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ABSTRACT
This paper deals with the reconstruction of T1-T2 correlation
spectra in Nuclear Magnetic Resonance (NMR) spectroscopy.
The ill-posed character of this inverse problem and its large
size are the main difficulties of the reconstruction. While
maximum entropy is retained as an adequate regularization
approach, the choice of an efficient optimization algorithm
remains a challenging task. Our proposal is to apply a non-
linear conjugate gradient algorithm with two original features.
Firstly, a theoretically well stated line search strategy suitable
for the entropy function is applied to ensure a monotonic de-
crease of the criterion. Secondly, an appropriate precondition-
ing structure based on a truncated singular value decomposi-
tion of the forward model matrix is used to speed up the al-
gorithm convergence. The resulting method reveals far more
efficient than the classical Skilling and Bryan method and its
applicability is illustrated through real NMR data processing.

Index Terms— Maximum entropy, conjugate gradient,
line search, preconditioning, NMR, T1-T2 spectrum.

1. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is a mea-
surement technique used to analyze the properties of matter
in order to determine its molecular structure and dynamics.
In conventional NMR, the data are recorded independently
either in terms of longitudinal,T1, or transversal,T2, relax-
ation times. Measurements based on a joint observation with
respect to these two parameters have proved to provide more
robust results [1] since a T1-T2 spectrum reveals any cou-
pling betweenT1 andT2 relaxations, which is very useful for
structure determination.

The physical model behind NMR spectroscopy states that
the NMR decayX(τ1, τ2) is related to the continuous distri-
butionS(T1, T2), also called T1-T2 spectrum, according to a
Fredholm integral of the first kind

X(τ1, τ2) =
∫∫

k1(τ1, T1)S(T1, T2)k2(τ2, T2)dT1dT2 (1)

with k1(τ1, T1) = 1 − e−τ1/T1 andk2(τ2, T2) = e−τ2/T2 .
This decay also depends on time variables, notedτ1 andτ2,

corresponding respectively to the spin evolution length and to
the recording time of the echo.

Experimental data, notedY (τ1, τ2), consist of a series of
discrete noisy samplesY ∈ R

m1×m2 modeled by

Y = K1SKt
2 + E (2)

with K1 ∈ R
m1×N1 , K2 ∈ R

m2×N2 , Y ∈ R
m1×m2 , S ∈

R
N1×N2 andE a noise term assumed white Gaussian.

2D NMR reconstruction amounts to estimateS given
Y . Direct inversion is numerically unstable because of the
ill-conditioning of matricesK1 and K2 [2]. The second
difficulty is related to the large scale nature of the problem
which excludes the use of a large family of reconstruction
approaches.

To handle this difficulty, [3] proposes a reconstruction
method based on a matrix-vector formulation of the obser-
vation model

y = Ks + e (3)

with y = vect(Y ), s = vect(S), e = vect(E) andK =
K1 ⊗ K2. The operatorvect corresponds to lexicographi-
cally reordering matrix elements into a vector and⊗ denotes
the Kronecker product. The implementation of (3) being com-
putationally expensive1, a data compression using low-rank
singular value decompositions of matricesK1 andK2 is per-
formed. Nonetheless, this pre-processing step can cause a sig-
nificant loss of information and one can expect sub-optimal
results. In fact, the storage of matrixK, and thus the data
compression, can be avoided by exploiting the separabilityof
the observation model kernelsk1 andk2 to calculate quanti-
ties such as gradient and Hessian-vector products.

As a regularization operator, maximum entropy (MEM) [4]
has given satisfying results in the context of 1D NMR spec-
troscopy [5], which motivates its application in the 2D case.
Maximum entropy reconstruction can be formulated as the
problem of minimizing

L(S) = C(S) + λR(S) (4)

1Typical values arem1 = 50, m2 = 104, N1 × N2 = 200 × 200, so
thatK has2 · 1010 elements



where the first term is a fidelity to data termC(S) = 1

2
‖Y −

K1SKt
2‖

2
F according to the Gaussian noise statistics, with

‖.‖F denoting the Frobenius norm. The second term is the
Shannon entropy measureR(S) =

∑

T1,T2
S(T1, T2) log S(T1, T2),

that plays the role of a regularization term. Moreover, such
penalization implicitly handles the positivity constraint since
the norm of the gradient ofR is unbounded at the boundary
of the positive orthant. In the context of maximum entropy,
[4] proposed an iterative minimization algorithm based on
a quadratic approximation of the criterion over a low-rank
subspace. However, we have noticed that this algorithm does
not ensure a monotonic decrease of the criterion and a slow
convergence rate when processing 2D NMR data [6]. More-
over, according to [7, p. 1022], the convergence proof of this
algorithm is not established.

In this paper, we propose an efficient iterative algorithm
allowing to optimize the maximum entropy criterion with a
reduced computation cost in the case of 2D NMR reconstruc-
tion. In fact, recent results concerning the iterative minimiza-
tion of criteria containing barrier functions [8], such as in
maximum entropy, Poissonian likelihood models and interior
point methods, allow us to minimize (4) using a non-linear
conjugate gradient algorithm that benefits from stronger the-
oretical properties.

2. PROPOSED OPTIMIZATION APPROACH

The standard non linear conjugate gradient algorithm is based
on iteratively decreasing the objective function2 L(s) by
moving the current solutionsk along a directiondk

sk+1 = sk + αkdk, (5)

whereαk > 0 is the stepsize anddk is a search direction
defined by

d0 = −g0, dk = −gk + βkdk−1, ∀k > 1. (6)

wheregk , ∇L(sk) andβk is the conjugacy parameter. In
practice, the method consists in alternating the construction
of dk and the computation of the stepsizeαk by a line search
procedure.

2.1. Line search strategy

An acceptable value ofαk is obtained by minimizing the
scalar functionℓ(α) = L(sk +αdk) under some convergence
conditions [9, Chap.3]. It can be checked that the derivative
of ℓ(α) tends to−∞ whenα is equal to the smallest positive
step ᾱ canceling some component of the vectorsk + ᾱdk

(due to Shannon entropy penalization). Consequently, we
must ensure that during the line search, the step values re-
main in the interval[0; ᾱ) since the functionℓ(α) is undefined
for α > ᾱ. Moreover, because of the vertical asymptote at

2In the sequel, we use the notationL(s) = L(S)

ᾱ, standard methods using cubic interpolations or quadratic
approximations are not suited. Thus, a line search strategy
based on the Majorization-Minimization (MM) principle [10]
is proposed. The minimization ofℓ(α) is replaced by suc-
cessive minimizations of majorant functions3 for ℓ(α). The
initial minimization ofℓ(α) is then replaced by a sequence of
easier subproblems, corresponding to the MM update rule











α0
k = 0,

αj+1

k = arg minα hk(α, αj
k), j = 0, . . . , J − 1,

αk = αJ
k .

(7)

with a majorant function having the following form

hk(α, α′) = ℓ(α′) + (α − α′)ℓ̇(α′) +
1

2
mk(α − α′)2

+ γk

[

(ᾱ − α′) log
(

ᾱ − α′

ᾱ − α

)

− α + α′
]

. (8)

Functionhk(α, α′) is strictly convex and has a unique mini-
mizer, which takes an explicit form

α′ +
−A2 +

√

A2
2 − 4A1A3

2A1

, (9)

with A1 = −mk, A2 = γk − ℓ̇(α′) + mk(ᾱ − α′) andA3 =
(ᾱ − α′)ℓ̇(α′). Property 1 [8] gives a procedure for finding
(mk, γk).

Property 1. ℓ(α) has a barrier located at

ᾱ = min
i|di<0

−si/di. (10)

Let mk = 2dT
k KT Kdk + λmb and γk = λγb with mb =

b̈1(0) andγb = b̈2(0)ᾱ if αj
k = 0. Otherwise, let

mb =
b1(0) − b1(α

j
k) + αj

k ḃ1(α
j
k)

(αj
k)2/2

γb =
b2(0) − b2(α

j
k) + αj

k ḃ2(α
j
k)

(ᾱ − αj
k) log(1 − αj

k/ᾱ) + αj
k

(11)

whereb1(α) =
∑

i|di>0
(si +αdi) log(si +αdi) andb2(α) =

∑

i|δi<0
(si + αdi) log(si + αdi). Then, functionhk(·, αj

k) is

a majorant ofℓ(·) at αj
k.

The convergence to the minimizer of (4) when using the
NLCG algorithm and the stepsize strategy (7) is also estab-
lished for several conjugacy formulas.

3A function hk(α, α′) is said majorant forℓ(α) at α′ if hk(α′, α′) =
ℓ(α′) andhk(α, α′) > ℓ(α) for all α.



2.2. Preconditioning

Preconditioning allows to speedup the algorithm convergence
by employing a scaling matrix which transforms the space of
original variables into a space in which the Hessian of the
criterion has more clustered eigenvalues. Thus, in the pre-
conditioned version of the NLCG algorithm (PNLCG), the
direction is calculated as

d0 = −P0g0, dk = −Pkgk + βkdk−1, ∀k > 1. (12)

We proposePk as the following approximation of the inverse
Hessian ofL(s) atsk

Pk =
[

UDUT + λdiag(sk)−1
]−1

(13)

whereUDUT results from a truncated singular value de-
composition (TSVD) ofKT K, or more precisely, from the
TSVD of KT

1 K1 andKT
2 K2, each at rankv.

Table 1 summarizes the proposed algorithm scheme.

Choose parametersv, λ, J and initial values0

Compute the TSVD ofKT
1 K1 andKT

2 K2 at rankv
Repeat until convergence

1. CalculatePk using (13)
2. Computedk using (12)
3. Setαk afterJ iterations of (7)
4. Updatesk according to (5)

Table 1. Main steps of the proposed optimization algorithm.

3. EXPERIMENTAL RESULTS

This section discusses the performances of the proposed
method and illustrates its applicability. The algorithm isini-
tialized with a uniform positive 2D spectrum, the modified
Polyak-Ribìere-Polak (PRP+) conjugacy is used and the al-
gorithm convergence is checked using the following stopping
rule [9]

‖gk‖∞ < 10−8(1 + |L(sk)|). (14)

The regularization parameterλ is set to get the best result in
terms of similarity between the simulated and the estimated
spectra (in the sense of quadratic error).

3.1. Synthetic data

The data set is simulated using the observation model (2) with
a signal to noise ratio of40 dB, m1 = 200 andm2 = 500.
The synthetic spectrumSo is a Gaussian distribution located
at [T1, T2] = [2s, 1.8s] (Fig. 1). The reconstruction is per-
formed forN1 = N2 = 100 with λ = 10−6.

Fig. 2(a) and 2(b) summarize the performance results in
terms of iteration numberK and computation timeT in sec-
onds on an Intel Pentium 4 3.2 GHz, 3 GB RAM. It can be
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Fig. 1. Simulated 2D spectrum (left) and NMR decay (right).
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Fig. 2. Influence of the rank of truncationv and of the number
of subiterationsJ on the speed of convergence
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Fig. 3. Reconstruction of a 2D NMR spectrum using the pro-
posed algorithm (left) and the approach of [3] (right). In both
cases, the normalized mean square error is about17%

noted that increasing the value ofv induces a faster conver-
gence in terms of iteration number. However, the overall com-
putation time can increase for high values ofv. Concerning
the choice of the sub-iteration number in (7), it appears that
J = 1 leads to the best results in terms of computation time
which shows that an exact minimization of the scalar function
during line search is not necessary.

In this simulated example, the PNLCG algorithm with
J = 1 andv = 6 converges in 158 iterations(26.6s) while
Skilling-Bryan algorithm fails to give the same solution qual-
ity, in terms of gradient norm and similarity between the re-
constructed spectrum and the original one, after 2000 itera-
tions. Fig. 3 shows the reconstructed spectra using the pro-
posed algorithm and the approach of [3], which usesℓ2 norm



penalization and positivity constraints. Although the latter
performs in10s, the comparison of the results shows that
the entropy penalization leads to a spectrum whose shape is
closer to the simulated one.

3.2. Experimental data

We present reconstruction results of a T1-T2 spectrum from
2D NMR analysis on a vegetal sample (apple). Measurements
are made form1 = 50, m2 = 10000 and the reconstruction
is performed forN1 = N2 = 200, λ = 5 · 10−5, J = 1 and
v = 7.
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Fig. 4. Reconstruction of 2D NMR experimental data

The PNLCG algorithm converges in101 iterations (140
s). The reconstructed spectrum is illustrated in Fig.4(a).The
positions of the three spectrum maxima (Fig.4(b)) have been
confirmed by theoretical analysis. Moreover, the peak local-
ized in[T1, T2] = [1.36, 0.88] shows a correlation betweenT1

andT2, illustrating the advantage of 2D spectroscopy since
this information does not appear in the marginalT1 andT2

spectra on Fig.4(c)-(d).

4. CONCLUSION

In this paper, we have presented an efficient method for the
reconstruction of a 2D NMR spectrum. The minimization
is performed with a preconditioned conjugate gradient algo-
rithm associated with a MM line search scheme. The resulting
method benefits from strong convergence results. The pro-
posed method has a reduced computational cost and shows
itself very efficient on practical problems.

Future works will focus on a deep comparison of the
proposed algorithm with the approach of [3] using real data
recorded in various situations and propose a strategy for set-
ting the regularization parameterλ. We will also investigate

others optimization approaches such as quasi-Newton or sub-
space methods for which the proposed line search procedure
still applies.
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