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Abstract: The general model for a new generation airship is introducedfrom the model of an elementary
mechanical system which embodies the core of the problem to more complex. It is shown that the basic
properties of a suitable two degree of freedom mechanical system are instrumental for the analysis and
synthesis of advanced airships. It is shown that the controlof the airship mechanical system yields
suitable approximations for the control of the airship subject to aerodynamic forces.
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1. INTRODUCTION

A new generation of airships is considered. New energy saving
actuators are introduced which consist in a moving ballast and a
tuning of buoyancy Purandare [2007], Wu, Moog et Hu. [2009],
Wu, Moog, Martinez et Hu. [2009]. The scheme is inspired
from underwater gliders which use similar features to minimize
the use of standard propulsors Leonard et al. [2001].

An unmanned autonomous airship equipped with standard
propulsors was introduced in Gomes [1998] for the first time,
and it is the standard model of the main stream in the air-
ship research. Inspired by underwater gliders Leonard et al.
[2001], Purandare [2007] designed a new-kind of airship whose
main properties are mentioned above. Wu, Moog et Hu. [2009]
used an aeronautical way to derive a complete model of this
new generation airship and designed a LQR controller for its
stabilization. Wu, Moog, Martinez et Hu. [2009] designed a
nonlinear controller based on input-output linearizationof the
pitch angle. With the controller in Wu, Moog, Martinez et Hu.
[2009], the state variables are critically stable.

As done in Wu, Moog, Martinez et Hu. [2009], the airship is
considered restricted to a planar motion and subject to the single
control input by moving ballast in this paper.

The goals in this paper are:

(1) Display the fundamental and elementary structure hidden
in the complex full model of the airship.

(2) Show how the use of this fundamental structure is instru-
mental to derive new control schemes!

To reach goal (1), the modelling of the airship is done first
from simple special case (with a fixed center of volume) and
then to more complex and complete cases. In this way essential
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properties hidden in the model are highlighted and applied
to simplify the control problem of the most complete model.
The most elementary special case is a simple two degree of
freedom mechanical system whose properties are claimed to
invariant under the future complexification of the system. Also
based on this elementary special case, we set up the complete
model through dropping restrictions and adding external forces.
For the goal (2), the most elementary system is controlled by
computing a suitable dummy output function which defines
a minimum phase system and whose feedback linearization
achieves maximal linearization of the considered system, which
instructs the way to design the controller for the complete
model.
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Fig. 1. Structure of a Buoyancy-Driven Airship

The structure of a buoyancy-driven airship is shown in Fig. 1.
This kind of airship moves forward by a cyclic change of the
net lift of the craft and of the position of ballast. The detail of
the mechanism of operating and the traditional modelling way
have already been given in some papers Purandare [2007], Wu,
Moog et Hu. [2009], Wu, Moog, Martinez et Hu. [2009].

The paper is organized as follows. Section 2 is devoted to
the modelling and control of the most elementary special case
of the airship, which represents the airship subject to three



assumptions. The airship is liberated in Section 3 by dropping a
assumption that the center of the volume O is fixed. In this case,
the center of mass of the overall system is subject to a ballistic
motion and the controllable subsystem remains similar to the
previous elementary system. In Section 4, the airship model
is completed with the influence of suitable added masses and
Section 5 displays the full model including the aerodynamic
forces.

2. THE AIRSHIP WITH FIXED CENTER OF VOLUME

To derive an elementary special case of the complex airship,the
dynamics of the airship are not only restricted to the vertical
plane, but it is also assumed that the center of volume O of
the airship is fixed, which means that the airship can only
rotate round O, but the longitudinal and horizontal translation
velocitiesv3 andv1 are zero. It also assumes that there is no
inertial force and no aerodynamic force acting on the vehicle.

These assumptions reduce to:

Assumptions:
A3: The center of the volume O is fixed, the airship have no
translational velocities.
A2: No fluid inertial force.
A1: No aerodynamic force.

A mathematic model is derived as follows.

2.1 Modelling

Under the situation described above, the airship rotates around
O with respect to the forward and backward movements of
the ballast, as shown in Fig 2 and 3, but O does not have any
translation velocities.

Fig. 2. Positive rotation

Fig. 3. Negative rotation

In this case, the airship is similar to a double pendulum as
described in Fig. 4. The rotational joint at point O is not ac-
tuated. The joint between the two links of the double pendulum
is prismatic and actuated. The double pendulum, inverted or
not, has been considered as a classical control example in many
references Wie [1998].

Here, the body of the airship except the ballast is denoted bythe
link 1 which is fixed in the point O, and the ballast is denoted

Fig. 4. The airship system with a fixed point

by another link which can be moved by a actuator. The position
of the center of the mass of the ballast in the non-inertial frame
in the vertical plane is (rp1, rp3). The system can swing along
with the actuator changing the position of ¯m, which is as same
as the operation of the airship. Here,rp3 is constant.

The lagrangian of that simplified airship system is

L =
1
2

Jθ̇2
+

1
2

mv̄2
m − m̄g(rp3 cosθ − rp1 sinθ).

With the Lagrangian, the equations of motion can easily be
found as,

θ̈ =ζ1 = −
1

J + m̄r2p1

(m̄rp3rp1θ̇
2
+ 2m̄rp1ṙp1θ̇

+ m̄grp1 cosθ + rp3u) (1)

r̈p1 =σ1 =
1

J + m̄r2p1

((Jrp1 + m̄r3p1 + m̄r2p3rp1)θ̇2

+ 2m̄rp3rp1ṙp1θ̇ − (J + m̄r2p1)gsinθ + m̄grp3rp1 cosθ

+ (
J
m̄
+ r2

p1 + r2
p3)u) (2)

where,u is the input denoted the force applied on the ballast
along thee1 axis direction.

2.2 Maximal linearization of a minimum phase model

Standard computation Conte et al. [2007], Isidori [1999] show
that the system is fully accessible and not fully linearizable by
static state feedback. It is thus interesting to look for a maximal
feedback linearization and to search for output function with
the largest relative degree. This is done next. Following the no-
tations in Conte et al. [2007] the following results are obtained.
According to the system (1)-(2).

H∞ = 0
H3 = span{dφ1, dφ2}

andH4 is not integrable.H3 represents the codistribution which
consists of all differential forms whose relative degree is at least
3. Here,φ1 andφ2 as follows,

φ1 = Jθ̇ + (r2
p1θ̇ + r2

p3θ̇ + rp3ṙp1)m̄

φ2 = θ +
rp3

√

J
m̄ + r2

p3

arctan
rp1

√

J
m̄ + r2

p3

In φ1, Jθ̇ is the angular momentum of airship’s body in the
vertical plane, and (r2

p1θ̇+r2
p3θ̇+rp3ṙp1)m̄ is the ballast’s angular

momentumrp × m̄vp in the vertical plane (rp and vp are the
position and velocity of the ballast in the non-inertial frame



respectively). So,φ1 is the angular momentum of the whole
airship around the point O.φ1 andφ2 also have the following
relation,

φ̇2 =
1

J + (r2
p1 + r2

p3)m̄
φ1 (3)

At this stage, any combination ofφ1 andφ2 has relative degree
3 and its feedback linearization will yield a linear controllable
subsystems of dimension 3 with a one dimensional zero dynam-
ics. The following result shows the possibility to ensure that the
system is minimum phase which has a decisive impact on the
doability of this control design.

Theorem 1: φ1 + kφ2 has stable zero dynamics fork > 0.

Proof: Under this situation, new states are chosen as follows
ξ1 = φ1 + kφ2 (4)

ξ2 = φ̇1 + kφ̇2 (5)

ξ3 = φ̈1 + kφ̈2 (6)
ξ4 = φ1 (7)

From the zero dynamics ofξ2, φ̇1 + kφ̇2 = 0, soφ̇1 = −kφ̇2, and
because of the relation (3). The zero dynamics ofξ4 as follows,

ξ̇4 = φ̇1 = −kφ̇2 = −k
1

J + (r2
p1 + r2

p3)m̄
φ1

So, fork > 0, the system is asymptotically stable.

2.3 Simulations

The family of outputsy = φ1 + kφ2 for a varying real numberk
is considered now. The special case (1)-(2) is stabilized through
standard input-output linearization according to section2.2.
From Theorem 1, it is mandatory to pickk > 0 to ensure
internal stability of the closed loop system. Its actual value is
a tuning parameter which influences the velocity of the zero
dynamics. Consider the following desired error equation:

y(3)
+ λ2y(2)

+ λ1y(1)
+ λ0(y− ye) = 0 (8)

here,ye is the desired value fory. The parametersk = 50,
λ2 = 2, λ1 = 2, λ0 = 1.

Fig. 5 and 6 are simulating results of the dynamics of theθ, rp1
and the control inputu under initial errors. From this result,θ
andrp1 stabilize at the equilibrium after 30s.

Fig. 5. Dynamics ofθ andrp1 with initial error

3. THE AIRSHIP WITH LIBERATED CENTER POINT

Generally, aircrafts rotate around the center of the mass, not the
center of the volume, like helicopters. In the first elementary

Fig. 6. The behavior of inputu

special case, the aircraft is assumed that it rotates aroundthe
center of the volume O. So by liberating the pivot O, in other
words, the pivot O can move freely in the vertical plane, the
model is further close to the complete airship model.

Under this situation, the airship does not rotate around O any
more, and it rotates around the center of the gravity CG. But
the non-inertial frame is still attached at point O.

In this case,A3 is dropped and we have the following assump-
tions.

Assumptions:
A2: No fluid inertial force.
A1: No aerodynamic force.

3.1 Modelling

Newton-Law is used to develop the mathematic model futher. In
the inertial frame, the total external force and moment applied
on the airship arem0gk andm̄grs × k, where,m0 is the net lift,
andk is a unit vector along the direction of gravity. So the total
external force in the non-inertial frame is,

Ftotal = m0gRT
1

k (9)

Mtotal = m̄gRT
1

rs × k (10)

The total external force also can be denoted as follows Wu,
Moog et Hu. [2009],

Ftotal = Ω × B + RT ftotal = Ω × (msv + Bp) +msv̇ + u (11)
where,msv̇ andu are the total external force on the body of the
airship and the ballast respectively.Ω×B orΩ× (msv+Bp) are
coriolis forces.

Similarly, the total external moment can be denoted as follows,
Mtotal =Ω × Π + v × B + RTτtotal

=Ω × (rp × Bp + J sΩ) + (v ×msv + (v + ṙp) × Bp)

+ (J sΩ̇ + rp × u) (12)
where,Ω × Π = Ω × (rp × Bp + J sΩ) is the torque of the
centrifugal force,v × B = v ×msv + (v + ṙp) × Bp is the torque
of the coriolis force. (J sΩ̇ + rp × u) is the torque respect to the
non-inertial frame.

From the relations (9) and (21), (10) and (22), thev̇ andΩ̇ are
derived as,

v̇ =m−1
s

(

(msv + Bp) ×Ω +m0gRT
1

k − u
)

(13)

Ω̇ = J−1
s ((J sΩ + rp × Bp) ×Ω +Ω × rp × Bp

+m̄grp × RT
1

k − rp × u) (14)



where,Bp = m̄vp = m̄(v+ ṙp +Ω× rp) is the momentum of the
ballast.

From (13) and (14), the mathematic model in the vertical plane
is as follows,

θ̈ = ζ2 = ζ1 +
(v̇3 − θ̇v1)m̄rp1

J + m̄r2p1

(15)

r̈p1 = σ2 = σ1 +
m̄rp1rp3(θ̇v1 − v̇3) − (J + m̄r2p1)(θ̇v3 + v̇1)

J + m̄r2p1

(16)

v̇1 = κ1 =
1

ms
(−msθ̇v3 + (m̄−m0)gsinθ − u) (17)

v̇3 = κ3 =
1

ms + m̄
((ms + m̄)θ̇v1 +m0gcosθ + m̄rp3θ̇

2

+ 2m̄θ̇ṙp1 + m̄rp1θ̈) (18)

Comparing the elementary special case (1)-(2) with model (15)-
(18), It’s easy to find that the elementary case (1)-(2) is a
subsystem of the model (15)-(18), which can be shown by the
simulation.

3.2 Maximal linearization of a minimum phase model

System (15)-(18) is now subject to a ballistic motion (of point
CG) and to be out of the action of the control input. In
other words, there exist some non-controllable states besides
the controllable or accessible system. Again, following stan-
dard computation Conte et al. [2007], one computers the non-
controllable subsystem whose coordinates are denoted byψ1
andψ2:

H∞ = span{dψ1, dψ2}

where

ψ1 = (rp1θ̇ −
ms + m̄

m̄
v3)2
+ (ṙp1 + rp3θ̇ +

ms + m̄
m̄

v1)2

ψ2 = (rp1θ̇ −
ms + m̄

m̄
v3) cosθ + (ṙp1 + rp3θ̇ +

ms + m̄
m̄

v1) sinθ

(ms+ m̄)ψ1 is the kinetic energy of CG, andψ2 denotes the hor-
izontal velocity of CG, which means that the airship includes
the ballistic motion of the center of gravity CG. Fig. 9 displays
this ballistic motion.

Thus the 6-dimensional state system (15)-(18) can be decou-
pled into a 2-dimensional non-controllable subsystem and a4-
dimensional subsystem whose structural properties are similar
to those of model (1)-(2).

H3 = span{dφ̃1, dφ̃2} ⊕ H∞

where,

φ̃1 = Jθ̇ + (r2
p1θ̇ + r2

p3θ̇ + rp3ṙp1)
m̄ms

m̄+ms

φ̃2 = θ +
rp3

√

m̄+ms

m̄ms
J + r2

p3

arctan
rp1

√

m̄+ms

m̄ms
J + r2

p3

Here, φ̃1 is the angular momentum of the airship around the
center of the gravity CG as previous. The relation ofφ̃1 andφ̃1
is as follows,

˙̃φ2 =
1

J + (r2
p1 + r2

p3) m̄ms

m̄+ms

φ̃1

Theorem 2: φ̃1 + k̃φ̃2 has stable zero dynamics fork̃ > 0.

The way to proveTheorem 2 is the same as in the previous
section.

3.3 Simulations

The control law and the values of the parameters here is the
same as the previous part. The initial values of the states are
θ0 = 41.5, rp10 = −1.15 m, v10 = 1.8 m/s andv30 = 0, and also
m0 = 1 kg, ms = 269kg.

The similar performances of the controller are got,see fig. 7-8.

Fig. 7. Dynamics ofθ andrp1 with initial error
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Fig. 8. The behavior of inputu
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Fig. 9. Ballistic motion of CG

4. THE AIRSHIP WITH LIBERATED CENTER AND
ADDED MASSES

The inertia of airships with a largeVolume/Massratio is much
more significant in comparison with conventional airplanes,
which must be considered. Added mass is designed to represent
some of there initial forces.

AssumptionA2 is dropped. But aerodynamic forces are still
ignored.



Assumptions:
A1: No aerodynamic force.

In this section, the role of the result of previous sections is
shown.

4.1 Modelling

The matrix Madd including these added masses is called the
inertia matrix Wu, Moog et Hu. [2009].

Madd =

(

M f ∗

∗ J f

)

M f is the symmetric 3× 3 added mass matrix;J f is the
added inertia matrix.M f = diag{m11 m22 m33} and J f =

diag{m44 m55 m66}.

In an ideal fluid, the kinetic energyTadd of fluid inertia is

Tadd =
1
2

6
∑

i=1

6
∑

j=1

mi j ζiζ j =
1
2

(m11v
2
1 +m22v

2
2

+m33v
2
3 +m44Ω

2
1 +m55Ω

2
2 +m66Ω

2
3)

hereζ1 = v1, ζ2 = v2, ζ3 = v3, ζ4 = Ω1, ζ5 = Ω2, ζ6 = Ω3.
The momentaB = (B1, B2, B3)T and moments of momentum
K = (B4, B5, B6)T of fluid inertia are related to the kinetic
energyTadd:

Bi =
∂Tadd

∂ζi
(i = 1,2, · · · ,6)

So,

B = M f v

K = J fΩ

So, the inertial forcesFI and momentsMI acting on the airship
are as follows

FI = −
dB
dt
= −(

dB̃
dt
+Ω × B)

= −M f v̇ + M f v ×Ω (19)

MI = −
dK
dt
= −(

dK̃
dt
+Ω × K + v × B)

= −J f Ω̇ + J fΩ ×Ω + M f v × v (20)

here, dB
dt , dK

dt denote the time-derivative of momentumB and

angular momentumK with respect to the inertial frame,dB̃
dt and

dK̃
dt denote the time-derivative in the body frame.

Comparing with the previous case (9)-(10), the total external
force should include inertial forces as follows,

Ftotal = m0gRT
1

k + FI (21)

Mtotal = m̄gRT
1

rs × k + MI (22)

Let m1 = ms+m11, m3 = ms+m33 andJ2 = J + J22, the model
of the airship with the effects of the inertial forces is as follows,

θ̈ = ζ3 = ζ
′

2 +
(m3 −m1)v1v3

J2 + m̄r2p1

(23)

r̈p1 = σ3 = σ
′

2 +
(m3 −m1)v1v3

J2 + m̄r2p1

rp3 (24)

v̇1 = κ

′

1 (25)

v̇3 = κ

′

3 (26)

Note that model (15)-(18) reduces to the special case of model
(23)-(23) ifm11 = m11 = J22 = 0 (no added mass).

In the fluid inertial forces, (m3 − m1)v1v3 is pitching moment,
which will be included in the aerodynamic forces. This is
because when measuring the aerodynamic forces of the airship
by a wind tunnel test, a part of fluid inertial forces, for instance
(m3 −m1)v1v3, is already included in the results of wind tunnel
test, which is behaved as aerodynamic forces. So, (m3−m1)v1v3
be ignored in the above model Ouyang [2003]. Then, it is as,

θ̈ = ζ3 = ζ
′

2 (27)

r̈p1 = σ3 = σ
′

2 (28)

v̇1 = κ

′

1 (29)

v̇3 = κ

′

3 (30)

All J andms in (15)-(18) change intoJ2, m1 andm3 as follows,
other items keep unchanged.

where

ζ
′

2 = −
1

J2 + m̄r2p1

(m̄rp3rp1θ̇
2
+ 2m̄rp1ṙp1θ̇ + m̄grp1 cosθ

+ rp3u− (v̇3 − θ̇v1)m̄rp1)

σ
′

2 =
1

J2 + m̄r2p1

((J2rp1 + m̄r3p1 + m̄r2p3rp1)θ̇2
+ 2m̄rp3rp1ṙp1θ̇

− (J2 + m̄r2p1)gsinθ + m̄grp3rp1 cosθ + (
J2

m̄
+ r2

p1 + r2
p3)u

+ m̄rp1rp3(θ̇v1 − v̇3) − (J2 + m̄r2p1)(θ̇v3 + v̇1))

κ

′

1 =
−m3θ̇v3 + (m̄−m0)gsinθ − u

m1

κ

′

3 =
(m1 + m̄)θ̇v1 +m0gcosθ + m̄rp3θ̇

2
+ 2m̄θ̇ṙp1 + m̄rp1θ̈

m3 + m̄

4.2 Maximal linearization of a minimum phase model

The model (27)-(30) be decoupled into a non-controllable sys-
tem and a controllable one as it was done for model (15)-(18).
The velocities of the center of the gravity CG are not affected
by the control input, however their mathematical expressions
become a bit more involved.

H∞ = span{dψ
′

1 dψ
′

2}

where

ψ1 = (rp1θ̇ −
m3 + m̄

m̄
v3)2
+ (ṙp1 + rp3θ̇ +

m1 + m̄
m̄

v1)2

ψ2 = (rp1θ̇ −
m3 + m̄

m̄
v3) cosθ + (ṙp1 + rp3θ̇ +

m1 + m̄
m̄

v1) sinθ

Surprisingly, there is now only one single independent function
φ̃
′

2 which has relative degree 3 for the model (27)-(30). More
precisely, computeH3:



H3 = span{dφ̃
′

2 ω} ⊕ H∞

whereφ̃
′

2 = θ +
rp3

√

m3(m1+m̄)
m1(m3+m̄)

√

m̄+m1
m̄m1

J+r2
p3

arctan

√

m3(m1+m̄)
m1(m3+m̄) rp1

√

m̄+m1
m̄m1

J+r2
p3

and check

thoseH3 is no more fully integrable !

ComputeH2 as:

H2 = span{y
′

1 y
′

2 φ̃
′

1} ⊕ H∞

where

y
′

1 =
m̄

m3 + m̄
rp1θ̇ − v3

y
′

2 =
m̄

m1 + m̄
(ṙp1 + rp3θ̇) + v1

φ̃
′

1 = (
m̄+m1

m̄m1
J +

m3(m1 + m̄)
m1(m3 + m̄)

r2
p1 + r2

p3)θ̇ + rp3ṙp1

As the previous sections, one has the relation involving the
angular momentum,

˙̃φ
′

2 =
1

m̄+m1
m̄m1

J + m3(m1+m̄)
m1(m3+m̄) r

2
p1 + r2

p3

φ̃
′

1

Despite these diametric changes with section 3, it is now argued
that the control scheme which has been computed for the
elementary special case in the section 2 is still valid, thanks
to some approximation. This is done next!

4.3 Simulations

Since φ̃
′

1 does not have relative degree 3 anymore asφ̃
′

2, the
Theorem 1 & 2 are not true. But fortunately, the second-time
derivative ofφ̃

′

1 has a small coefficient ofu, so it is proposed to
neglect this coefficient.

More precisely, define again the outputy = φ̃
′

1 + kφ̃
′

2, for some
k > 0.

Instead of the coordinates (4)-(7), define

ζ1 = φ̃
′

1 + kφ̃
′

2 (31)

ζ2 =
˙̃φ
′

1 + k ˙̃φ
′

2 (32)

ζ3 =
¨̃φ
′

1 + k ¨̃φ
′

2 − ∆u (33)

ζ4 = φ̃
′

1 (34)

where ¨̃φ
′

1 = Π + ∆u

Instead of solving (8), consider the following equation:

ζ̇3 + λ2ζ3 + λ1y(1)
+ λ0(y− ye) = 0 (35)

Note that equation (35) is strictly the equation (8) only if∆ ≡ 0.
In the following when∆ is small, then (35) is an approximation
of (8).

Solvingu in the equation (35) yields the desired states feedback
which is applied now to the model (27)-(30). The corresponding
simulation results are displayed accordingly and show thatthe
stability property is unchanged despite the above approxima-
tion.

Here,m1 = 400kg, m3 = 500kgand the other parameters have
the same values as the previous. Good control performances
have been got as displayed in Fig 10 to 12.

Fig. 10. Dynamics ofθ andrp1 with initial error

Fig. 11. The behavior of inputu

5. THE COMPLETE AIRSHIP MODEL

The last step, The aerodynamic forces are added into the
system, which meansA1 is dropped. So the following total
external forces and momentums should include aerodynamic
forcesFa and momentumsMa.

Ftotal = m0gRT
1

k + FI + Fa (36)

Mtotal = m0gRT
1

rs × k + MI + Ma (37)

Combined (36) and (37) and, given the complete model as the
follows,

θ̈ = ζ3 +
Ma

J + m̄r2p1

r̈p1 = σ3 +
Marp3

J + m̄r2p1

v̇1 = κ

′

1 +
Fa1

ms

v̇3 = κ

′

3 +
Fa3

ms + m̄

where,

Fa1 = −Xa cosα + Za sinα
Fa3 = −Xa sinα − Za cosα

Xa =
1
2
ρa∇

2/3v2(Cx0 +Cα
xα

2)

Za =
1
2
ρa∇

2/3v2(Cz0 +Cα
zα)

Ma =
1
2
ρa∇v2(Cm0 +Cα

mα)

Xa, Za are aerodynamic forces alonge1 ande3 axes, andMa is
momentum arounde2 axis.α is the attack angle.



Fig. 12. Ballistic motion of CG

ComputeH2 as:

H2 = span{dy
′

1 dy
′

2 dφ̃
′

1 dθ; drp1}

H3 = span{dφ̃
′

2 ω}

Here,dφ̃
′

1 anddφ̃
′

2 have the same form as the previous sections,
but the values are different. By the same way as the section 4,
a advanced nonlinear controller can be derived. The simulation
results of this nonlinear controller for the complete system will
be presented elsewhere.

6. CONCLUSION

In this paper, a new way to set up the model for a complex
system is denoted. What’s more important is that based on that
modelling-from the fundamental and elementary mechanical
structure to the complex and complete model-a nonlinear con-
troller is designed for that complex airship system. This non-
linear controller is difficult to derive directly from the complex
full model.

Even though that nonlinear controller is not a precise one,
some approximation has been done, the controller behaves well,
which has better performances and larger stable domain of
initial conditions than the previous controllers.
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