) FA12 + <CA13 a 1) FA13 + <CA23 - 1) FA23 + CZ FA123 (4)
The MLLA two-particle correlatorxé?fl)2 will be taken from [5] for the computation mf1)23. Moreover,

1—bW, 467 —¢

FY =1+ : 5
Gij 2+ A+ A3+ A+ € ®)
oo Lol et o o
Gh2s 2+ A+ A+ Azt e
and for the quark jet
2) gi] — €1
Fy' =1+ —, 7
Qij 3+ A9+ A3+ Ags —a¥,+¢& ( )
O _ Cgl)%(l —al) +EP2+ P+ P - ®)
Q23 34+ Ag+ Az + Aoz —a¥y + €
whereW, = 11 s + a0 + 130 = O(v0) andy = In[G (¢, y)]. Higher order corrections arising from the

solution of the system of Egs. 2 and 3 have been neglected.inn(4his case(=(¢,y) is the inclusive



energy distribution, which will be inserted from the stestipgescent method presented in [5]. The other
functions appearing in (5) and (6) afg; = v, 2 (V.05 + i ytj0) = O(1) and

o, &
C@ = (:'(;))2)37 = O(fyg)v Cy = '(;’2)373/ = O(fyg)v
G123 G123
G Y
g ij.t 2 ] iy 2
XJ = c'(;) =0M): Xy = C(—QJ) = O0(%);
Gij Gij

7=yt (x@j\l'y + xif\l'z) = O(10),
e1 = 72 Gy + ¢ T) = O(y),

with ¢ = In C(G?’1)23 andy = In C(Gz). The set of functions appearing in (7) and (8) is obtainechfthe
previous by replacing — ¢, x — %, & — &, Cg)7 — Cg)J andc'g’; — CS’)J where the dotted?fi)j and
C'ff’; are the DLA solutions of the two- and three-particle cotals that is why this solution is said to
be iterative. Moreover, corrections, ¢; and¢y’, &;’ are very small and do not play a significant role in
the shape and normalization of the three-particle corogiat

The DLA two-patrticle correlators are taken from [8] and thieADexpression for(fi)j can be obtained
from (4) by setting all MLLAO(~yy) corrections to zero:

¢ —1 = c%ﬁ ©)
(cﬁlm - 1) - (cﬁlm 1) - (C’ffs - ) (cfgs 1) (10)
N, (Cffl)z - 1) + (C'ff1)3 - 1) + (C’ffg3 - 1) N2 )
T Ca 24+ A+ Az + Ay C224+ A+ A+ Aoy

The solutions have the following simple physical intergtiein: the first term(= —1) in the left-hand
side translates the independent or decorrelated emistitimee hadrons in the shower. After inserting
the two-particle correlator with color factox JCV—A (9) in the left-hand side of (10), terms va: corre-
spond to the case where two partons are correlated insidmthe subjet, while the other one is emitted
independently from the rest. Next, replacing (9)in their-ilgand side of (10), one obtains a contribution

mvolves three patrticles strongly correlated inside thmes@artonic shower as deplcted in Fig. 1 ThIS
term is indeed the cumulants of genuine correlations, fiiined in this article for this observable.

The evaluation of (4), which is expressed in terms of theritiyaic derivatives of the single inclusive
distributionIn[G(¢, y)], will be performed using the steepest descent method tordieteG(¢, y) [5, 8].
Thus, the MLLA logarithmic derivatives were written in [5] the form:

1 ~ -
Vi o(pi, vi) = Yot + 5@78 {e“"Q(,ui, v;) — tanh v; — tanh v; coth p; (1 + e Q (i, 1/@)>] (12)

1 .

= 58098 [+ tanh vy (1 4+ K (i, ) ) + Clpis ) (1 + Qi) ) | + OR),

1 ~ ~
Viy(p,v) =y0e " — 5@% [2 + e " Q (i, vi) + tanh v; — tanh v; coth y; (1 + e Q (s, Vz‘))}

1 =

- 55073 [1 + tanh Vz'<1 + K (pi Vz')) = C(pi, vi) (1 + e Qi Vi))} +0(7), (12)



where the function®) (1, v;), C (s, v;) and K (u;, v;) are defined in [5] andy;,, v;) are expressed as
functions of the original variabled;, y;) by inverting the nonlinear system of equations [8]:

yi — s (sinh 2u; — 2p;) — (sinh 2v; — 2v;)

b+ yi 2(sinh? y1; — sinh? ;)

sinh v; sinh 1

VA VhiruTa

In particular, this method allows for the estimation of tHeservable for particles with energies near
the maximum or hump/,.., = Y/2) of the one-particle distribution? — Y/2 |< o o Y3/2, which
applied to the three-particle correlations will appear iiordhcoming paper. For instance, at DLA one
hasA;; = 2cosh(u; — 1) with such a parametrization of the logarithmic derivatieéshe inclusive
spectrum. Close to the hump one l®g ~ (¢; — ¢;)?; thus the correlations are expected to be quadratic
as a function of¢;—¢;) and to have a maximum for particles with the same eneygy «;. In this frame,
the role of MLLA corrections should be expected to be lardgemtfor the two-particle correlations.
Indeed, higher order corrections increase with the rank@tbrrelator, which is known from the Koba-
Nielsen-Olesen problem for intrajet multiplicity fluctiais [9]. For the two-particle correlations, for
instance, one has —b(v; ¢ + 12,) and for the three-particle correlator one has the largerecton

o —c(P10 + a0 + P30).

)

2.2 Phenomenology and comparison with existing e™e~ and pp data

The study ofn-particle correlations is very important because, beinfindd as then-particle cross
section normalized by the product of the single inclusidritiution of each parton

(n) A

Chayow = A A,

the resulting observable becomes independent of the urista, thus providing a refined test of QCD
dynamics at the parton level. Since our study of threeglartiorrelations depends on previous results
for two-patrticle correlations, we briefly review recentukts about this observable. The MLLA evolution
equations for two-particle correlations, quite similathose leading to the hump-backed plateau, were
solved iteratively in terms of the logarithmic derivativefs= (¢, ) [5]. That is how, the result previously
obtained by Fong and Webber in [4], only valid in the vicinitithe maximuny,,,... of the distribution,
was extended to all possible valueszof Consequently, as displayed in Fig.2, the normalizatiothef
more accurate solution of the evolution equations is lows @produces some features of the OPAL
data at theZ® peak@ = 91.2 GeV of theeTe~ annihilation, like the flattening of the slopes towards
smaller values af [5]. Qualitatively, our MLLA expectations agree betterkvitvailable OPAL data than
the Fong—Webber predictions [5]. There remains howevegmifgiant discrepancy, markedly at very
smallz. In this region nonperturbative effects are likely to be enpronounced. They may undermine
the applicability to particle correlations of the LPHD citezations that were successful in translating
parton level predictions to hadronic observations in theeoaf more inclusive single particle energy
spectra [1].

These measurements were redone by the CDF Collaboratigip foollisions at center of mass energy
/s = 1.96 TeV for mixed samples of quark and gluon jets [7]. For congmariwith CDF data, the
two-particle correlator was normalized by the correspogdnultiplicity correlator of the second rank,

5
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Figure 2: Two-particle correlations in two quark j({tB = % + %Cé?) [5] in the process™e™ — qq as

a function ofl; + ¢y = | In(z122)| for £1 — o = In(za/z1) = 1.0 (left) and?¢y — ¢y = |In(xo/z1)]| for

= hl(leQ) =6.0 (rlght)

which defines the dispersion of the mean average multipliogide the jet. In this case, the MLLA
solution by Fong and Webber [4], the more accurate MLLA sotuf5], and the NMLLA solution [3]
were compared with the CDF data. The Fong-Webber preditiomed out to be in good agreement
with CDF data in a range from large to smallalso covering the region of the phase space where MLLA
predictions should normally not be reliable, that is, for 0.1 (see Fig.3). As these figures were taken
from [7], different notations have been used in this caseinftance/ = ¢ = In(1/z), A = € — &naa
(Emaz = lmae = 310(Q/Q0)) such that\&y + A&y = £1 + o — In(Q/Qo) andA&; — A&y = €1 — L.

31‘6 A CDF Run I 31'6 x CDF Run Il

.5 fit to CDF data <15 fit to CDF data

] uncertainty of the fit et uncertainty of the fit

Sral FongIyebher Oy 230MeY Sua| i Fongebher Oy 230MeV
P [ NMLLA O, =230MeV P NMLLA &, ,=230MeV

Q=E . 6.=238*0. 5=119GeV Q=E . 6,=238*0. 5=119GeV

1.2
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Figure 3: Two-particle correlations in a mixed sample ofogltand quark jets imp collisions as a
function of A&y + A&y = |In(z122)| — In(Q/Qo) for A&y = A&, (left) and A&y — A&y = |In(ze/x1))|
for A& = — A& (right).

As observed in Fig.3 (left), the data are well described lgyttitee cases in the intervalg; + A&, >
—0.5, that is, at very smalk. However, the Fong and Webber’s solution also describeslaie for
A& + A& < —0.5, that is, for larger values of where the MLLA is no longer valid. QCD color
coherence for Fig.3 (left, the peak A, + A&, = —1.5 is due to numerical uncertainties) should be
observed if the analysis is extendedAd; + A& > 2.5. Moreover, the NMLLA solution [3] extends,



like for thek, spectra, the region of applicability of such predictionsléoger values of. In [7], it was
concluded that despite the disagreement with the OPAL dé&tigi2, the LPHD stays successful for the
description of less inclusive energy-momentum corretetiol herefore, in this paper we encourage the
analysis of these observables by other collaborationsAIMEE, ATLAS, and CMS in order to clarify
this mismatch.

Y=75;A=0.1; |Ln(x1x2)|:lo Y=75;A=0.1; |Ln(x1x2)|:lO

25

2.251 al
/_.\ A ; ;
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Figure 4: Gluon jet 3-particle correlator as a function bf(x;x2)| for z; = x2 andin(1/x3) (left) and
as a function ofn(zy/z1) for fixed | In(z122)| andln(1/x3) (right).

3 Predictionsfor three-particle correlations and phenomenology

Finally, in order to extend the applicability of the LPHD tdager domain of observables, we per-
form theoretical predictions for three-particle corriglas in the limiting spectrum approximatio)§ ~
Agcp). This observable and two-particle correlations can besorea on equal footing at the LHC.
We display the MLLA solutions (4) of the evolution equatid@} and (3). The correlators are functions
of the variable<;, y; and the virtuality of the jet) = E©,. After settingy; = Y — ¢; with fixed

Y = In(Q/Qo) in the arguments of the solutions (4), the dependence caedueed to the following:
C) (b1, 02, 05,Y) andCy) (01,6, 03, Y).

In Fig. 4, the DLA (10) and MLLA (4) three-particle correlasofor A = G andA = Q, Q,

e _ G o _ Qi

122 G1GaGs @23 Q1Q2Q3

are displayed, respectively, as a function of the diffeeeff¢ — (o) = In(z2/x1) for two fixed values
of {3 = In(1/z3) = 4.5, 5.5, fixed sum(¢; + ¢2) = |In(x122)| = 10, and, finally, fixedY” = 7.5
(virtuality @ = 450 GeV andAgcp = 250 MeV), which is realistic for LHC phenomenology [5]. The
representative valuegg = In(1/z3) = 4.5, 5.5 (z3 = 0.011, x3 = 0.004) have been chosen according
to the range of the energy fractiafy < 0.1, where the MLLA scheme can only be applied.

In Fig. 5, the DLA (10) and MLLA (4) three-particle correlasofor A = G andA = Q, Q are depicted,

in this case as a function of the suify + ¢3) = |In(z122)| for the same values d = In(1/x3) =
4.5, 5.5, for x1 = zo andY = 7.5. As expected in both cases, the DLA and MLLA three-particle
correlators are larger inside a quark than in a gluon jet. ddfse, these plots will be the same and the

7
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Figure 5: Quark jet 3-particle correlator as a functionlaf(z,z2)| for z; = z9 andln(1/z3) (left) and
as a function ofn(z2/x1) for fixed | In(z122)| andIn(1/x3) (right).

interpretation will apply to all possible permutations bfde particles (123). As remarked above, the
difference between the DLA and MLLA results is quite impaottan pointing out that overall corrections
in O(\/a;) are large. Indeed, the last behavior is not surprising aastalready observed in the treatment
of multiplicity fluctuations of the third kind given bfgs = 4.52 [1 — (2.280 — 0.018n¢),/a;] [10].

For instance, for one quark jet produced at#egeak of theeTe~ annihilation () = 45.6 GeV), one has

as = 0.134. Replacing this value into the previous formula for the gyat multiplicity correlator, one
obtains a variation from 4.52 (DLA) to 0.83 (MLLA). Becausktlnis, DLA has been known to provide
unreliable predictions which should not be compared witheginments. From Fig.4, the correlation is
observed to be the strongest when particles have the sangyeareal to decrease when one parton is
harder than the others. Indeed, in this region of the phaseesfwo competing constraints should be
satisfied: as a consequence of gluon coherence and AO, ghiissien angles should decrease and on
the other hand, the convergence of the perturbative series z; F©; > )y should be guaranteed. That
is why, as the collinear cutoff parametgy is reached, gluons are emitted at larger angles and deggruct
interferences with previous emissions occur. This effectéarly observed in Fig. 4; the steep fall of the
distribution is more pronounced in the quark jet than in theg jet. Moreover, the observable increases
for softer partons with:s decreasing, which is for partons less sensitive to the grimtance. In Fig.5
the MLLA correlations increase for softer partons, thentdlatand decrease as a consequence of soft
gluon coherence, reproducing for three-particle cormiatthe hump-backed shape of the one-particle
distribution. Because of the limitation of phase space,tw®(®) < 1 for harder partons.

4 Summary

In this paper we provide the first full perturbative QCD treaht of three-particle correlations in parton
showers, provide a further test of the LPHD within the limgtispectrum approximation, and briefly
revise the comparison of two-particle correlations withARnd CDF data. The correlations have been
shown to be strongest for the softest hadrons having the saergyxr; = x2 = x3 in both quark and
gluon jets, increasing as a functionlaf{z;/x;) and|In(z;z;)| whenz;, softens, that is for partons less
sensitive to the energy balance. This result becomes trerahiversal fon-particle correlations.



Coherence effects appear when one or two of the partonsvegoh the process are harder than the
others, thus reproducing for this observable the humpdzhskape of the one-particle distribution. Also,
the two- and three-particle correlations vani€®?{ — 1) when one of the partons becomes very soft,
thus describing the hump-backed shape of the one-parigtidbdtion. The reason for that is dynamical

rather than kinematical: radiation of a soft gluon occursaggje angles, which makes the radiation
coherent and thus insensitive to the internal parton straaf the jet ensemble.

We give the first analytical predictions of this observalleriew of forthcoming measurements by AT-
LAS, CMS, and ALICE at the LHC. Further information from thengparison with forthcoming data

may also help to improve Monte Carlo event generators in dffteregion of the phase space in intrajet
cascades, where PYTHIA, ARIADNE and HERWIG face difficudtighile reproducing the data [11].
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