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IRMAR, Université de Rennes 1, Campus de Beaulieu

35042 Rennes Cedex, France
damien.passemier@univ-rennes1.fr

JIAN-FENG YAO

Department of Statistics and Actuarial Science
The University of Hong Kong

Pokfulam, Hong Kong

jeffyao@hku.hk

31 March 2011∗

In a spiked population model, the population covariance matrix has all its eigenvalues

equal to units except for a few fixed eigenvalues (spikes). Determining the number of
spikes is a fundamental problem which appears in many scientific fields, including signal

processing (linear mixture model) or economics (factor model). Several recent papers
studied the asymptotic behavior of the eigenvalues of the sample covariance matrix

(sample eigenvalues) when the dimension of the observations and the sample size both

grow to infinity so that their ratio converges to a positive constant. Using these results,
we propose a new estimator based on the difference between two consecutive sample

eigenvalues.
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1. Introduction

In a spiked population model, the population covariance matrix has all its eigenva-

lues equal to units except for a few fixed eigenvalues (spikes). This model appears in

many scientific fields often with different names. In economics, it is called “factors

model” within the Ross Arbitrage Pricing Theory (APT) and the aim is to relate

observed data (assets) to a small dimensional set of unobserved variables which

are then estimated [1]. In physics of mixture, “linear mixture model” are naturally

considered for various phenomena [2]. In wireless communication, a signal emitted
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by a source is modulated and received by an array of antennas which will permit

the reconstruction of the original signal.

An important question to be addressed under this model is how many factors/

components/signals there are. It is generally a first step preliminary to any further

study such as estimation and forecasting.

Many methods for determining the number of factors have been developed,

based on the minimum description length (MDL), Bayesian model selection or

Bayesian Information Criteria (BIC) (See [3]). Nevertheless, these methods are

based on asymptotic expansions for large sample size and may not perform well

when the dimension of the data p is large compared to the sample size n. To avoid

this problem of high dimension, several methods have been recently proposed using

the random matrix theory, such as Harding [4] or Onatski [5] in economics, and

Kritchman & Nadler [6] in array processing or chemometrics literature.

In this paper, we present a new estimator for the number of spikes from high-

dimensional data. Our approach is based on the results of Bai & Yao [7] and Paul

[8] which give the limiting distributions of the extreme eigenvalues of a sample

covariance matrix coming from a spiked population model, and a recent result of

Benaych-Georges, Guionnet & Maida [9]. The obtained results are presented in

Section 3.

The remaining sections of the paper are organized as follows. In Section 2, we

introduce the spiked population model, and recall known results on the almost sure

limits of extreme eigenvalues which lead to the idea of our estimator. In Section 3 we

define precisely our estimator and prove its consistency in the case of simple spikes

with known variance. Next we give a method of estimation in the case of simple

spikes with unknown variance. In Section 4, we define the factor/linear mixture

model that we link to the spiked population model and we compare our method to

those of Harding [4] and Kritchman & Nadler [6]. We consider the case of spikes

with greater multiplicity in Section 5. Finally, we discuss the extension to the gen-

eralized spiked population model. Throughout the paper, simulation experiments

are conducted to access the quality of the proposed estimation.

2. Spiked Population Model

We consider x = EV
1
2 y, where y ∈ Rp is a zero-mean random vector of i.i.d.

components, E is an orthogonal matrix and

V = cov(x) = σ2

(
Σq0 0

0 Ip−q0

)
,

where Σ has K non null and non unit eigenvalues (αk)1≤k≤K with respective multi-

plicity (nk)1≤k≤K (n1+ · · ·+nK = q0). Therefore, the eigenvalues of the population



3

covariance matrix V are unit except the αj , called spike eigenvalues. Notice that,

if the observations are Gaussian, we may assume that V is diagonal by using a

suitable orthogonal transformation.

Let (xi)(1≤i≤n) be n independent copies of x. The sample covariance matrix is

Sn =
1

n

n∑
i=1

xix
∗
i .

It is assumed in the sequel that q0 is fixed, and p and n are related so that when

n → +∞, p
n → c > 0. Moreover, we assumed that α1 > · · · > αK > 1 +

√
c for all

i ∈ {1, . . . ,K}. For α 6= 1, we define the function

φ(α) = α+
cα

α− 1
.

Let λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be the eigenvalues of the sample covariance matrix

Sn. Let si = n1 + · · · + ni for 1 ≤ i ≤ K. Baik and Silverstein [10] proved that,

under a moment condition on x, for each k ∈ {1, . . . ,K} and sk−1 < j ≤ sk almost

surely,

λn,j −→ σ2φ(αk).

In other words, with the hypotheses that αk > 1 +
√
c for all k, and has

multiplicity nk, then φ(αk) is the limit of nk packed sample eigenvalue {λn,j ,
sk−1 + 1 ≤ j ≤ sk}. They also prove that for all 1 ≤ i ≤ L with a prefixed

range L almost surely,

λn,q0+i → b = σ2(1 +
√
c)2.

Our aim is to estimate q0 when only Sn is known. The idea is to use, as suggested

in Onatski [5], differences between consecutives eigenvalues

δn,j = λn,j − λn,j+1.

Indeed, applying the results quoted above it is easy to see that a.s. if j ≥ q0,

δn,j → 0 while when j < q0, δn,j tends to a positive limit if the αk are different.

Thus it is possible to detect q0 from index-numbers j where δn,j becomes small.

3. Case of Simple Spikes with Known Variance σ2

In this section, we suppose that σ is known and that all the spikes are simple, i.e

n1 = · · · = nK = 1. Under these hypotheses the population eigenvalues are

spec(V ) = σ2(α1, · · · , αq0︸ ︷︷ ︸
q0

, 1, · · · , 1︸ ︷︷ ︸
p−q0

).

We also need the following assumption:

Assumption 3.1. The entries yi of the random vector y have a symmetric law and

a sub-exponential decay, that is there exists positive constants C, C’ such that, for

all t ≥ C’,

P(|yi| ≥ tC) ≤ e−t.
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Especially, the Gaussian vectors satisfy this hypothesis.

As stated previously the main observation is that when one follows the sample

eigenvalues in a descending order, the successive spacings δn,j shrink to small values

when approaching non-spiked values. Therefore, our estimation method will use a

carefully determined threshold dn. We propose to estimate q0 by the following

q̂n = max{j ∈ {1, . . . , s} : ∀k ∈ {1, . . . , j}, δn,j ≥ dn and δn,j+1 < dn},

where s > q0 is a fixed number big enough, and dn is a level to determine. In

practice, the integer s should be thought as a preliminary bound on the number of

possible spikes.

3.1. Consistency

Theorem 3.1. Let (xi)(1≤i≤n) be n copies i.i.d. of x = EV
1
2 y, where y ∈ Rp is a

zero-mean random vector of i.i.d. components which satisfies Assumptions 3.1 and

E is an orthogonal matrix. Assume that

V = cov(x) = σ2

(
Σq0 0

0 Ip−q0

)
where Σ has q0 non null, non unit and different eigenvalues α1 > · · · > αq0 > 1+

√
c.

Assume that p
n → c > 0 when n→ +∞.

Let (dn)n≥0 be a real sequence such that dn → 0 and n2/3dn → +∞. Then the

estimator q̂n is strongly consistent, i.e q̂n → q0 almost surely when n→ +∞.

In the sequel, we will assume that σ2 = 1 (If it is not the case, we consider
λn,j

σ2 ). For the proof, we need two theorems. The first, Proposition 3.1, shows that

the limiting law of λn,j − φ(αj) is Gaussian (Bai and Yao [7] and Paul [8]):

Proposition 3.1. Assume that the entries xi of x satisfy E(‖xi‖4) < +∞,

αj > 1 +
√
c for all 1 ≤ j ≤ q0 and have multiplicity 1. Then as p, n → +∞ so

that p
n → c,

√
n(λn,j − φ(αj))

L−→ N (0, σ2(αj))

where σ2(αj) = 2α2
j

(
1− c

(αj−1)2

)
.

The second Proposition 3.2 is issued from the Proposition 5.8 of [9]:

Proposition 3.2. Under the Assumptions 3.1, for all 1 ≤ i ≤ L with a prefixed

range L,

n
2
3

β
(λn,q0+i − b) = OP(1),

where β = (1 +
√
c)(1 +

√
c−1)

1
3 .
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We also need the following lemma:

Lemma 3.1. Let (Xn)n≥0 be a tight sequence of random variables. Then for all

real sequence (un)n≥0 which diverges to infinity,

P(|Xn| ≥ un)→ 0.

Proof. As (Xn)n≥0 is a tight sequence, for all ε > 0, it exists a compact K such

that, for all n ∈ N, P(Xn /∈ K) < ε. Furthermore, as un → +∞, it exists n ∈ N
such that for all n ≥ N , [−un, un] ⊃ K. So P(|Xn| > un) ≤ P(Xn /∈ K) < ε.

Consequently, P(|Xn| > un)→ 0.

Proof. of Theorem 3.1. We have

{q̂n = q0} = {q0 = max{j : δj ≥ dn}}
= {∀j ∈ {1, . . . , q0}, δn,j ≥ dn} ∩ {δn,q0+1 < dn}.

Therefore

P(q̂n = q0) = P

 ⋂
1≤j≤q0

{δn,j ≥ dn} ∩ {δn,q0+1 < dn}


= 1− P

 ⋃
1≤j≤q0

{δn,j < dn} ∪ {δn,q0+1 ≥ dn}


≥ 1−

q0∑
j=1

P(δn,j < dn)− P(δn,q0+1 ≥ dn).

Case of j = q0 +1. In this case, δn,q0+1 = λn,q0+1−λn,q0+2 (non-spike eigenvalues).

We consider the following sequence of random variables

Yn =
n

2
3

β
(λn,q0+i − b).

By Proposition 3.2, (Yn)n≥1 is a tight sequence. So by using Lemma 3.1, for any

sequence (an)n≥0, an → +∞ we have

P(|Yn| ≥ an)→ 0.

Therefore

P(|Yn| ≤ an) = P

(
n

2
3

β
(|lambdan,q0+i − b| ≤ an

)

= P
(
|λn,q0+i − b| ≤

an

n
2
3

β

)
−→ 1.
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We choose dn → 0 such that n2/3dn → +∞. So we have

P(λn,q0+i ∈ Jn)→ 1,

with

Jn = [b± dn] .

It follows

P (δn,q0+1 ≤ dn) ≥ P ({λn,q0+i ∈ Jn} ∩ {λn,q0+i+1 ∈ Jn})→ 1.

Therefore

P(δn,q0+1 ≥ dn)→ 0

Case of 1 ≤ j ≤ q0. These indices correspond to the spike eigenvalues. By using

Proposition 3.1 and the previous argument, it is easy to show that we can choose

a real sequence (bn)n≥0, bn → 0 such that
√
nbn → +∞ and

P(λn,j ∈ In,j)→ 1,

where

In,j = [φ(αj)± bn] .

Therefore

• For all 1 ≤ j < q0, we have

P (δn,j ≥ φ(αj)− φ(αj+1)− bn) ≥ P ({λn,j ∈ In,j} ∩ {λn,j+1 ∈ In,j+1})→ 1.

Let

cn,j = φ(αj)− φ(αj+1)− bn.

• For j = q0, δn,q0 = λn,q0 − λn,q0+1. By using the first section of the proof,

one can show that

P (δn,q0 ≥ φ(αq0)− b− (bn + dn)) ≥ P ({λn,q0 ∈ In,q0} ∩ {λn,q0+1 ∈ Jn})→ 1.

Let

cn,q0 = φ(αq0)− b− (bn + dn) .

• Therefore for all 0 ≤ j ≤ q0 we have

P(δn,j ≥ cn,j)→ 1⇒ P(δn,j < cn,j)→ 0.
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As dn → 0 and for all 1 ≤ j ≤ q0, cn,j → cj > 0, it exists N ∈ N : ∀n ≥ N ,

P(δn,j < dn) ≤ P(δn,j < cn,j)→ 0.

So we have
q0∑
j=1

P(δn,j < dn)→ 0.

Conclusion. P(δn,q0+1 ≥ dn)→ 0 and
∑q0
j=1 P(δn,j < dn)→ 0, therefore

P(q̂n = q0) −→
n→+∞

1.

3.2. Simulation experiments

Now we will illustrate the previous result by some simulations. First, we have to

chose the sequence dn to be used. Theoretically speaking, all the sequences satisfying

the requirement dn → 0 such that n2/3dn → +∞ are convenient. We tested several

sequences and we decided to take one of the form an
n2/3 β which a sequence (an)n≥0

proportional to
√

2 log log n : this idea came from that, as in the case of the mean of

i.i.d random variables, the λn,j corresponding to the non-spikes tend to a gaussian

law. So we can conjecture a result analog to the law of the iterated logarithm for

the λn,j , j > q0. Finally, we choose an = 4
√

2 log log n and simulate two different

models: one with dispersed spikes which should lead to an easier estimation of q0,

and a more difficult case with closer spikes:

• Model 1: q0 = 5, (α1, α2, α3, α4, α5) = (259.72, 17.97, 11.04, 7.88, 4.82);

• Model 2: q0 = 4, (α1, α2, α3, α4) = (7, 6, 5, 4).

Note that the values of Model 1 have been chosen to be the same as in [4]. For each

model, two different values of c, 0.3 and 0.6, are considered. We give in Tables 1-2

and 3, respectively, the distribution of q̂n, its mean and mean squared error over

1000 independent replications. The frequency of q̂n = q0 is given in Figure 1.

Table 1. Mean, mean squared error and empirical distribution of q̂n over 1000 independent
replications for Model 1.

Distribution of q̂n
(p, n) Mean MSE 1 2 3 4 5 6 7

(30,100) 5.057 0.212 0.001 0.007 0.009 0.0 0.883 0.1 0.002

(60,200) 5.081 0.107 0.001 0.001 0.0 0.0 0.91 0.088 0.0
(120,400) 5.079 0.073 0.0 0.0 0.0 0.0 0.921 0.079 0.0

(240,800) 5.069 0.064 0.0 0.0 0.0 0.0 0.931 0.069 0.0
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Table 2. (Continued) Mean, mean squared error and empirical distribution of q̂n over 1000

independent replications for Model 1.

Distribution of q̂n
(p, n) Mean MSE 1 2 3 4 5 6 7

(60,100) 5.056 0.139 0.001 0.004 0.003 0.002 0.914 0.076 0.0

(120,200) 5.08 0.098 0.0 0.001 0.002 0.0 0.91 0.087 0.0
(240,400) 5.072 0.079 0.002 0.0 0.0 0.0 0.924 0.075 0.0
(480,800) 5.072 0.069 0.0 0.0 0.0 0.0 0.929 0.07 0.001

Table 3. Mean, mean squared error and empirical distribution of q̂n over 1000

independent replications for Model 2.

Distribution of q̂n
(p, n) Mean MSE 0 1 2 3 4 5

(30,100) 3.718 1.086 0.0 0.001 0.059 0.0 0.778 0.085

(60,200) 3.925 0.582 0.013 0.024 0.019 0.0 0.857 0.087
(120,400) 4.005 0.331 0.01 0.01 0.001 0.0 0.902 0.077
(240,800) 4.062 0.110 0.002 0.001 0.0 0.0 0.924 0.073

(60,100) 3.478 1.655 0.053 0.086 0.059 0.001 0.734 0.067

(120,200) 3.818 0.823 0.025 0.033 0.024 0.0 0.853 0.065
(240,400) 3.969 0.394 0.009 0.015 0.011 0.0 0.893 0.072
(480,800) 4.051 0.108 0.003 0.0 0.0 0.0 0.934 0.063
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Fig. 1. Frequency of q̂n = q0 over 1000 independent replications.

In both cases, we can observe the asymptotic consistency of the estimator. Com-

paring the two models, except the last case (p, n) = (480, 800), the estimator per-

forms better in Model 1 than in Model 2. This phenomenon is due to the fact that

the differences between consecutive eigenvalues are smaller than in Model 2 so that

it is more difficult to distinguish spikes from non spikes.
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Within a same model, the convergence is slower in the c = 0.6 case. We could ex-

plain this by the fact that the gap between two consecutive spike eigenvalues stays

the same, and when c increases, the spectrum of Sn is more dispersed, so that the

differences δn,j from non- spikes are larger and again our detection problem is more

difficult.

It is worth mentioning that the chosen constant dn = 4
√
2 log logn
n2/3 β leads to a slight

over-estimation of q0 for the tested sizes (p, n). This finite-sample behaviour could

be improved with a more sophisticated choice of dn which however seems a difficult

point to address.

4. Case of Simple Spikes with Unknown Variance

In practice, the scale parameter σ2 is also unknown and we need to estimate it as

well. First, we will explain how to do in the non-spikes (null) case, i.e. V = σ2Ip,

and then in the case with spikes.

4.1. Estimation of the variance in the white case

We consider a zero-mean random vector x ∈ Rp with population covariance matrix

V = cov(x) = σ2Ip.

We keep the previous assumptions. We will use the law of large numbers to es-

timate the unknown variance σ2. We have the following theorem (Marčenko and

Pastur [11], Bai and Silverstein [12])

Proposition 4.1. Assume that, for any η ≥ 0 :

1

η2np

∑
j,k

E(|xjk|21|xjk|≥η
√
n)→ 0 when n→ +∞.

Then, with probability one, the empirical spectral distribution (ESD) FSn of Sn
weakly converges to the Marčenko-Pastur distribution with ratio index c and scale

parameter σ2, denoted by F c,σ
2

(x), which has a density function

pc,σ2(x) =

{
1

2πxcσ2

√
(b+ − x)(x− b−) if b− ≤ x ≤ b+

0 otherwise
,

where b− = σ2(1−
√
c)2 and b+ = σ2(1 +

√
c)2.

Note that σ2 represents the mean of the limiting distribution. Moreover, it is

well-known that under the condition of the Proposition 4.1, it holds almost surely,

σ̂2 =
1

p

p∑
i=1

λn,i → σ2.



10

4.2. Determining the number of spikes with an unknown variance.

As we notice in the first section, when the variance is known and different of one, we

only have to divide the consecutive difference δi,n by this variance. As the variance

is unknown, we will replace it by the estimate σ̂2 = 1
p

∑p
i=1 λn,i, which converges

almost surely to σ2 when p→ +∞. Nevertheless, because of the spikes, the variance

of σ̂2 will be greater than the one in the null case. The variance will be minimum

if we only take the mean of the non-spike eigenvalues i.e those that have an index

i ≥ q0 + 1. The problem is that we don’t know q0. By consequence, the idea is to

make a first estimation q̂0n of q0 with σ̂2
0 = 1

p

∑p
i=1 λn,i. Then, if q̂0n > 0, we set

σ̂2
1 = 1

p−q̂0n

∑p
i=q̂0n+1 λn,i (So we have σ̂2

0 ≥ σ̂2
1), and we reestimate q0 by q̂1n using

this new estimation. We repeat it until we find an indice k such that q̂kn = q̂k+1
n .

If such an indice doesn’t exist, the algorithm will stop at the preliminary bound

k = s fixed initially. To sum up, here is the algorithm:

q1=0

sigma2=1/p*(lambda_1+...+lambda_p)

q2="estimator of the known variance case with division by sigma2"

while q2~=q1 do

q1:=q2

sigma2=1/(p-q1)*(lambda_(q1+1)+...+lambda_p

q2="estimator of the known variance case with division by sigma2"

end

result=(q1,sigma2)

4.3. Simulation experiments

We conduct the simulations with two values of the variance σ2 = 1, and σ2 = 500

to see if a high variance will influence the estimation. We keep the same other

parameters as in the previous simulation study of Section 3 and estimate σ2 and

the number of spikes with the method explained above. Additional to the statistics

about the spikes number estimator q̂n, we provide also those about the final estimate

σ̂2 of the unknown variance. The results are displayed in Tables 4 to 8.

Table 4. Mean, mean squared error and empirical distribution of q̂n, mean and mean squared error of σ̂2

over 1000 independent replications for Model 1 and σ2 = 1.

Distribution of q̂n σ̂2

(p, n) Mean MSE 1 2 3 4 5 6 7 Mean MSE

(30,100) 5.052 0.338 0.003 0.015 0.008 0.0 0.849 0.0 0.125 0.955 0.015

(60,200) 5.108 0.112 0.0 0.001 0.0 0.0 0.89 0.107 0.002 0.97 0.0
(120,400) 5.069 0.076 0.0 0.001 0.0 0.0 0.927 0.072 0.0 0.986 0.0

(240,800) 5.084 0.077 0.0 0.0 0.0 0.0 0.916 0.084 0.0 0.993 0.0
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Table 5. (Continued) Mean, mean squared error and empirical distribution of q̂n, mean and mean squared

error of σ̂2 over 1000 independent replications for Model 1 and σ2 = 1.

Distribution of q̂n σ̂2

(60,100) 5.087 0.236 0.001 0.009 0.004 0.0 0.865 0.122 0.002 0.943 0.003
(120,200) 5.095 0.092 0.0 0.0 0.001 0.0 0.902 0.097 0.0 0.971 0.0

(240,400) 5.07 0.065 0.0 0.0 0.0 0.0 0.93 0.07 0.0 0.985 0.0

(480,800) 5.067 0.063 0.0 0.0 0.0 0.0 0.933 0.067 0.0 0.993 0.0

Table 6. Mean, mean squared error and empirical distribution of q̂n, mean and mean squared error of σ̂2

over 1000 independent replications for Model 2 and σ2 = 1.

Distribution of q̂n σ̂2

(p, n) Mean MSE 0 1 2 3 4 5 6 Mean MSE

(30,100) 3.362 2.019 0.079 0.078 0.091 0.0 0.658 0.094 0.0 1.052 0.043

(60,200) 3.806 1.023 0.032 0.038 0.026 0.0 0.805 0.098 0.001 0.994 0.005
(120,400) 3.983 0.483 0.019 0.008 0.004 0.0 0.878 0.091 0.0 0.991 0.001
(240,800) 4.071 0.144 0.003 0.001 0.001 0.0 0.907 0.088 0.0 0.994 0.0

(60,100) 3.367 1.898 0.069 0.081 0.096 0.001 0.674 0.079 0.0 1.003 0.012
(120,200) 3.781 1.04 0.034 0.034 0.036 0.0 0.806 0.089 0.001 0.986 0.002
(240,400) 3.965 0.472 0.015 0.015 0.007 0.0 0.892 0.071 0.0 0.99 0.0
(480,800) 4.052 0.125 0.002 0.003 0.0 0.0 0.926 0.069 0.0 0.994 0.0
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Fig. 2. Frequency of q̂n = q0 over 1000 independent replications with σ2 = 1.
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Table 7. Empirical distribution of q̂n, mean and mean squared error of σ̂2 over 1000 independent
replications for Model 1 and σ2 = 500.

Distribution of q̂n σ̂2

(p, n) 1 2 3 4 5 6 7 Mean MSE

(30,100) 0.003 0.012 0.005 0.0 0.823 0.155 0.002 474.909 3281.714

(60,200) 0.0 0.001 0.0 0.0 0.904 0.094 0.001 485.019 99.558

(120,400) 0.0 0.001 0.0 0.0 0.918 0.080 0.001 492.608 21.244
(240,800) 0.0 0.0 0.0 0.0 0.914 0.086 0.0 496.316 3.519

(60,100) 0.002 0.008 0.006 0.001 0.870 0.113 0.0 472.816 688.994

(120,200) 0.0 0.002 0.0 0.0 0.898 0.099 0.001 485.49 55.489
(240,400) 0.0 0.0 0.0 0.0 0.928 0.071 0.001 492.699 7.242
(480,800) 0.0 0.0 0.0 0.0 0.933 0.067 0.0 496.377 1.654

Table 8. Empirical distribution of q̂n, mean and mean squared error of σ̂2 over 1000 independent
replications for Model 2 and σ2 = 500.

Distribution of q̂n σ̂2

(p, n) 0 1 2 3 4 5 6 Mean MSE

(30,100) 0.079 0.088 0.090 0.0 0.649 0.093 0.001 528.651 11223.872

(60,200) 0.037 0.037 0.029 0.0 0.794 0.103 0.0 498.032 1478.184

(120,400) 0.009 0.01 0.005 0.0 0.880 0.096 0.0 494.613 107.355
(240,800) 0.003 0.0 0.002 0.0 0.918 0.075 0.002 496.813 8.770

(60,100) 0.071 0.104 0.059 0.001 0.687 0.078 0 501.754 3126.083
(120,200) 0.036 0.038 0.043 0.0 0.809 0.074 0.0 493.687 438.063

(240,400) 0.013 0.007 0.009 0.0 0.900 0.071 0.0 494.445 39.686
(480,800) 0.004 0.001 0.0 0.0 0.941 0.054 0.0 496.836 3.576
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Fig. 3. Frequency of q̂n = q0 over 1000 independent replications with σ2 = 500.

First, we can see the asymptotic consistancy of the estimator of q0 in all the

four cases. If we compare these simulations with the known variance case, we can
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Fig. 4. Mean of σ̂2 over 1000 independent replications.

see that the estimation is less accurate in the small (p, n). Furthermore, as in the

previous case, the convergence is slower in the c = 0.6 case and the estimator per-

forms better in Model 1 than in Model 2, for both values of σ2. The estimation of

q0 is more accurate with an unknown variance of σ2 = 500.

We also give the mean and mean squared error of q̂n in the σ2 = 1 case (Tables

3 and 4) to compare with Tables 1 and 2, where σ2 = 1 also, to see the effect of

its estimation. The variance and the bias are higher especially for small values of

(p, n) in this case with unknown variance.

The estimation of σ2 performs well, but it seems to be underestimated. There is

no particular difference between the two values of c in Model 1 but in Model 2,

contrary to the estimation of q0, the convergence seems to be faster in the c = 0.6

case for σ̂2. The variance of the estimator decreases with the increase of n and p,

and is less in the c = 0.6 case. As expected, the variance is lower in the σ2 = 1 case.
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5. Comparaison with two Related Methods

In signal processing or econometric literature, the factor model (or linear mixture

model) is often used. This model is defined as follows: let (xi = x(ti))(1≤i≤n) be an

i.i.d n-sample of p-dimensional random vectors satisfying

x(t) =

q0∑
k=1

aksk(t) + σu(t)

= As(t) + σu(t),

where

• s(t) = (s1(t), . . . , sq0(t))′ ∈ Rq0 are q0 random factors (or signals) assumed to

have zero mean, unit variance and mutually uncorrelated;

• A = (a1, . . . , aq0) is a p × q0 fixed unknown matrix of rank q0 (response vectors

or factor loadings);

• σ ∈ R is the noise level, u ∼ N (0, Ip).

It is easy to show that in this case, the population covariance matrix takes the

form of a spiked population model: the spikes are only slightly modified. If we denote

by α′ the vector of spikes in the factor model, we have the following relationship

with our original vector α

α =
α′

σ2
+ 1.

Here determining the number of spikes q0 means the detection of the number of

factors/signals q0. We will explain and compare two methods from Econometrics

(Harding [4]) and signal processing (Kritchman & Nadler [6]), respectively.

5.1. Method of Harding and comparison

In his paper [4], Harding uses less restrictive hypotheses as the sequence (u(t)) is

not necessarily independent, but he simulates a Gaussian model. His general idea is

to compare the spectral moments of Sn with the ESD of Sn without the factors (or

spikes), and to remove the largest eigenvalues one by one in Sn until a “distance”

between the moments is minimum.

More precisely, the variance of the noise is seen as a parameter θ and his idea

is to write Sn = Ξn + Ωn (rank(Ξn) = q0) as a sum of a finite rank perturbation

Ξn of the noise covariance Ωn. Let Π(Sn) be the vector of the first s moments of

the empirical spectral distribution (ESD) of the covariance matrix Sn, Π(Ωn) the

equivalent for Ωn and Π(θ) its limit as p and n→ +∞, pn → c. Here is the procedure

of Harding:
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• First, compute the moments Π(θ) of the asymptotic eigenvalue distribution of

the covariance matrix of Ωn for a large (p, n) sample.

• By Bai and Silverstein ([12]), we have that p (Π(Ωn)−Π(θ))
L−→ N (∆,W ). Con-

sequently, estimate θ by:

θ̂0 = argminθ (Π(θ)−Π(Sn)
′
Ŵ−1 (Π(θ)−Π(Sn)︸ ︷︷ ︸
J(θ)

.

where Ŵ is a consistent estimate of W , calculate by estimated θ from a first step

estimation with W = Ip.

• Next, remove the largest eigenvalue of the spectrum of Sn and re-estimate the

parameter θ as previously to get a new estimate θ̂1.

• This step is repeated by progressively removing large eigenvalues and for prefixed

number of times to get a sequence of estimates θ̂2, θ̂3, ...etc.

• Finally, among the minimized objective functions J(θ̂i) choose the order one

which corresponds to the smallest minimized value:

q̂0 = argminiJ(θ̂i).

Actually, we know that for q fixed and p, n → +∞, Π(Sn) → Π(θ). So the

criterion is the minimization of the variance W = W (θ): it decreases until q0 (until

we have removed the eigenvalues corresponding to the spikes), then it stays stable.

The procedure of Harding leads to an underestimation of q0, at p and n fixed. That

is why he penalized the function J with a function of type kθ̂g(p, n), where k is the

number of eigenvalues removed, θ̂ is the estimated variance at the step q and g(p, n)

is a function such that g(p, n) → 0 when p, n → +∞. The finally proposed choice

for g is the following function given by Bai and Ng [3] based on a BIC criterion

g(p, n) =

(
p+ n

pn

)
ln

(
pn

p+ n

)
.

For his simulation experiment, he tested four different “distances” but we only

keep the one based on the BIC criterion which is the best. Furthermore, we don’t

give all cases he tested. The simulation design was a little bit different, indeed

Harding does not choose the spikes directly, but he generates s(t) as a Gaussian

law N (0, Ip) and A in a deterministic way. We calculate the corresponding spikes

and it leads to the following values:

• (p, n) = (30, 100): (α5, α4, α3, α2, α1) = (3.817, 6.877, 10.038, 16.973, 258.719)

• (p, n) = (90, 100): (α5, α4, α3, α2, α1) = (3.692, 7.276, 10.785, 18.101, 259.010)

• (p, n) = (210, 300): (α5, α4, α3, α2, α1) = (3.649, 7.377, 10.992, 18.418, 259.083)

• (p, n) = (250, 500): (α5, α4, α3, α2, α1) = (3.634, 7.448, 11.057, 18.453, 259.005)

Nonetheless, these cases stay very close. Below we compare his results to ours. We

only give in Table 9 the mean and mean squared errors of the estimator as reported
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in Harding’s paper.

Table 9. Compared mean and mean squared error of our q̂n and σ̂2 and those of Harding

over 5000 independent replications and σ2 = 1.

q̂0 σ̂2

Harding estimator Our estimator Harding estimator Our estimator

(p, n) Mean MSE Mean MSE Mean MSE Mean MSE

(30,100) 5.028 0.028 5.087 0.266 0.942 0.004 0.946 0.008
(90,100) 5.040 0.048 5.049 0.232 0.944 0.001 0.943 0.0

(210,300) 5.004 0.004 5.087 0.082 0.982 0.0 0.980 0.0

(250,500) 5.002 0.002 5.077 0.072 0.989 0.0 0.988 0.0

Both methods perform well and their results are overall very close except that

Harding’s estimation yields a slightly smaller MSE for q̂0. However, one should have

in mind that this estimation has a very complex construction and a rigorous justifi-

cation of its different steps is still open. Moreover, the spikes in Table 7 are large and

well-separated one from another; it remains unclear how this method will perform

in a case where the spikes are much smaller and close like in Model 2, considered

in Sections 3 and 4. By contrast, our estimator has a very simple construction and

we proved its consistency under reasonable assumptions.

5.2. Method of Kritchman & Nadler and comparison

These authors assume the Gaussian case. In the absence of spikes, nSn follows a

Wishart distribution with parameters n, p. In this case, Johnstone [13] gave the

asymptotic distribution of the largest eigenvalue of Sn.

Proposition 5.1. Let Sn be the sample covariance matrix of n vectors distributed

as N (0, σ2Ip), and λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be its eigenvalues. Then, when n → +

∞, such that p
n → c > 0

P
(
λn,i
σ2

<
βn,p
n2/3

s+ b

)
→ Fi(s), s > 0

where b = (1+
√
c)2, βn,p =

(
1 +

√
p
n

) (
1 +

√
n
p

) 1
3

and Fi is the i-th Tracy-Widom

distribution.

Assuming the variance σ2 is known. To distinguish a spike eigenvalue λ from a

non-spike one at an asymptotic significance level γ, their idea is to check whether

λn,k > σ2

(
βn,p−k
n2/3

s(γ) + b

)
(5.1)

where the value of s(γ) can be found by inverting the Tracy-Widom distribu-

tion. This distribution has no explicit expression, but can be computed from a
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solution of a second order Painlevé ordinary differential equation. Their estima-

tor is based on a sequence of nested hypothesis tests of the following form: for

k = 1, 2, . . . ,min(p, n)− 1,

H0: q0 ≥ k vs. H1: q0 ≤ k − 1 .

For each value of k, they test the likelihood of the k-th eigenvalue λn,k as arising

from a signal or from noise as (5.1). If (5.1) is satisfied, H0 is accepted and k is

increased by one. The procedure stops once an instance of H0 is rejected and the

number of spikes is estimated to be q̂n,2 = k−1. Formally, their estimator is defined

by

q̂n,2 = argmink

(
λn,k < σ̂2

(
βn,p−k
n2/3

s(γ) + b

))
− 1.

When σ2 is unknown, they estimate it by the same method we used. For their

simulations, they use four different settings, with σ2 = 1

• A1: α′ = (200, 50), c = 4 (i.e. α = (201, 51));

• A2: α′ = (200, 50), c = 1;

• B1: α′ = (200, 50, 10, 5), c = 4 (i.e. α = (201, 51, 11, 6));

• B2: α′ = (200, 50, 10, 5), c = 1;

with p = 64 and p = 1024. Notice that contrary to ours and those of Harding, in

their simulation, c > 1 and the difference between two consecutive spikes is higher.

We add two settings with different variance

• A2’: α′ = (200, 50), c = 1, σ2 = 20 (i.e. α = (11, 3.5));

• B2’: α′ = (200, 50, 10, 5), c = 1, σ2 = 2 (i.e. α = (101, 26, 6, 3.5));

and p = 64. The results are displayed in tables 10 and 11.

Table 10. Summary for p = 64 showing the frequency of
q̂0 = q0.

Setting Our estimator Estimator KN

A1 ; (p, n) = (64, 16) 0.943 0.994
A2 ; (p, n) = (64, 64) 0.966 0.993

A2’; (p, n) = (64, 64) 0.602 0.513

B1 ; (p, n) = (64, 16) 0.348 0.238
B2 ; (p, n) = (64, 64) 0.947 0.995

B2’; (p, n) = (64, 64) 0.734 0.682

With small p and n, both estimator performs well, except for the A2’, B1, and

B2’ cases where the spikes are closer to 1 +
√
c than in the other cases.
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Table 11. Summary for p = 1024 showing the frequency of q̂0 =

q0.

Setting Our estimator Estimator KN

A1; (p, n) = (1024, 256) 0.995 0.994
A2; (p, n) = (1024, 1024) 0.986 0.993

B1; (p, n) = (1024, 256) 0.999 0.999
B2; (p, n) = (1024, 1024) 0.986 0.994

With larger p and n, the results from both methods are comparable. Neverthe-

less, theoritical properties remain unclear for the KN estimator: it is proved that

lim
p,n→+∞

P (q̂n,2 ≥ q0) = 1,

and, in the one factor case (q0 = 1) that

lim
p,n→+∞

P (q̂n,2 > q0) = γ.

That is by construction, the proposed estimator cannot be fully consistent but

nearly consistent with an incompressible asymptotic error of γ. Actually the authors

are using a very small test level γ = 0.005 in their experiments. Whether this

property remains true for general case with more than one spike stays open and

even so, this near-consistency is a bit unsatisfactory from a theoretical point a view.

6. Case of Spikes with Multiplicity greater than one

The problem with two identical spikes is that the difference between the corres-

ponding eigenvalues of the sample covariance matrix will tend to zero. Neverthe-

less, our method still works: we can explain it by the fact that the convergence

of the λn,i, for i > q0 (non-spikes) is in OP
(

1
n2/3

)
, whereas that of the difference

corresponding of two identical spikes is in OP

(
1√
n

)
(Consequence of theorem 3.1

of Bai & Yao [7]). Furthermore, the variance in the convergence of this difference

is 2α2
(

1− c
(α−1)2

)
∼
+∞

2α2, which is quite high for high spikes. A complete justi-

fication of our method in this case with multiple spikes is still under investigation.

Here we provide some simulation results in order to have a first idea about its per-

formance.

We will only consider the known variance case. If it is not the case, the procedure

explained before will apply without any problem. Here are the results with the

same simulation design as previously, except that we introduce multiple spikes. We

consider two models:

• Model 3: q0 = 6, (α1, α2, α3, α4, α5, α6) = (259.7, 259.7, 18, 11.1, 7.9, 4.8);

• Model 4: q0 = 6, (α1, α2, α3, α4, α5, α6) = (7, 6, 6, 6, 5, 4).

For each model, two different values of c, 0.3 and 0.6, are considered, and we

give in Figure 5 the frequency of q̂n = q0 and in Table 12 the mean and the mean
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squared error of our estimator over 1000 independent replications.

Table 12. Mean and mean squared error of q̂n over

1000 independent replications for Model 1 and 2.

Model 3, q0 = 6 Model 4, q0 = 6

(p, n) Mean MSE Mean MSE

(30,100) 6.085 0.168 4.529 4.393
(60,200) 6.077 0.121 4.86 4.199

(120,400) 6.088 0.082 5.31 3.061

(240,800) 6.073 0.068 5.597 2.051

(60,100) 6.043 0.151 4.118 4.797
(120,200) 6.092 0.108 4.614 4.453
(240,400) 6.081 0.074 5.159 3.447

(480,800) 6.079 0.073 5.562 2.058
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Fig. 5. Frequency of q̂n = q0 over 1000 independent replications.

In both cases, we can observe the asymptotic consistency of the estimator, but

the convergence is slower in Model 4: indeed, the eigenvalue spacings are smaller.

Furthermore, the values of the spikes are small, so that the variance in the conver-

gence of the spikes is not very high and the fluctuations of the difference are smaller

than in Model 3.

7. Extension to the generalized spiked population model

In [14], the author define the generalized spiked population model: the covariance

matrix is extended to a general T from I. Once we have corresponding Tracy-

Widom limits for sample eigenvalues converging to the edges of support intervals,
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our approach can be readily adapted to this situation. However such results are

lacking.
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[11] V.A. Marčenko and L. A. Pastur, Distributions of eigenvalues of some sets of random
matrices, Math. USSR-Sb. 1 (1967) 507–536.

[12] Z.D. Bai and J.W. Silverstein, CLT for linear spectral statistics of large-dimensional
sample covariance matrices, Ann. Probab. 32 (2004) 553–605.

[13] I.M. Johnstone, On the distribution of the largest eigenvalue in principal component
analysis, Ann. Stat. 29 (2001) 295–327.

[14] Z.D. Bai and J.F. Yao, Limit theorems for sample eigenvalues in a generalized spiked
population model,Arxiv Preprint arXiv: 0806.114 (2008).


