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Three-particle correlations in quark and gluon jets are computed for the first time in perturbative
QCD. We give results in the double logarithmic approximation and the modified leading logarithmic
approximation. In both resummation schemes, we use the formalism of the generating functional and
solve the evolution equations analytically from the steepest descent evaluation of the one-particle
distribution. We thus provide a further test of the local parton hadron duality (LPHD) and make
predictions for the LHC.

The observation of quark and gluon jets has played
a crucial role in establishing Quantum Chromodynam-
ics (QCD) as the theory of strong interaction within
the Standard Model of particle physics. The jets, nar-
rowly collimated bundles of hadrons, reflect configura-
tions of quarks and gluons at short distances. Power-
ful schemes, like the Double Logarithmic Approximation
(DLA) and the Modified Leading Logarithmic Approxi-
mation (MLLA), which allow for the perturbative resum-
mation of soft-collinear and hard-collinear gluons before
the hadronization occurs, have been developed over the
past thirty years (for a review see [1]). One of the strikest
predictions of perturbative QCD (pQCD), which follows
as a consequence of Angular Ordering (AO) within the
MLLA and the Local Parton Hadron Duality (LPHD)
hypothesis [2], is the existence of the hump-backed shape
[1] of the inclusive energy distribution of hadrons, later
confirmed by experiments at colliders. Thus, the study
of inclusive observables like the inclusive energy distri-
bution and k⊥ spectra of hadrons [3] have shown that
the perturbative stage of the process, which evolves from
the hard scale or leading parton virtuality Q ∼ E to the
hadronization scale Q0, is dominant. In particular, these
issues suggest that the hadronization stage of the QCD
cascade plays a subleading role and therefore, that the
LPHD hypothesis is successful while treating one-particle
inclusive observables.

The study of particle correlations in intrajet cascades,
which are less inclusive observables, focuses on provid-
ing tests of the partonic dynamics and the LPHD. In
[4], this observable was computed for the first time at
small x in MLLA for particles staying close to the maxi-
mum of the one-particle distribution. In [5], the previous
solutions were extended, at MLLA, to all possible val-
ues of x by solving the QCD evolution equations exactly.
This observable was measured by the OPAL collabora-
tion in the e+e− annihilation at the Z0 peak, that is for√
s = 91.2 GeV at LEP [6]. Though the agreement with

predictions presented in [5] was improved, a discrepancy
still subsists pointing out a possible failure of the LPHD
for less inclusive observables. However, these measure-
ments were repeated by the CDF collaboration in pp̄ col-
lisions at the Tevatron for mixed samples of quark and

gluon jets [7]. The agreement with predictions presented
in [4] turned out to be rather good, specially for particles
having very close energy fractions (x1 ≈ x2). A dis-
crepancy between the OPAL and CDF analysis showed
up and still stays unclear. Therefore, the measurement
of the two-particle correlations at higher energies at the
LHC becomes crucial. Furthermore, going one step be-
yond, in this letter we give predictions for the three-
particle correlations inside quark and gluon jets. This
observable and the two-particle correlations can be mea-
sured in equal footing at the LHC so as to provide further
verifications of the LPHD for less inclusive observables.
A generating functional Z(E,Θ; {u}) can be con-

structed [1] that describes the azimuth averaged par-
ton content of a jet of energy E with a given opening
half-angle Θ; by virtue of the exact AO (MLLA), which
satisfies an integro-differential system of evolution equa-
tions. In order to obtain exclusive n-particle distributions

D
(n)
A (ki, E) one takes n variational derivatives of ZA over

u(ki) with appropriate particle momenta, i = 1 . . . n, and
sets u ≡ 0 after wards; inclusive distributions are gen-
erated by taking variational derivatives around u ≡ 1.
Let us introduce the n-particle differential correlations
for A = G,Q, Q̄ jets as,

A
(n)
1...n(z) ≡

x1
z
. . .

xn
z
D

(n)
A

(

x1
z
. . .

xn
z
, ln

zQ

Q0

)

, (1)

together with A
(n)
1...n ≡ A

(n)
1...n(1) for later use; xi corre-

sponds to the Feynman energy fraction of the jet taken
away by one hadron “i”. For instance, for three-particle
correlations n = 3, the observable to be measured reads

C(3)
A123

=
A

(3)
123

A1A2A3
. The production of three hadrons is

displayed in Fig.1 after a quark or a gluon (A) jet of
energy E with half opening angle Θ0 and virtuality
Q = EΘ0 has been produced in a high energy colli-
sion. The kinematical variable characterizing the process
is given by the transverse momentum k⊥ = zEΘ1 ≥ Q0

(or (1 − z)EΘ1 ≥ Q0) of the first splitting A → BC.
The parton C fragments into three offspring such that
three hadrons of energy fractions x1, x2 and x3 can
be triggered from the same cascade following the con-
dition Θ0 ≥ Θ1 ≥ Θ2 ≥ Θ3, which arises from exact
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FIG. 1: Three-particle yield and angular ordering inside a
high energy jet.

AO in MLLA [1]. We make use of variables, ℓ = ln z
xi
,

y = ln
xjEΘ1

Q0
, ℓi = ln 1

xi
, yj = ln

xjEΘ0

Q0
, ηij = ln xi

xj
,

Y = ℓi + yj + ηij = ln(Q/Q0) with ηij = ln(xi/xj) and
λ = ln(Q0/ΛQCD). The two variables entering the evolu-
tion equations are z and Θ1, such that x1 ≤ z ≤ 1 ⇒ 0 ≤
ℓ ≤ ℓ1. Accordingly, the anomalous dimension related to
the coupling constant can be parametrized as

γ20(Q
2) = 2Nc

αs(Q
2)

π
, γ20(ℓ + y) =

1

β0(ℓ + y + ηij + λ)
,

where β0 = 1
4Nc

(

11
3 Nc − 4

3nfTR
)

, with TR = 1/2 and
nf the number of light quark flavors. From AO and
the initial condition at threshold x3EΘ0 ≥ x3EΘ1 ≥
x3EΘ3 ≥ Q0, one has the bounds Q0

x3E
≤ Θ1 ≤

Θ0 ⇒ 0 ≤ y ≤ y3 for the integrated evolution equa-
tions. The evolution equations satisfied by (1) are de-
rived from the MLLA master equation for the generat-
ing functional ZA(E,Θ;u(ki)). For three-particle cor-

relations, one takes the first δZA

δu(k1)
, second δ2ZA

δu(k1)δu(k2)
,

and finally third δ3ZA

δu(k1)...δu(k3)
functional derivatives of

ZA(E,Θ;u(ki)) over the probing functions u(ki) so as
to obtain the differential system of evolution equations:

Q̂
(3)
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CF
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γ20G
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2
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)

, (2)
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(3)
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(3)−aγ20
(

G
(3)
ℓ −β0γ20G(3)

)
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2
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Ĝ
(2)
12 G3+Ĝ
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+ (a−c)γ20
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(G1G2G3)ℓ−β0γ20G1G2G3
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,

where Â
(2)
ij = A

(2)
ij −AiAj and Â(3) = A(3) − A1A2A3 −

Â
(2)
12 A3 − Â

(2)
13 A2− Â

(2)
23 A1. The subscripts ℓ and y in the

equations (2) and (3) denote ∂/∂ℓ and ∂/∂y respectively.
The first terms of the equations in (2) and (3) are of clas-
sical origin and therefore, universal. Corrections ∝ − 3

4 ,
a, (a − b) and (a − c), which are O(

√
αs) suppressed,

better account for energy conservation at each vertex of
the splitting process, as compared with the DLA O(1).
The hard constants are obtained after integration over
the regular part of the DGLAP splitting functions [1] as
performed in [4, 5]. In the equation for the gluon initiated
jet (3), the first and second constants a(nf = 3) = 0.935

and b(nf = 3) = 0.915 were obtained in the frame of the
single inclusive distribution and two-particle correlations
respectively [4]. The third constant c(nf ) appearing for
the first time in this frame reads

c(nf ) =
1

4Nc

[

11

3
Nc +

4

3
nfTR

(

1− 2
CF

Nc

)3
]

nf=3
= 0.917.

The equation (3) is self-contained and can be solved it-

eratively by setting G(3) = C
(3)
G123

G1G2G3 and G
(2)
ij =

C
(2)
Gij

GiGj in the left and right hand sides of (3). Ac-

cordingly, the solution of (2) is also obtained by setting

Q(3) = C
(3)
Q123

Q1Q2Q3 and Q
(2)
ij = C

(2)
Qij

QiQj in the l.h.s.

of (2) and G(3) = C
(3)
G123

G1G2G3 in the r.h.s. of the same
equation such that the iterative solutions can be written
in the compact form

C(3)
A123

−1 =
(

C(2)
A12

−1
)

F
(2)
A12

+
(

C(2)
A13

−1
)

F
(2)
A13

(4)

+
(

C(2)
A23

−1
)

F
(2)
A23

+
N2

c

C2
A

F
(3)
A123

.

The MLLA two-particle correlators C(2)
A12

will be taken

from [5] for the computation of C(3)
A123

. Moreover,

F
(2)
Gij

= 1 +
1− bΨℓ + ξij1 − ǫ1

2 + ∆12 +∆13 +∆23 + ǫ1
, (5)

F
(3)
G123

=
1− cΨℓ + ξ121 + ξ131 + ξ231 − ǫ1
2 + ∆12 +∆13 +∆23 + ǫ1

(6)

and for the quark jet

F
(2)
Qij

= 1 +
ξ̃ij1 − ǫ̃1

3 + ∆12 +∆13 +∆23 − aΨℓ + ǫ̃1
, (7)

F
(3)
Q123

=
C(3)
G123

(1− aΨℓ) + ξ̃121 + ξ̃131 + ξ̃231 − ǫ̃1

3 + ∆12 +∆13 +∆23 −aΨℓ + ǫ̃1
, (8)

where Ψℓ = ψ1,ℓ+ψ2,ℓ+ψ3,ℓ = O(γ0) and ψ = ln[G(ℓ, y)].
Higher order corrections arising from the solution of the
system of equations (2,3) have been neglected in (4).
In this case, G(ℓ, y) is the inclusive energy distribution,
which will be inserted from the steepest descent method
presented in [5]. The other functions appearing in (5,6)
are ∆ij = γ−2

0 (ψi,ℓψj,y + ψi,yψj,ℓ) = O(1) and

ζℓ =
Ċ(3)
G123,ℓ

Ċ(3)
G123

= O(γ20 ), ζy =
Ċ(3)
G123,y

Ċ(3)
G123

= O(γ20),

χij
ℓ =

Ċ(2)
Gij,ℓ

Ċ(2)
Gij

= O(γ20), χ
ij
y =

Ċ(2)
Gij ,y

Ċ(2)
Gij

= O(γ20 ),

ξij1 = γ−2
0

(

χij
ℓ Ψy + χij

y Ψℓ

)

= O(γ0),

ǫ1 = γ−2
0 (ζℓΨy + ζyΨℓ) = O(γ0),

with ζ = ln Ċ(3)
G123

, χ = ln Ċ(2)
G . The set of functions ap-

pearing in (7,8) is obtained from the previous by replac-

ing ζ → ζ̃, χ → χ̃, ξ → ξ̃, Ċ(2)
Gij

→ Ċ(2)
Qij

and Ċ(3)
Gij

→ Ċ(3)
Qij
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where the dotted Ċ(2)
Aij

and Ċ(3)
Aij

are the DLA solutions of
the two- and three-particle correlators; that is why this
solution is said to be iterative. The DLA two-particle
correlators are taken from [8] and the DLA expression

for Ċ(3)
Aij

can be obtained from (4) by setting all MLLA

O(γ0) corrections to zero:

Ċ(2)
Aij

− 1 =
Nc

CA

1

1 + ∆ij
; (9)

(

Ċ(3)
A123

−1
)

−
(

Ċ(2)
A12

−1
)

−
(

Ċ(2)
A13

−1
)

−
(

Ċ(2)
A23

−1
)

(10)

=
Nc

CA

(

Ċ(2)
A12

−1
)

+
(

Ċ(2)
A13

−1
)

+
(

Ċ(2)
A23

−1
)

2 + ∆12 +∆13 +∆23

+
N2

c

C2
A

1

2 + ∆12 +∆13 +∆23
.

The solutions have the following simple physical interpre-
tation: the first term (= −1) in the l.h.s. translates the
independent or decorrelated emission of three hadrons in
the shower. After inserting the two-particle correlator
with color factor ∝ Nc

CA
(9) in the l.h.s. of (10), terms

∝ Nc

CA
correpond to the case where two partons are cor-

related inside the same subjet, while the other one is
emitted independently from the rest. Next, replacing (9)

in the r.h.s. of (10), one obtains a contribution ∝ N2
c

C2
A

de-

scribing the independent emission of two partons inside

the same subjet. The last term ∝ N2
c

C2
A

involves three par-

ticles strongly correlated inside the same partonic shower
as depicted in Fig.1. This term corresponds indeed to the

genuine cumulant correlation F
(3)
A123

, first obtained in this
letter for this observable.
The evaluation of (4), which is expressed in terms of

the logarithmic derivatives of the single inclusive dis-
tribution ln[G(ℓ, y)], will be performed using the steep-
est descent method to determine G(ℓ, y) [5, 8]. Thus,
the MLLA logarithmic derivatives were written in [5] in
the form: ψi,ℓ = γ0e

µi + aγ0f1(µi, νi) + β0γ0f2(µi, νi),

ψi,y = γ0e
−µi + aγ0f̃1(µi, νi) + β0γ0f̃2(µi, νi), where

(µi, νi) are expressed as functions of the original variables
(ℓ, y) by inverting the non-linear system of equations [8]:

yi − ℓi
ℓi + yi

=
(sinh 2µi − 2µi)− (sinh 2νi − 2νi)

2(sinh2 µi − sinh2 νi)
,

sinh νi√
λ

=
sinhµi√
ℓi + yi + λ

.

In particular, this method allows for the estimation of the
observable for particles with energies near the maximum
or hump of the one-particle distribution | ℓ − ℓi |≪ σ ∝
Y 3/2, which applied to the three-particle correlations,
will appear in a forthcoming paper. For instance, at DLA
one has ∆ij = 2 cosh(µi−µj) with such a parametrization
of the logarithmic derivatives of the inclusive spectrum.
Close to the hump one has ∆ij ≃ (ℓi − ℓj)

2, thus the
correlations are expected to be quadratic as a function of
(ℓi − ℓj) and to have a maximum for particles with the
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FIG. 2: Gluon jet 3-particle correlator as a function of
ln(x2/x1) for fixed | ln(x1x2)| and ln(1/x3).

same energy xi = xj . In this frame, the role of MLLA
corrections should be expected to be larger than for the
two-particle correlations. Indeed, higher order correc-
tions increase with the rank of the correlator, which is
known from the Koba-Nielsen-Olesen (KNO) problem for
intra-jet multiplicity fluctuations [9]. For the 2-particle
correlations for instance one has ∝ −b(ψ1,ℓ+ψ2,ℓ) and for
the three-particle correlator one has the larger correction
∝ −c(ψ1,ℓ + ψ2,ℓ + ψ3,ℓ).

Finally, we perform theoretical predictions for three-
particle correlations for the LHC in the limiting spectrum
approximation (Q0 ≈ ΛQCD). We display the MLLA so-
lutions (4) of the evolution equations (2) and (3). The
correlators are functions of the variables ℓi, yi and the
virtuality of the jet Q = EΘ0. After setting yi = Y − ℓi
with fixed Y = ln(Q/Q0) in the arguments of the solu-
tions (4), the dependence can be reduced to the following:

C(3)
G123

(ℓ1, ℓ2, ℓ3, Y ) and C(3)
Q123

(ℓ1, ℓ2, ℓ3, Y ).

In Figs. 2 and 3, the DLA (10) and MLLA (4) three-
particle correlators for A = G and A = Q, Q̄ are dis-
played respectively, as a function of the difference (ℓ1 −
ℓ2) = ln(x2/x1) for two fixed values of ℓ3 = ln(1/x3) =
4.5, 5.5, fixed sum (ℓ1+ℓ2) = | ln(x1x2)| = 10 and, finally,
fixed Y = 7.5 (virtuality Q = 450 GeV and ΛQCD = 250
MeV), which is realistic for LHC phenomenology [5]. The
representative values ℓ3 = ln(1/x3) = 4.5, 5.5 (x3 =
0.011, x3 = 0.004) have been chosen according to the
range of the energy fraction xi ≪ 0.1, where the MLLA
scheme can only be applied.

In Figs. 4 and 5, the DLA (10) and MLLA (4) three-
particle correlators forA = G and A = Q, Q̄ are depicted,
in this case as a function of the sum (ℓ1+ℓ2) = | ln(x1x2)|
for the same values of ℓ3 = ln(1/x3) = 4.5, 5.5, for
x1 = x2 and Y = 7.5. As expected in both cases, the
DLA and MLLA three-particle correlators are larger in-
side a quark than in a gluon jet. Of course, these plots
will be the same and the interpretation will apply to
all possible permutations of three particles (123). As
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remarked above, the difference between the DLA and
MLLA results is quite important pointing out that overall
corrections in O(

√
αs) are large. Indeed, the last behav-

ior is not surprising as it was already observed on the
treatment of multiplicity fluctuations of the third kind
given by [10]

〈n(n− 1)(n− 2)〉Q
〈n〉3Q

= 4.52 [1− (2.280− 0.018nf)
√
αs] .

For instance, for one quark jet produced at the Z0

peak of the e+e− annihilation (Q = 45.6 GeV), one has
αs = 0.134. Replacing this value into the previous for-
mula for the quark jet multiplicity correlator, one obtains
a variation from 4.52 (DLA) to 0.83 (MLLA). Because of
this, DLA has been known to provide unreliable predic-
tions which should not be compared with experiments.
From Fig.2 and Fig.3, the correlation are observed to be
the strongest when particles have the same energy and
to decrease when one parton is harder than the others.
Indeed, in this region of the phase space two compet-
ing constrains should be satisfied: as a consequence of
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FIG. 5: Quark jet 3-particle correlator as a function of
| ln(x1x2)| for x1 = x2 and ln(1/x3).

gluon coherence and AO, gluon emission angles should
decrease and on the other hand, the convergence of the
perturbative series k⊥ = xiEΘi ≥ Q0 should be guar-
anteed. That is why, as the collinear cut-off parameter
Q0 is reached, gluons are emitted at larger angles and
destructive interferences with previous emissions occur.
Moreover, the observable increases for softer partons with
x3 decreasing, which is for partons less sensitive to the en-
ergy balance. In Fig.4 and Fig.5 the MLLA correlations
increase for softer partons, then flatten and decrease as
a consequence of soft gluon coherence, reproducing for
three-particle correlations, the hump-backed shape of the
one-particle distribution. Because of the limitation of the
phase space, one has C(3) ≤ 1 for harder partons.

In this letter we provide the first full pQCD treatment
of three-particle correlations in parton showers and a fur-
ther test of the LPHD within the limiting spectrum ap-
proximation. We give the first analytical predictions of
this observable in view of forthcoming measurements by
ATLAS, CMS and ALICE at the LHC.
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