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Abstract: The general model for a new generation airship is introdficed the model of an elementary
mechanical system which embodies the core of the problenote complex. It is shown that the basic
properties of a suitable two degree of freedom mechanicdésyare instrumental for the analysis and
synthesis of advanced airships. It is shown that the cowtirdhe airship mechanical system yields
suitable approximations for the control of the airship sabjo aerodynamic forces.

Keywords: autonomous vehicles; aircraft control; airsfégdback linearization; Minimum-phase
systems

1. INTRODUCTION properties hidden in the model are highlighted and applied
to simplify the control problem of the most complete model.

A new generation of airships is considered. New energy gaviil he most elementary special case is a simple two degree of
actuators are introduced which consist in a moving ballagta freedom mechanical system whose properties are claimed to
tuning of buoyancy Purandare [2007], Wu, Moog et Hu. [2009]nvariant under the future complexification of the systersoA
Wu, Moog, Martinez et Hu. [2009]. The scheme is inspiredased on this elementary special case, we set up the complete
from underwater gliders which use similar features to mipgn model through dropping restrictions and adding externaks.
the use of standard propulsors Leonard et al. [2001]. For the goal (2), the most elementary system is controlled by
mputing a suitable dummy output function which defines

- _ _ c
An unmanned autonomous airship equipped W'th,Standaégminimum phase system and whose feedback linearization
propulsors was introduced in Gomes [1998] for the first time, -ieves maximal linearization of the considered systefmighv

and it is the standard model of the main stream in the aifrgirycts the way to design the controller for the complete
ship research. Inspired by underwater gliders Leonard.et al,q4gql.

[2001], Purandare [2007] designed a new-kind of airshipseho
main properties are mentioned above. Wu, Moog et Hu. [2009]
used an aeronautical way to derive a complete model of this
new generation airship and designed a LQR controller for its
stabilization. Wu, Moog, Martinez et Hu. [2009] designed a
nonlinear controller based on input-output linearizatidrihe
pitch angle. With the controller in Wu, Moog, Martinez et Hu.
[2009], the state variables are critically stable.

As done in Wu, Moog, Martinez et Hu. [2009], the airship is
considered restricted to a planar motion and subject taigges
control input by moving ballast in this paper.

Fig. 1. Structure of a Buoyancy-Driven Airship
The goals in this paper are:

(1) Display the fundamental and elementary structure midad Ne structure of a buoyancy-driven airship is shown in Fig. 1

in the complex full model of the airship. This kind of airship moves forward by a cyclic change of the
(2) Show how the use of this fundamental structure is instrdt€t lift of the craft and of the position of ballast. The dedi
mental to derive new control schemes! the mechanism of operating and the traditional modelling wa

_ S ~ have already been given in some papers Purandare [2007], Wu,
To reach goal (1), the modelling of the airship is done firstloog et Hu. [2009], Wu, Moog, Martinez et Hu. [2009].
from simple special case (with a fixed center of volume) and

then to more complex and complete cases. In this way esbenfLQe paper is organized as follows. Section 2 is devoted to
the modelling and control of the most elementary speciat cas

* This work is supported by CSC of the airship, which represents the airship subject toethre




assumptions. The airship is liberated in Section 3 by diroppi
assumption that the center of the volume O is fixed. In thiscas
the center of mass of the overall system is subject to a ballis
motion and the controllable subsystem remains similar ¢o th
previous elementary system. In Section 4, the airship model
is completed with the influence of suitable added masses and
Section 5 displays the full model including the aerodynamic
forces.

2. THE AIRSHIP WITH FIXED CENTER OF VOLUME link2 M

To derive an elementary special case of the complex airitep, Fig. 4. The airship system with a fixed point
dynamics of the airship are not only restricted to the valtic by another link which can be moved by a actuator. The position
plane, but it is also assumed that the center of volume O of the center of the mass of the ballast in the non-inertathfe

the airship is fixed, which means that the airship can onli the vertical plane isrg;, ry3). The system can swing along
rotate round O, but the longitudinal and horizontal tratigta with the actuator changing the positionrof which is as same
velocitiesvs andv; are zero. It also assumes that there is nas the operation of the airship. Hergs is constant.

inertial force and no aerodynamic force acting on the vehicl The lagrangian of that simplified airship system is

These assumptions reduce to: 1.. 1 _ .
P L=2J0%+ —m\72 — Mg(r p3 COSO — I py SiNG).

Assumptions 2
As: The center of the volume O is fixed, the airship have n¥Vith the Lagrang|an the equations of motion can easily be
translational velocities. found as,

As: No fluid inertial force.

A1: No aerodynamic force. . 1
0= :—_mrr0+2mrr0
A mathematic model is derived as follows. A= Irm 2 (Ml piipt
2.1 Modelling + Mgy COS@JF Feat) @)
. 1
o _ o Fpo =01 = ——=—5((Irps + MKy + Mrigrpy)6?
Under the situation described above, the airship rotatasnalr J+ mrg,

O with respect to the forward and backward movements of
the ballast, as shown in Fig 2 and 3, but O does not have any 3
translation velocities. +(=+ rgl + rga)u) 2)

_ o —o _
+ 2Mrpal pif pa6 — (J + Mg )g sing + Mgrpsr p1 COSH

where,u is the input denoted the force applied on the ballast
along thee; axis direction.

2.2 Maximal linearization of a minimum phase model

Standard computation Conte et al. [2007], Isidori [1999)vgh
that the system is fully accessible and not fully linearleaky
static state feedback. It is thus interesting to look for aimal
feedback linearization and to search for output functiothwi
the largest relative degree. This is done next. Followirgrt-
tations in Conte et al. [2007] the following results are afed.
According to the system (1)-(2).

Ho=0
L el Hs = spar{dss, deo}
ey Ly and#, is not integrableHs represents the codistribution which
consists of all dferential forms whose relative degree is at least
Fig. 3. Negative rotation 3. Here¢1 and¢, as follows,
: o =30+ (2,0 + r%0 + I pai p1)M

In this case, the airship is similar to a double pendulum as 91 ( Pt p3” T Tp3 plr)

described in Fig. 4. The rotational joint at point O is not ac- =0+ P arctan—"

tuated. The joint between the two links of the double penaiulu /n% + r23 /n% + r23

is prismatic and actuated. The double pendulum, inverted or P P

not, has been_considered as a classical control examplerin ma, 1, 30 is the angular momentum of airship's body in the
references Wie [1998]. vertical plane, and§19+ r2,0+T 3 p)Mis the ballast’'s angular

Here, the body of the airship except the ballast is denoteéddy momentumr, x mv, in the vertical planer(U andv, are the
link 1 which is fixed in the point O, and the ballast is denotegbosition and velocity of the ballast in the non-inertialnfra



respectively). So¢; is the angular momentum of the whole
airship around the point Q¢; and¢, also have the following
relation,

1

J+ (2, +r2)m

2 $1 3)
At this stage, any combination @f and¢, has relative degree

3 and its feedback linearization will yield a linear conkable

subsystems of dimension 3 with a one dimensional zero dynam-

ics. The following result shows the possibility to ensurat tthe

system is minimum phase which has a decisive impact on the

doability of this control design.
Theorem 1: ¢, + k¢, has stable zero dynamics fior- 0.
Proof: Under this situation, new states are chosen as fellow

& = ¢1+ Ko (4)
& =¢1+ Koo (5)
&3 = 1+ Ko (6)
=91 (7)

From the zero dynamics &, ¢1 + k¢ = 0, S0¢; = —k¢, and
because of the relation (3). The zero dynamic&afs follows,

1

é4=¢1=—Kpp = kg —
J+ (rf)l + rf)g)m

#1

So, fork > 0, the system is asymptotically stable.

2.3 Simulations

The family of outputs/ = ¢1 + k¢, for a varying real numbek
is considered now. The special case (1)-(2) is stabilizexityh
standard input-output linearization according to secto?.
From Theorem 1, it is mandatory to pidk > O to ensure
internal stability of the closed loop system. Its actualeais

a tuning parameter which influences the velocity of the zero

dynamics. Consider the following desired error equation:

Y + 25y + 20y + 2oy — Ye) = 0 (8)
here,y. is the desired value foy. The parameterk = 50,
A =2,11=2,29=1.

Fig. 5 and 6 are simulating results of the dynamics ofttg;
and the control inputi under initial errors. From this resuli,
andr; stabilize at the equilibrium after 30s.

60 100

100

Fig. 5. Dynamics ob andr; with initial error
3. THE AIRSHIP WITH LIBERATED CENTER POINT

Generally, aircrafts rotate around the center of the madshe
center of the volume, like helicopters. In the first elemgnta

20 40 60

t (s)

100

Fig. 6. The behavior of input

special case, the aircraft is assumed that it rotates arthend
center of the volume O. So by liberating the pivot O, in other
words, the pivot O can move freely in the vertical plane, the
model is further close to the complete airship model.

Under this situation, the airship does not rotate around YD an
more, and it rotates around the center of the gravity CG. But
the non-inertial frame is still attached at point O.

In this caseAg; is dropped and we have the following assump-
tions.

Assumptions
A,: No fluid inertial force.
A1: No aerodynamic force.

3.1 Modelling

Newton-Law is used to develop the mathematic model futher. |
the inertial frame, the total external force and momentieppl
on the airship arepgk andmgrs x k, where,m is the net lift,
andk is a unit vector along the direction of gravity. So the total
external force in the non-inertial frame is,

9)
(10)

l:total = mogRIk
Miotal = rﬁgRIrsx k

The total external force also can be denoted as follows Wu,
Moog et Hu. [2009],

Fiotal = @ X B + R frota = @ X (Mev + Bp) + mev + U (11)
where,mgv andu are the total external force on the body of the
airship and the ballast respectivefyx B or Q@ x (msv+ B,) are
coriolis forces.

Similarly, the total external moment can be denoted asvi@]o

Miotal =@ X I+ VX B + R 7ol
=Q X (rpX Bp+ JsQ) + (VX mv+ (V+ i) X By)
+(JsQ + rpxu) (12)

where,Q X IT = Q X (rp, x Bp + JsQ) is the torque of the
centrifugal forcey x B = vx mgv + (v + I'p) X By is the torque
of the coriolis force. §sQ + rp x u) is the torque respect to the
non-inertial frame.

From the relations (9) and (21), (10) and (22), thendQ are
derived as,

v=mg* ((mev + Bp) x @ + mogRT k - u) (13)
Q=JHIQ+r,xBp) xQ+Qxr,x B,
+mgrp x RTk = rp x U) (14)



where,Bp = mvp = m(v+ i p + QX 1) is the momentum of the Theorem 2: ¢, + ké, has stable zero dynamics flor> 0.

ballast.
_ . _ The way to provel heorem 2 is the same as in the previous
From (13) and (14), the mathematic model in the vertical @larsection.

is as follows,
3.3 Simulations
O=Cr=0+ w (15) The control law and the values of the parameters here is the
J+ mry, same as the previous part. The initial values of the states ar
Mol o3(BVe — Viz) — (3 + M2, )(6vs + V1) 6o = 415, rp0 = -1.15m, vip = 1.8 m/sandvz = 0, and also
Fo1 = 02 = 0 + —— = pL Mo = 1 kg, ms = 269Kkg.
+
Pl (16) The similar performances of the controller are got,see fig). 7
. 1 . _ . 40\
V= 2 = —(~MsV3 + (M- mo)gsing - u) (17) A
'S <
34
_ / = 2
V3 = 33 = P~ n_"n((ms + M)Ay + Mg COSH + Mry36 % 5 i i il
+ 2M0F py + M) (18) 7
E.13f|
Comparing the elementary special case (1)-(2) with modgt (1 Eof
(18), It's easy to find that the elementary case (1)-(2) is a 161/
subsystem of the model (15)-(18), which can be shown by the 2 0y 8

simulation. ] ) L
Fig. 7. Dynamics ob andr; with initial error

3.2 Maximal linearization of a minimum phase model

System (15)-(18) is now subject to a ballistic motion (ofrgoi 180
CG) and to be out of the action of the control input. In
other words, there exist some non-controllable statesibgsi 170

the controllable or accessible system. Again, followingnst

dard computation Conte et al. [2007], one computers the non- z
controllable subsystem whose coordinates are denotegh by > 160
andy,:
Heo = sparidys, dy} 150
where _ _
- Mg+m ) - Mmg+m 0 50 100
Y1 = (rpb — Srﬁ Va)® + (Fpr + paf + Sm v1)? t(s)
. ms+m . . Mmg+m . ) i .
Y2 = (rp16 — = V3) COSH + (Fpy + 'pab + = vi)sind  Fig. 8. The behavior of input
(ms + m)y1 is the kinetic energy of CG, ang, denotes the hor-
izontal velocity of CG, which means that the airship inclside »
the ballistic motion of the center of gravity CG. Fig. 9 disyd 1
this ballistic motion. o
Thus the 6-dimensional state system (15)-(18) can be decou- S0
pled into a 2-dimensional non-controllable subsystem a#d a
dimensional subsystem whose structural properties ardasim -
to those of model (1)-(2).
7—{3 = Spar{dfil’ d&Z} @ 7—{00 o 50 o 100 150

where, B

s 25,2 : mim Fig. 9. Ballistic motion of CG

¢1= 36+ (gt + rggf + rpgrpl)rﬁJr e

~ r r

Gp=0+ ps arcta pL 4. THE AIRSHIP WITH LIBERATED CENTER AND

,r?%n?‘:l + I"2)3 ,ﬁrlr:—rrrrgls‘] + r;2)3 ADDED MASSES
~ N The inertia of airships with a largéolumgMassratio is much
Here, ¢, is the angular momentum of the airship around thg,sre significant in comparison with conventional airplanes
center of the gravity CG as previous. The relatiopaindés  \hich must be considered. Added mass is designed to represen

is as follows, L some of there initial forces.
’ i 1 AssumptionA, is dropped. But aerodynamic forces are still
remg ignored.

2 =
2 2
J+ (rpl + rps)



Assumptions - (Mg —my)vivs
A1: No aerodynamic force. 0=0=0+ I+ M2, (23)
p
In this section, the role of the result of previous sections i . + (Mg — my)vyivs
shown. fpr=03=0p+— =35 e (24)
2 pl
V1 = 3 25
4.1 Modelling \./l %,1 EZG;
3= M3

The matrix Maqq including these added masses is called thRygte that model (15)-(18) reduces to the special case of mode
inertia matrix Wu, Moog et Hu. [2009]. (23)_(23) ifmg; =My =Jp=0 (no added mass).

M add = (&‘JL) In the fluid inertial forces, iy — my)vivs is pitching moment,

Yt which will be included in the aerodynamic forces. This is

because when measuring the aerodynamic forces of themirshi
by a wind tunnel test, a part of fluid inertial forces, for mrste

(mg — mM)vypvs, is already included in the results of wind tunnel
test, which is behaved as aerodynamic forces. 189+ ()vivs

M; is the symmetric 3x 3 added mass matrix); is the
added inertia matrixM; = diag{my; mpy mgg} and J; =
diag{mys mes Meg}.

In an ideal fluid, the kinetic enerdlxqq Of fluid inertia is be ignored in the above model Ouyang [2003]. Then, it is as,
0=0=10 (27)
18,8 1 f1=coazo (28)
TaddZéZZ”’ij(i{jZE(mnViersz% !31—0"3—0'2
L &4 W = ) (29)
+MgaV3 + MyaQ2 + MesQ5 + Me23) V3 = 34 (30)

herely = v1,{p = Vo,{3 = V3,0s = .05 = Q.06 = Q3. All J andmg in (15)-(18) change intd,, my andmy as follows,
The momentaB = (B, B;, Bs)" and moments of momentum giher items keep unchanged.

K = (Ba4, Bs, Bg)" of fluid inertia are related to the kinetic

energyT aqqd: where
0Tadd . L= —;_(rﬁr F o162 + 2Mry i 16 + Mgy cosH
BizY i=12---,6) 2 J2+mr21 p3’ pl plfpl pl
i P
So + p3l — (V3 - 9v1)mrp1)
’ , 1 _ _ : _ o
oy = W((erm + My + MGl )6 + 2Mrpar paf a6
B=M;v 27 ;
K=JQ — (J2 + Mr2;)gsing + Mgrysr py COSO + (ﬁz + 15y + U
—_— p _ . _ —_— 2 p -
So, the inertial force&, and moments$/, acting on the airship * mrplr_p3(9V1_ va) (JZ_ + MI;)(6Vs + V1))
are as follows L ~Mefvs + (M- my)gsind —u
. e my
F = _dB _ _(d_B +QxB) y (M + M)BV1 + Mog COSA + Mrpz6? + 2MBF g + M d
dt dt 37 +m
— MV + Mvx Q (19) e
M. = dK (dIZ +QxK+vxB) 4.2 Maximal linearization of a minimum phase model
= = —(—
dt dt
=-JiQ+ QX Q+MsvxV (20) The model (27)-(30) be decoupled into a non-controllabe sy

4B dK . o tem and a controllable one as it was done for model (15)-(18).
here, 5, ‘Gt denote the time-derivative of momentunand The velocities of the center of the gravity CG are nfieeted
angular momenturk with respect to the inertial framé® and by the control input, however their mathematical expressio

become a bit more involved.

% denote the time-derivative in the body frame. , ,
Heo = spar{dy; dy,}

Comparing with the previous case (9)-(10), the total extern

force should include inertial forces as follows, where

. Mmg+m ) . M +m
Frotal = MogR] K + F (21) Y1=(pmb- : V3)? + (Fpr + Fpaf + = v1)?

Miotal = I’T]QRII'SX K+ M (22)

. +m ) .M+ m )
zpzz(rplé’—mgrﬁ V3) COSO + (Fp1 + I'paf + lrﬁ Vi) sing

Letm, = mg+ My, Mg = Mg+ Mgz andJ, = J + Jop, the model . . . .
P . . : Surprisingly, there is now only one single independent fianc
of the airship with the fects of the inertial forces is as follows, ¢,2 which has relative degree 3 for the model (27)-(30). More

precisely, computés:



Hs = spar{dp, w}® He ©

mg(mpn‘w) €35 )
(g +m) | PL ®

. o
whereg, = 0+ ———="=— — arctan-==== = and check ®
H ml(m?,*@ ﬁml P . " 250 20 40 60 80 100
thoseHHs is no more fully integrable !
-1
ComputeH; as: »
b g7
Hz = sparly; ¥, ¢} @ H. A \\ |
where st
— -1.8
, m . 0 20 40 t 60 80 100
= —F 6 — V: )
Y1 M + M pl 3 - - o
, m (, é) Fig. 10. Dynamics ob andrp; with initial error
= —(Fpp + T +V
Y, —— p1+Ip3 1
m + m1 ms(ml + _) 2 2 g . 200;
¢1=( J+ o1+ 153)0 + Ipafp NN

my(mg+m) P \

180 \\

As the previous sections, one has the relation involving the S \\
angular momentum, AN

Y - b 150 ¥

$2 = memy g Me(Mydm) 2 r2 1
mmy ml(ntS*rﬁ) pl 1400

20 40 60 80 100 120
t(s)

Despite these diametric changes with section 3, it is noweatg

that the control scheme which has been computed for tfgg. 11. The behavior of input

elementary special case in the section 2 is still valid, kkan

to some approximation. This is done next! 5. THE COMPLETE AIRSHIP MODEL

The last step, The aerodynamic forces are added into the
system, which mean8.; is dropped. So the following total

- . - external forces and momentums should include aerodynamic
Since¢, does not have relative degree 3 anymorepgsthe  forcesF, and momentums/ ,.

Theorem 1 & 2 are not true. But fortunately, the second-time

derivative of¢'l has a small cdécient ofu, so it is proposed to

4.3 Simulations

neglect this coficient. Frotal = MogR] K + F| + Fa (36)
More precisely, define again the outyut ¢, + ké,, for some Miotal = mogRIrS x k+ M| + M, (37)
k> 0.
Instead of the coordinates (4)-(7), define ]S(Z)(I)Ingeéned (36) and (37) and, given the complete model as the
L= ¢y + k6, (31) .
»‘wl ;,,2 6= 4’3 + M—EZ
(2= ¢, + Koy (32) J+mr2
= Mar
{3= ¢1 + k¢2 (33) For = g + 61_F>32
la=¢y (34) J+mrg,
Where¢1 I1+ Au W = + Fa
m
Instead of solving (8), consider the following equation: . , EaB
. V3 = 55+ —
Zs+ Aads + A2y + Aoy — Ye) = 0 (35) T e m
Note that equation (35) is strictly the equation (8) onlx i& 0.  where,
In the following whenA is small, then (35) is an approximation Fa1 = —Xa COSa + Z5 Sina
of (8). Faz = —XaSina — Z; cosa

Solvinguin the equation (35) yields the desired states feedback
which is applied now to the model (27)-(30). The correspogdi

simulation results are displayed accordingly and showttheat 1 o3 N
stability property is unchanged despite the above appraxim Za = 5paV V(Cyp + Cia)
tion.

1
Xa = 5paVV(Cro + Cga?)

1
Ma = =paVV?(Cro + C
Here,m; = 400kg, mg = 500kgand the other parameters have a = 2PaVV (Cmo+ Ca)

the same values as the previous. Good control performances Z, are aerodynamic forces aloegande; axes, andM, is
have been got as displayed in Fig 10 to 12. momentum around, axis.« is the attack angle.



B. Wie. Space Vehicle Dynamics and ContAdlAA, Page 43,
June 1998.

S. V. B. Gomes and J. G. Ramos. Airship dynamic modeling for
autonomous operatiorithe Proceedings of IEEE Int. Conf.
on Robotics and Automatigrages 3462-3467, Leuven, May

N 1998.

Fig. 12. Ballistic motion of CG

ComputeH; as:
H, = sparidy; dy, d¢; dé; drp)

Hs = sparidg, w)

Here,d&'l anddc}'2 have the same form as the previous sections,
but the values are flerent. By the same way as the section 4,
a advanced nonlinear controller can be derived. The simulat
results of this nonlinear controller for the complete systeill

be presented elsewhere.

6. CONCLUSION

In this paper, a new way to set up the model for a complex
system is denoted. What's more important is that based on that
modelling-from the fundamental and elementary mechanical
structure to the complex and complete model-a nonlinear con
troller is designed for that complex airship system. Thig-no
linear controller is diicult to derive directly from the complex

full model.

Even though that nonlinear controller is not a precise one,

some approximation has been done, the controller behavks we

which has better performances and larger stable domain of
initial conditions than the previous controllers.
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