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e resolution of Diophantine equations according to
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and a justication of the cakravāla by Kṛṣṇadaivajña

François Pae

Paris Descartes University
April 9, 2011

Abstract

e main goal of this paper is to present an Indian ‘demonstration’ of the cakravāla rules
provided by Bhāskara II. is demonstration was given by Kṛṣṇadaivajña, a mathematician
who lived at the end of the sixteenth century, in his commentary on Bhāskara’s Bījagaṇita:
the Bījapallava.
e cakravāla, or cyclic method, is a procedure to calculate the solutions of a Diophantine
quadratic equation of the form: p x2 + k = y2. is cyclic method involves solving linear
Diophantine equations, so we will make a presentation, as short as possible, of the rules
given by Bhāskara in order to handle these linear and quadratic equations: the kuṭṭaka and
the vargaprakṛti. When necessary, we will present commentators’ explanations.

1 e kuṭṭaka
or linear Diophantine equations

e kuṭṭaka, or ‘pulveriser’, is an algorithm to solve indeterminate equations of the form:

a u+ c = b v

where all numbers are integers; a, b and c are the coecients, u and v the unknowns. Bhāskara
gives ve rules to describe the full procedure. e rst rule stipulates that if a common divisor
to a and b does not divide c, the equation has no solution.

bhājyo hāraḥ kṣepakaś cāpavartyaḥ
kena apy ādau saṃbhave kuṭṭakārthaṃ

yena cinnau bhājyahārau na tena
kṣepaś cet tad duṣṭam uddiṣṭam eva

Firstly, the dividend, the divisor and the additive must be simplied, when possible,
by some [number] for the kuṭṭaka. If the number by which the dividend and the
divisor are divided does not [divide] the additive, the [problem] is impossible.

is stanza tells more than under which circumstances the problem can be solved: It gives
the technical vocabulary which will be used to designate the coecients of the equation.

• a will be the dividend

• b the divisor

• c the additive¹

¹We will italicise these terms whenever they are used with their technical meaning.
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e word kuṭṭaka (pulveriser) which gives its name to the procedure is, in fact, the name of
what we are looking for when we solve this equation: amultiplier, u in the equation. Problems
given as examples in this kuṭṭaka chapter emphasise the role of this solution in the complete
equation. For instance a problem will be formulated as follows: “O arithmetician! Say quickly
themultiplier by which two hundred and twenty-one is multiplied then added to sixty-ve and
divided by one hundred and ninety-ve, will leave no remainder.”

As for the meaning of the word kuṭṭaka —namely pulveriser— it is a common usage for
Indian mathematicians to name the multiplication, and the multiplier, by terms that mean ‘to
hit’.

e name of one quantity is not quoted in this stanza: v, which is called the quotient.

We now come to the description of the algorithm which is to be followed to nd out the
solutions of these equations. We will proceed step by step and explain the meaning at each
step, with our modern mathematical vocabulary.

mitho bhajet tau dṛḍhabhājyahārau
yāvad vibhājye bhavatīha rūpam

One will divide mutually these reduced dividend and divisor, until the unity will be
in the place of the dividend.

A new technical expression is used here: ‘divide mutually’; it means the Euclidean algo-
rithm. In the Kriyākramakarī, a Keralese commentary to Bhāskara’s Līlāvatī, from the sixteenth
century, this is explained in this way: “is is said: Having divided the two numbers one by
the other (the dividend by the divisor), one will divide the other (the divisor) by what remains;
having brought [this operation] about again in the same manner, until only one [number] is
le …”

According to this rule, we have to divide a by b, then b by the remainder of the division, the
rst remainder by the second remainder, “until the number one is in the place of the dividend.”
To understand this last expression, we have to gure out how the Ancients were conducting
their calculations on sand: ey replaced the numbers by the result of the operation; in a divi-
sion, they put the quotient aside, then wiping out the dividend, they wrote the remainder in its
place.

We can nd a mimic of this in the manuscripts. Suppose that one wants to divide 17 by 15,
one writes:

17
15

then: 1 2
15

So, the remainder 2 is put “in the place of the dividend” 17.
e fact that, at the end of the procedure, the number one is in the place of the dividend

—thus being the last remainder— is normal because, aer applying the rst stanza, the two
numbers, a and b, are relatively prime.

e next step concerns the arrangement of the terms in order to calculate the solutions.

phalāny adho ’dhas tad adho niveśyaḥ
kṣepas tathānte kham…

e quotients [will have to be placed] one under the other; the additive must be
placed below them, then zero at the last place.

Let us examine these rst two steps on the rst example given by Bhāskara, who asks to
solve the equation: 221u+ 65 = 195 v.

Aer a reduction of the three numbers by 13, we can begin the process with this equation:
17u+ 5 = 15 v.
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Following the rst step, we divide 17 by 15: 17 = 1 × 15 + 2, then 15 by the remainder 2:
15 = 7× 2+ 1 and we are done because we obtain 1 as the last remainder.

We now put these quotients “one under the other”, below them the additive and in the last
place zero:

quotient: 1
quotient: 7
additive: 5
zero: 0

Indian mathematicians call this seing ‘phalavallī’, the creeper of the results.

Now, we can go through the next step, the very algorithm that calculates the solutions.

… upāntimena
svordhve hate ’ntyena yute tad antyaṃ

tyajen muhuḥ syād iti rāśiyugmam

e last but one having multiplied the [number] which is above and the last [num-
ber] having been added, one will remove this last; repeat the operation until there
is a couple of numbers.

Before explaining this stanza, we should point out to how it is wrien. ings are stated
with great conciseness and, in the case of an algorithm description, as in this stanza, with
expressions that are as general as possible so that they can be used in an iterative process. Here
we have: “e last but one having multiplied the one which is above and the last one having
been added, onewill remove this last”, that can be usedwhatever the length of the creeper, “until
there is a couple of numbers”, which marks the end of the operations, because three numbers
are needed in this process.

We apply this algorithm to the previous example; this is done in two steps.
In the rst step, the ‘last but one’ is 5 and the number above is 7, so we have to multiply 7

by 5 and add the ‘last’, 0: 7× 5+ 0 = 35 and we remove 0 from the creeper.
In the second step, we have to multiply 1 by the ‘last but one’ of the new creeper: 35, then

add the ‘new’ last, 5: 1 × 35 + 5 = 40. And the process ends because, aer removing the last,
there remains only two numbers.

1ˢ step 2ⁿ step

1 1 1× 35+ 5 = 40
7 7× 5+ 0 = 35 35
5 5
0

At this stage, we have the solution of the equation: 40 is the quotient and 35 the multiplier :
17 × 35 + 5 = 600 = 15 × 40. But while explaining which of the two numbers found is
the multiplier and which is the quotient, Bhāskara gives the way to nd the minimal positive
solutions.

ūrdhvo vibhājyena dṛḍhena taṣṭaḥ
phalaṃ guṇaḥ syād aparo hareṇa

e uppermost, being reduced to the remainder by the dividend, will be the quo-
tient; the other, [reduced to the remainder] by the divisor, will be the multiplier.
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ere is a new technical expression to explain: ‘reduced to the remainder’ that we used to
translate the Sanskrit word ‘taṣṭa’. e commentator Sūryadāsa says in his Sūryaprakāśa —a
commentary on Bhāskara’s Bījagaṇita—: “When the remainder only is needed in a division, the
quotient being useless, the conventionally agreed word ‘taṣṭa’ is used.”

Applying this rule to the example, we have to divide 40 by 17 and 35 by 15 and keep the
remainders respectively as the quotient and the multiplier of the equation:

40 = 2× 17+ 6
35 = 2× 15+ 5

So, 5 and 6 are the minimal positive solutions of this equation:

17× 5+ 5 = 15× 6

A variant of this last rule is given later on, in order to calculate all the solutions for this
form of equation.

iṣṭāhatasvasvahareṇa yukte
te vā bhavetāṃ bahudhā guṇāptī

ere will be many multipliers and quotients if they are added to their respective
simplier multiplied by an arbitrary number.

‘Simpliers’ refer to the divisor and dividend used in the previous rule to nd out the min-
imal solutions. By this rule we can calculate all the solutions of the equation a u + c = b v.
Once a couple of solutions, (u0, v0), has been found, the couple:

(ut, vt) = (u0 + t b, v0 + t a)

will be another couple of solutions for any arbitrary integer t. Indeed:

a ut + c = a(u0 + t b) + c

= a u0 + c+ t ab

= b v0 + t ab

= b(v0 + t a) = b vt

For the sake of completeness we should mention a last rule, even if we will not use it explic-
itly in this paper. One may have recognised in this method for solving this form of equation,
an algorithm very close to the Euclid-Bézout algorithm and just as in the laer, there is a sign
alternation which concerns the additive at each step of computation.

Let us see how this happens, investigating the rst step of Bhāskara’s process.
We divide a by b: a = b q1 + r1, 0 ≤ r1 < b and replace a in the initial equation:

(b q1 + r1)u+ c = b v so we get the equation: r1 u+ c = b (v − q1 u)

Puing w = v − q1 u as a new indeterminate, we have a new equation of the same form
with −c as the additive: bw − c = r1 u.

At the end of the procedure, as the last remainder is rn = 1, the last equation is:

rn−1 y + (−1)nc = rn x = x

So, we alternately have an equation with c or −c for additive (c if the number of quotients
is even, −c if it is odd) and Bhāskara’s ‘creeper algorithm’ is a means to compute the two
indeterminates u and v going backward from x.
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As the coecient of x is 1, we can choose any integral value for y to have an integral value
for x and hence for u and v. Bhāskara has put 0 as the chosen value for y —which makes the
calculation of u and v simpler— and, in his description of the ‘creeper algorithm’, he does not
take into consideration that the additive could be c or−c according to the parity of the number
of operations, but he gives a last rule to modify the found result if the number of operations
is odd. is is classic in Sanskrit texts: First a general rule (utsarga) is given, then this general
rule is corrected by mentioning exceptions (apavāda).

evaṃ tadaivātra yadā samās tāḥ
syur labdhayaś ced viṣamās tadānīm

yathāgatau labdhiguṇau viśodhyau
svatakṣaṇāc eṣamitau tu tau staḥ

us are exactly [the operations] when the number of quotients is even; if this
number is odd the quotient and themultiplier, as obtained, must be subtracted from
their respective Simpliers and the [correct] quotient and multiplier are equal to
the remainders.

Hence, if the number of quotients is odd, that is to say the number of divisions is odd, we
apply the prescribed algorithm to calculate two numbers: u0 and v0 and the solutions of the
equation are given by u1 = b − u0 and v1 = a − v0 because, if u0 and v0 are the solutions of
a u+ c = b v, u1 and v1 are the solutions of the equation a u− c = b v.

a u1 − c = a (b− u0)− c

= a b− (a u0 + c)

= a b− b v0

= b (a− v0)

= b v1

2 e vargaprakṛti
or a study of the properties of the equation: p x2

± k = y2

To begin with, let us explain the meaning of the name of this section: vargaprakṛti. It is a
compound noun varga-prakṛti, varga means ‘square’ and prakṛti ‘origin’. Kṛṣṇadaivajña gives
two explanations in his commentary:

“Vargaprakṛti, that is to say: When the original cause (prakṛti) is a square (varga),
because the original cause of this calculation is the square of unknown quantities.²”

“Or vargaprakṛti, that is to say: Squares of unknowns are calculated from a number
which is at their origin; in this case the numberwhich is the origin for the squares of
unknowns is named by the word ‘prakṛti’ and this [number] is the very multiplier
of the squares of unknowns. erefore, in this computation of roots, the multiplier
of the squares is designated by the word ‘prakṛti’.³”

We have two interpretations for the name of this section: Either the origin of the calcu-
lation is to nd a square quantity and we can think that this refers to a following chapter
(madhyamāharaṇabhedāḥ) where the construction of a square is needed to solve an equation.

²Kṛṣṇa’s text reads: yāvadādi. In Sanskrit mathematical texts, the unknowns are denominated by colour names
kāla, black, nīla, blue … and the rst one, our x, is called yāvaāvat : so much as; so, yāvadādi means: yāvat[tāvat],
kāla, nīla etc.

³See text 1, page 19.
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For instance: “What is the number which multiplied by two and added to six times its square
gives a square root?”

We have to solve: 6x2 + 2x = y2. Bhāskara’s method is to multiply both sides by 6 and
add 1, which yields the following equation:

36x2 + 12x+ 1 = 6 y2 + 1 or (6x+ 1)2 = 6 y2 + 1

In this case the reason for the calculation is to nd a square equal to 6 y2+ 1, and he applies the
methods of this chapter, then nds the values of x (x = 3/2, 8, · · · ).

Or the origin of squares is the coecient p of the square x2 in the identity p x2 ± k = y2.
is coecient plays a central role in the study of this identity because it is the only value
which remains xed throughout the analysis of the properties of three numbers verifying the
previous relationship.

iṣṭaṃ hrasvaṃ tasya vargaḥ prakṛtyā
kṣuṇṇo yukto varjito vā sa yena

mūlaṃ dadyāt kṣepakaṃ taṃ dhanarṇaṃ
mūlaṃ tac ca jyeṣṭhamūlaṃ vadanti

Let an assumed [number] be the least root; its square is multiplied by the prakṛti;
the additive is this [number], positive or negative, by which this [square multiplied
by the prakṛti] is increased or decreased to produce a root and [mathematicians]
call this root, the greatest root.

As for the kuṭṭaka, the rst rule gives the denition of the technical words used in this
chapter and what the relationships between the dierent elements involved in this rule are:
A number, the square of which is multiplied by a given number, the prakṛti, and added or
subtracted to another number, ‘produces a root’, that is to say: is a square.

According to this stanza, in the identity p x2 ± k = y2,

• p is the prakṛti

• x is called the least root

• y is the greatest root

• k is the additive which can be positive or negative. e Sanskrit words used are dhana
(wealth) and ṛṇa (debt).

Regarding the prescription for an operation given in this rule, it is very simple: Choose a
number as the least root, x, then complete to the nearest square the value of its square multiplied
by the prakṛti, adding or subtracting the right number, k, to obtain a square, the root of which is
the greatest root: y. Mostly, the chosen least root will be 1, making the additive the complement
of the prakṛti to the nearest square.

e bhāvanā
or how to calculate many least and greatest roots

Once we have found three numbers, x, y and k, using the preceding rule, the bhāvanā, which
we can translate by ‘composition’, is a procedure to calculate several triples of numbers which
verify the relation p x2 ± k = y2 with a xed prakṛti. As a convention, we will note such a
triple: [xn, yn; kn].

Bhāskara gives the bhāvanā rule in two parts: e rst part gives the seing of the numbers
in order to make the calculation, the second is the description of how to proceed.
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hrasvajyeṣṭhakṣepakān nyasya teṣāṃ
tān anyān vādho niveśya krameṇa

sādhyāny ebhyo bhāvanābhir bahūni
mūlāny eṣāṃ bhāvanā procyate ’taḥ

vajrābhyāso jyeṣṭhalaghvos tadaikyaṃ
hrasvaṃ laghvor āhatiś ca prakṛtyā

kṣuṇṇā jyeṣṭhābhyāsayug jyeṣṭhamūlaṃ
tatrābhyāsaḥ kṣepayoḥ kṣepakaḥ syāt

Having set down a least root and a greatest root and an additive, then successively
placed under them, the same ones or others, many roots can be calculated by com-
positions (bhāvanā); that is why the composition is taught.

Given the cross products of the greatest and least roots, their sum is a least root. And
the product of the least roots, multiplied by the prakṛti and added to the product of
the greatest root, is a greatest root. e product of the additives will be an additive.

e arrangement is very simple: We put two triples on two lines, one under the other; if
we have only one triple we can put the same triple on the second line.

To calculate a new least root, we have to make a ‘cross product’ of the least and greatest
roots: We multiply the least root on the rst line by the greatest root on the second line and add
the product of the greatest root on the rst line by the least root on the second line. e expres-
sion ‘cross product’ is the translation of the Sanskrit technical term: vajrābhyāsa, meaning ‘a
multiplication like a thunderbolt’.

For a new greatest root, we multiply the product of the two least roots on the two lines by
the prakṛti and add the product of the two greatest roots.

And for a new additive, we multiply the two additives on the two lines.

We can summarise these calculations in the following way: Arrows connect numbers to be
multiplied, then results are added:

.
.

..x1 ..y1 ..k1 . ..p ..x1 ..y1 ..k1 . ..x1 ..y1 ..k1

..x2 ..y2 ..k2 . . ..x2 ..y2 ..k2 . ..x2 ..y2 ..k2

.x3 = x1y2 + x2y1 .y3 = px1x2 + y1y2 .k3 = k1k2

It is easy to demonstrate that the new triple [x3, y3 ; k3] veries the same relation as the
two triples [x1, y1 ; k1] and [x2, y2 ; k2].

Bhāskara also gives the same rule of composition by replacing the addition by the dierence
of the products. Commentators explain that the use of this laer rule is useful if we need smaller
numbers as roots.

Solving ‘simple’ Pell’s equations

Before coming to an example, we need a last rule given by Bhāskara in this vargaprakṛti chapter.

iṣṭavargahṛtaḥ kṣepaḥ
kṣepaḥ syād iṣṭabhājite

mūle te sto ’thavā kṣepaḥ
kṣuṇṇaḥ kṣuṇṇe tadā pade

e additive divided by the square of an assumed number will an additive; the two
roots divided by this assumed number, are the [roots]; or the additive multiplied is
an additive; in this case the roots are multiplied.
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is rule is to be used in order to reduce triples obtained by the bhāvanā.
It is quite obvious: If we have a triple [x1, y1 ; k1], suppose that the square of a number

d divides the additive k1, then we can write: k1 = d2k′1 and if we write the relationship
between the three numbers of the triple as: k1 = y1 − p x2

1 we have:

d2k′1 = y2
1 − p x2

1

k′1 =
(y1

d

)2 − p
(x1

d

)2

So, if we can simplify the additive by the square of the number, then we have to simplify the
least and greatest roots by the number itself. Similarly, if we multiply the additive by a square,
the two roots are multiplied by the number:

d2k1 = (d y1)
2 − p (d x1)

2

Now, let us see how to use this material to solve a simple Pell’s equation. Bhāskara gives
this example:

Which square multiplied by eleven and increased by one is a square? O my friend!

And the solution runs as follows:

1. According to the rst rule, we choose 1 as least root and complete the prakṛti, 11, to the
nearest square with the additive −2:

[1, 3; −2] 11× 12 − 2 = 32

2. We use the bhāvanā to nd another triple; as we have only one triple, we put it on the
two lines:

1 3 −2
1 3 −2

1× 3+ 3× 1 = 6 ; 11× 1× 1+ 3× 3 = 20 ; (−2)× (−2) = 4

And we obtain a new triple for the same prakṛti:

[6, 20; 4] 11× 62 + 4 = 202

3. As the additive of this last triple is a square we can use the simplication rule and divide
it by 4. So we have to divide the least and greatest roots by 2. Fortunately these two are
even! us we have the solution of the question asked by Bhāskara:

[3, 10; 1] 11× 32 + 1 = 102

4. And now, because the additive is 1, we can use repetitively the bhāvanā to nd all the
triples which are solutions to the equation:

3 10 1
3 10 1

[60, 199; 1] : 11× 602 + 1 = 1992

3 10 1
60 199 1

[1197, 3970; 1] : 11× 11972 + 1 = 39702

Evam ānantyam, ‘thus is innity’ is generally the conclusion of the commentators.
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3 e cakravāla
or the cyclic method to solve Pell’s equations

From the example in the previous section, we can have an idea of what the method to solve a
Pell’s equation will be. Unfortunately when reading the third step things do not go as smoothly
because there is no knowing that the calculated roots will be divisible by the number whose
square divides the additive found by way of the bhāvanā.

e cakravāla is a method to solve this problem.
One rule is given in two parts; the rst part expounds the way to proceed.

hrasvajyeṣṭhapadakṣepān
bhājyaprakṣepabhājakān

kṛtvā kalpyo guṇas tatra
tathā prakṛtitaś cyute

guṇavarge prakṛtyone
’thavālpaṃ śeṣakaṃ yathā

Having made the least and greatest roots and the additive, a dividend, a k-additiveۑ
and a divisor, a multiplier must be produced so that, in this procedure, the remain-
der will be small when the square of the multiplier is removed from the prakṛti, or
when it is decreased by the prakṛti.

Given a triple [x1, y1; k1] of integers found using the rules from the vargaprakṛti chapter,
we have to solve a kuṭṭaka dening the least root, x1, as the dividend, the greatest root, y1, as the
k-additive and the additive as the divisor:

x1u+ y1 = k1v

e rule stipulates to choose a solution (u, v) = (α, β) such that the multiplier, i.e. α, min-
imises the dierence between its square and the prakṛti.

e second part of the rule explains how to build a new triple [x2, y2; k2] from the solutions
of the kuṭṭaka.

tat tu kṣepahṛtaṃ kṣepo
vyastaḥ prakṛtitaś cyute

guṇalabdhiḥ padaṃ hrasvaṃ
tato jyeṣṭham ato ’sakṛt

tyaktvā pūrvapadakṣepāc
cakravālam idaṃ jaguḥ

is remainder, divided by the additive is an additive, reversed if there was sub-
traction from the prakṛti. e quotient associated to the multiplier is a least root,
whence a greatest root. Puing them aside again and again from the previous roots
and additives, [mathematicians] call this [procedure] the cakravāla.

‘is remainder’ is the remainder of the subtraction between the square of the multiplier,

which is a solution of the kuṭṭaka, and the prakṛti. So we have: k2 =
α2 − p

k1
, or k2 = −p− α2

k1
because it is mentioned: “Reversed if there was subtraction from the prakṛti.”

e quotient obtained as a solution of the kuṭṭaka is a new least root: x2 = β =
x1α+ y1

k1
.

And we calculate from these two, k2 and x2, the greatest root, using the relation: y2
2 = p x2

2+k2.

Weۑ introduce here a new technical notation because in both, the vargaprakṛti and kuṭṭaka chapters, the term
‘additive’ is used. We will note the additive related to the kuṭṭaka as: ‘k-additive’ to avoid confusion.
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Cakravāla means ‘a circle’; commentators say that this method is thus called because from
roots arises a kuṭṭaka, the solutions of which give new roots from which we solve a new kuṭṭaka
and so on until we nd the solution of a Pell’s equation.

We now give a last rule by Bhāskara before going into the explanations given by Kṛṣṇadai-
vajña to justify the cakravāla as a method leading to integral solutions of a Pell’s equation.

caturdvyekayutāv evam abhinne bhavataḥ pade
caturdvikṣepamūlābhyāṃ rūpakṣepārthabhāvanā

us, there are two non-fractional rootswhen the additive is four, two or one. From
two roots associated with the additives four and two, a composition whose goal is
additive one [must to be carried out].

Kṛṣṇadaivajña provides this commentary to the rst verse:

“‘us’, that is to say: with the cakravāla. If the additive is four and if the additive
is two and if the additive is one, there are two non-fractional roots; this is a way to
imply that there are two non-fractional roots whatever the additive. ‘Additive’ also
is a synecdoche, with this word, subtractive is also to be understood.ے”

Kṛṣṇa’s interpretation of this verse is a clear cut armation that the cakravāla will yield
integral solutions to a Pell’s equation whatever the additive.

He also explains the second verse:

“Now, in order to calculate roots associated to an additive one, [the author] says
that there is also another method: A composition must be performed and there are
two roots from additive one, if the additive is four, [directly] using [the rule]: “e
additive divided by the square of an assumed number, etc.”, if the additive is two,
aer calculating two roots associated to additive four by an equal composition, and
applying the same rule aerwards.ۓ”

is rule claims that by an iterative use of the bhāvanā, solutions of the equation with
additive 1, can be obtained from equations with additives±2 or±4. is result has been known
since Brahmagupta’s times.

If the additive is ±2 and x1 and y1 are the least and greatest roots of the equation, then the
bhāvanā gives x2 = 2x1y1, which is even, as the least root and y2 = p x2

1 + y2
1 = 2 y2

1 ± 2 (for
p x2

1 = y2
1 ± 2), which is also even, as the greatest root of the equation p x2 + 4 = y2. en the

simplication rule applies and x2/2 and y2/2 are integral solutions of p x2 + 1 = y2.
In his Brahmasphuṭasiddhānta, Brahmagupta adds these rules if the additive is ±4:

“If the additive is four, the square of the last root۔ less three, halved and multiplied
by the last root is a last root. e square of the last root less one, divided by two
and multiplied by the first root is a first root.

If the additive is minus four, let two squares of the last root be added to three and
one; let half of their product separately put: en, minus one and multiplied by the
rst [term of the product] decreased by one, it is a last root, and multiplied by the
product of the roots it is a first [root] associated to this last root.ە”

Seeے text 2 page 19.
Seeۓ text 3 page 19.
Brahmagupta۔ calls last root (antyapada) what Bhāskara calls greatest root (jyeṣṭhapada) and he calls first root

(ādyapada) what Bhāskara calls least root (kaniṣṭhapada).
Seeە text 5 page 20.
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According to the rst rule, if x1 and y1 are solutions of equation p x2 + 4 = y2, then:

v1 =
y2
1 − 3
2

y1 and u1 =
y2
1 − 1
2

x1

are solutions of equation p u2 + 1 = v2.
is is true but one can remark that if x1 is odd and y1 is even, then u1 is not an integer, as

shown by example 60x2 + 4 = y2. Taking x1 = 1 and y1 = 8, u1 =
63
2

and one may wonder

whether the goal of solving this form of equation has always been to nd integral solutions.
Bhāskara also gives examples with rational solutions and, while solving the famous equation
67x2 + 1 = y2, which is given as an example in the cakravāla chapter, at one step, rational
solutions are found and composed using the bhāvanā to nd integral solutions at the end of the
procedure.

e second rule yields integral solutions, whatever the parity of x1 and y1 is. If x1 and

y1 are solutions of equation p x2 − 4 = y2, then v1 =
((y2

1 + 3)(y2
1 + 1)

2
− 1

)

(y2
1 + 2) and

u1 =
((y2

1 + 3)(y2
1 + 1)

2

)

x1y1 are solutions of equation p u2 + 1 = v2.

ese formulæ can be found using the bhāvanā recursively, starting from:

p
(x1

2

)2 ± 1 =
(y1

2

)2

For the rst formula we should apply the bhāvanā twice, rst composing y1/2 and x1/2 with
themselves, then with the result of this composition.

e second formula is more dicult to establish because the additive is alternately −1 and
1 and ve successive compositions are needed.

From a modern point of view, the bhāvanā expresses that the norm in the quadratic eld

Q[
√
p] is multiplicative and Brahmagupta’s formulæ are obtained expanding

(y1

2
+

x1

2
√
p
)3, in

the rst case and
(y1

2
+

x1

2
√
p
)6, in the second case, the norm of

y1

2
+

x1

2
√
p being respectively

1 and −1.

4 Kṛṣṇa’s upapatti

Kṛṣṇadaivajña

He is from an important family of astronomers who emigrated from Vidharba, in the eastern
part of Maharashtra, to Varanasi during the sixteenth century. He was a protégé of the Mughal
emperor Jahāngir and was an astrologer at the Mughal court. His commentary on Bhāskara’s
Bījagaṇita: the Bījapallava is dated “Saturday, the fourth tithi of the dark fortnight of the Caitra
month, 1523 Śaka year”: Saturday April 21, 1601.ۖ

According to Professor Sreeramula Rajeswara Sarma,¹⁰ in the following illustration, Kṛṣṇa
might be the astrologer in the centre of this miniature, seated between two Muslim astrologers,
and casting a horoscope for the birth of Salim, the future emperor Jahāngir. e painting is in
the Museum of Fine Arts, Boston (courtesy of Pr. Sreeramula Rajeswara Sarma).

ۖDate conversion was done using Michio Yano’s pancanga program.
¹⁰“Astronomical Instruments in Mughal Miniatures” in Studien in Indologie und Iranistik 16-17 (1992) 235-276.

Reprinted in e Araic and the Exotic: Studies in the History of Indian Astronomical Instruments, Manohar, New
Delhi 2008.
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Figure 1: Kṛṣṇadaivajña¹¹

e word upapatti

is word is used by commentators when they want to give an explanation or a justication
of a rule given in the work they are commenting upon. In mathematical texts, rather than a
full demonstration such as we may know nowadays, this word indicates that the operation or
the procedure formulated by the author is coherent and achieves the result which it has been
created for.

Here Kṛṣṇadaivajña justies the cakaravāla rule by showing why the use of the kuṭṭaka is
necessary to nd integral solutions of a Pell’s equation.

Notations for operations

To support his reasoning he makes some calculations and uses formal notations. Here is a page
of a manuscript with an example of these notations.

Figure 2: A manuscript page of the Bījapallava

We can read on lines 3 to 5 (we have supplied between square brackets some words or signs
which are missing but which can be found in other manuscripts):

¹¹“Astrologers casting the Horoscope,” detail from the “Birth of Salim,” Museum of Fine Arts, Boston, 17.3112. Cf.
Stuart Cary Welch, Imperial Mughal Painting, London 1978, Pl. 16, pp. 70-71.
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tatra pūrvakaniṣṭaṃ i • ka 1
kṣe

asya vargaḥ iva • kava
kṣeva 1

prakṛtiguṇaḥ iva • kava • pra 1
kṣeva 1

jyeṣṭhasādhārthaṃ kṣepaś cā-

yaṃ
[

iva 1
kṣe 1

]

atha kṣepabhaktajyeṣṭhādhikaṃ [kaniṣṭhaṃ] i • ka 1 jye 1
kṣe [1]

asya vargaḥ iva • kava [1] i • ka [•] jye [2] jye[va] 1
[kṣeva 1]

pra-

kṛtiguṇaḥ pra • i[va •] kava 1 [pra •] i [•] ka [•] jye 2 pra [•] jyeva 1
kṣeva [1]

e explanation of this system is as follows: It uses the rst syllable of a word as algebraic
symbols: i stands for iṣṭa (assumed number), ka for kaniṣṭha (least root), jye is jyeṣṭha (greatest
root), pra for prakṛti and kṣe for kṣepa (additive). e Sanskrit word for square is varga, so to
denote the square of one quantity, the syllable va is postponed to the syllable representing the
quantity: kava means the square of the kaniṣṭha, x2.

A bullet is a multiplication sign, but not in all manuscripts. Fractions are noted by puing
the numerator above the denominator, without any fraction line. ere is no sign for addition,
only a number is placed aer a symbol as a counting indication; for instance if we want to note
the square of the sum of the least (ka) and greatest roots (jye), it will be wrien like this: kava 1
ka•jye 2 jyeva 1 (x2 + 2xy + y2).

Finally the calculations are separated from the text by a frame.

Here is the translation of this passage:

Now, the preceding least root is
αx

k
; its square

α2x2

k2 multiplied by the prakṛti is:

α2x2p

k2 and, in order to calculate the greatest root, the additive is this one:

[

α2

k

]

.

en, [the least root], added to the greatest one divided by the additive is:
αx+ y

k
;

its square,
α2x2 + 2αx y + y2

k2 , multiplied by the prakṛti is:
pα2x2 + 2pαx y + py2

k2 .

A preliminary study

As a starting point to his justication, Kṛṣṇa mentions the rule for the additive simplication
by a square: “If the additive is divided by the square of an assumed number…” (see page 7) and
he uses it twice: First in the ‘multiplicative form’, multiplying the least root by an arbitrary
number, he says that the additive must be multiplied by the square of that number. If we denote
α the arbitrary number and if we have a triple [x1, y1; k1], we have a new least root αx1 and a
new additive α2k1.

en he uses the same rule, choosing as assumed number the additive of the triple and
dividing the just obtained least root and additive. Doing this, he concludes that we have again
a new least root and additive:

x2 =
αx1

k1
k2 =

α2k1

k2
1

=
α2

k1

And he remarks:

“In these conditions, one must imagine a number chosen in this way: Once the
least root is multiplied by this number, there will be a simplication if it is divided
by the additive, if not how could the least root be non-fractional?

For this purpose —that is to say: What is the number by which the least root being
multiplied then divided by the additive will be without remainder?— a multiplier
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and a quotient must be calculated aer making the least root a dividend, the additive
a divisor without any k-additive.¹²”

Indeed, if we want x2 to be an integer we must choose α such that k1 divides αx1 so, we
must solve the following kuṭṭaka:

x1 u = k1 v

And Kṛṣṇa concludes:

“In that case, the quotient will be the least root. e square of the multiplier —the
very [number] sought, which is the multiplier in this [kuṭṭaka]— divided by the
previous additive will be the additive. en, the greatest root multiplied by the
multiplier and divided by the additive will be the greatest root.¹³”

If the couple (α, β) is a solution of the kuṭṭaka x1 u = k1 v, the quotient is β =
αx1

k1
and we

recognise the value calculated above by Kṛṣṇa as the new least root, x2; the associated values
for the additive, k2, and the greatest root, y2, follow. From the general solution of this kuṭṭaka
without k-additive, namely: u = k1 t, v = x1 t with t an arbitrary integer, we can see that
the new triple [x2, y2; k2] is composed of integral values:

x2 = β =
αx1

k1
=

k1t x1

k1
= t x1 ; k2 =

α2

k1
=

k2
1t

2

k1
= k1t

2 ; y2 =
α y1

k1
=

k1t y1

k1
= t y1

Of course we recognise the ‘simplication rule’ (page 7) under its multiplicative form, but
what is interesting in Kṛṣṇa’s explanation is the reason for introducing the kuṭṭaka and the
distribution of the roles: e least root is a dividend and the additive a divisor. He will never
explain why the greatest root is chosen as the k-additive but will show by a calculation that this
choice allows the new additive to be minimised.

Explanation of Bhāskara’s rule for the cakravāla

“e master endeavoured to calculate dierently because in the [preceding calcu-
lation] the additive is too large. A multiplier and a quotient are calculated puing
the least root (x1) as the dividend, the greatest root (y1) as the k-additive and the
additive (k1) as the divisor.¹ۑ”

e ‘preceding calculation’ is the one done by Kṛṣṇa in his preliminary study; according to

it, the new additive obtained aer applying the kuṭṭaka is: k2 =
α2

k1
, α being the multiplier of

the resolved kuṭṭaka.
Of course, even if the preliminary study clearly shows how to produce integral solutions

for a Pell’s equation, as the goal of the cakravāla is to produce an additive equal to ±1 or ±2
or ±4, as stated in the Bhāskara’s last rule: “If the additive is two or four …” (see page 10), and
from there to use the bhāvanā as a shortcut to nd the integral solutions of p x2 + 1 = y2, in
Kṛṣṇa’s study the size of the additive cannot be mastered.

Kṛṣṇa will now justify that the new additive proposed by Bhāskara, k2 = ±α2 − p

k1
, which

can be minimised by the choice of α, is the right additive, if the new least root is set to be the
quotient obtained in the kuṭṭaka with k-additive xed as the previous greatest root, y1.

¹²See text 6, page 20.
¹³Text 7, page 20.
Seeۑ¹ the rule page 9.
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Comparing the least root in Kṛṣṇa’s study with Bhāskara’s least root

Kṛṣṇa introduces his calculations like this:

“A [new] least root has been previously put as the least root multiplied by the mul-
tiplier¹ے and divided by the additive but now the least root multiplied by the multi-
plier and added to the greatest root then divided by the additivewill be a [new] least
root. erefore the greatest root divided by the additive is produced as an additional
[number] to the least root. us, let us see what number is added to the square of
the least root multiplied by the prakṛti.¹ۓ”

Applying Bhāskara’s rule, let (α, β) be a solution of the kuṭṭaka: x1 u + y1 = k1 v, a new

least root is β =
αx1 + y1

k1
and Kṛṣṇa makes this calculation:

p
(αx1 + y1

k1

)2
=

pα2 x2
1 + 2 pαx1y1 + p y2

1

k2
1

=
pα2 x2

1 + 2 pαx1y1 + p (p x2
1 + k1)

k2
1

using y2
1 = p x2

1 + k1

=
pα2 x2

1 + 2 pαx1y1 + p2x2
1 + p k1

k2
1

= p
(αx1

k1

)2
+

2 pαx1y1 + p2x2
1 + p k1

k2
1

So, the boxed number is the sought one.
en Kṛṣṇa remarks that in his previous reasoning the square of the multiplier (α) divided

by the additive has to be added in order to nd the greatest root and, for this purpose, he splits
the number he has just calculated in two components:

2 pαx1y1 + p2x2
1 + p k1

k2
1

=
2 pαx1y1 + p2x2

1

k2
1

+
p

k1
(∗)

And now the argument is:

“With this additional number, the prakṛti divided by the additive is added, but the
square of the multiplier divided by the additive must be added, thus in this [rule]
the dierence between the square of the multiplier and the prakṛti divided by the
additive must be also added, because doing this, only the square of the multiplier
divided by the additive will be added.¹۔”

With this argument the new additive,
α2 − p

k1
, given by Bhāskara’s rule is now justied:

p

k1
+

α2 − p

k1
=

α2

k1

since this last result will enable us to nd a greatest root if we add it to p
(αx1

k1

)2 as shown in

the preliminary study.
Kṛṣṇa also explains why the new additive has to be ‘reversed’ if the prakṛti is greater than

the square of the multiplier, the result being the same in both cases. Let us summarise these
reasons using modern notations:

Calculatedے¹ by the kuṭṭaka.
Textۓ¹ 4, page 20.
Text۔¹ 8, page 20.
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if α2 ≥ p then
p

k1
+

α2 − p

k1
=

α2

k1

if α2 ≤ p then
p

k1
+

(

− p− α2

k1

)

=
α2

k1

Putting things together

Aer this separate study about the additive according to Bhāskara’s rule, Kṛṣṇa takes into ac-
count the rst member of the number (∗) he had split in two parts and says: “No doubt then

that this very number,
2 pαx1y1 + p2x2

1

k2
1

, is added to the square of a greatest root, namely the

square of
α y1

k1
.”

To understand what is meant here, let us summarise the full calculation made by Kṛṣṇa

1. Firstly he develops p
(αx1 + y1

k1

)2
and, using the identity: y2

1 = p x2
1+k1, he obtains this

equality:

p
(αx1 + y1

k1

)2
= p

(αx1

k1

)2
+

2 pαx1y1 + p2x2
1

k2
1

+
p

k1

2. He then adds, or subtracts, the additive given by the rule:
∣

∣

∣

α2 − p

k1

∣

∣

∣
:

p
(αx1 + y1

k1

)2
±

∣

∣

∣

α2 − p

k1

∣

∣

∣
= p

(αx1

k1

)2
+

2 pαx1y1 + p2x2
1

k2
1

+
α2

k1

3. He adds the rst and the last terms of the second member of the equality, aer remarking
that this sum is a greatest root:

p
(αx1 + y1

k1

)2
±

∣

∣

∣

α2 − p

k1

∣

∣

∣
=

(α y1

k1

)2
+

2 pαx1y1 + p2x2
1

k2
1

Now the justication of the cakravāla rule is complete because the last result is a square:

(α y1

k1

)2
+

2 pαx1y1 + p2x2
1

k2
1

=
(α y1 + p x1

k1

)2

And thus we have a new triple that veries the relation p x2
2 + k2 = y2

2 :

x2 =
αx1 + y1

k1
k2 =

∣

∣

∣

α2 − p

k1

∣

∣

∣
y2 =

α y1 + p x1

k1

Kṛṣṇa concludes his upapai like this:

“When a least root multiplied by an assumed number and added to a greatest root
[the result] being divided by an additive is put as a least root, then the dierence
between the square of the assumed number and the prakṛti divided by the additive
is an additive. e greatest root multiplied by the assumed number and added to
the least root multiplied by the prakṛti, [the result] being divided by the additive is
then the [new] greatest root.

In this procedure, even if there is no requirement of the kuṭṭaka —roots being ob-
tained only by force of an assumed number— a kuṭṭaka is nevertheless performed
for a state of non-fractionation [of the roots]; hence the statement: “Having made
the least and greatest roots and the additive…¹ە is justied”

Textە¹ 9, page 20.

16



e rst paragraph is a summary of Bhāskara’s rule with a slight dierence: while the rule
says: “e quotient associated to the multiplier is a least root, whence a greatest root”, that is to
say that once we have a least root and an additive, we can calculate the associated greatest root
by the general relation: p x2 + k = y2, we can nevertheless calculate the greatest root using the

result of Kṛṣṇa’s calculations: y2 =
α y1 + p x1

k1
where α is a solution of the kuṭṭaka laid

down for the cakravāla.
In the second paragraph, we have an interesting observation: Whatever the number d is, if

[x1, y1; k1] is a triple, solution of a Pell’s equation, [dx1, dy1; d
2k1] is another such triple. Kṛṣṇa

uses this to prove that the result in the cakravāla rule is a square when he remarks that the

additive
α2 − p

k1
eliminates

p

k1
and that, in fact, we get a greatest root while combining p

(αx1

k1

)2

and what remains:
α2

k1
.

Final remarks

What Kṛṣṇa really demonstrates here is that if we follow Bhāskara’s rule, puing as a least root

x2 =
αx1 + y1

k1
, the quotient of a well-chosen kuṭṭaka, and as additive

∣

∣

∣

α2 − p

k1

∣

∣

∣
, the result is a

square.
Another very interesting point is his aempt, in the preliminary study, to justify the use of

the kuṭṭaka if we want integral solutions. e use of the full kuṭṭaka, with the greatest root as
a k-additive, is not explained though, but it is certainly not obvious!

e expression found for the greatest root allows to make an iterative description of the
cakravāla process: Let [x1, y1; k1] be a triple of integers such as p x2

1 + k1 = y2
1 and let u1 and

v1 be integral solutions of x1 u+ y1 = k1 v, such that |u2
1 − p| is minimal, then:

x2 =
x1 u1 + y1

k1
k2 =

∣

∣

∣

u2
1 − p

k1

∣

∣

∣
y2 =

u1 y1 + p x1

k1

is a new triple of integers verifying the same relation.
From there, other triples can be calculated by induction; but, as the dierence between the

square of the solution of the kuṭṭaka and the prakṛti is minimised —that is to say: the additive—
at each step, the process will come to an end with an additive equal to 1. is also is not obvious.

A question which is not approached by Kṛṣṇa —nor by Bhāskara— is: Why is the additive,
α2 − p

k1
an integer? We can answer this question, supposing that the least root, x1 and the

additive, k1 , are relatively prime —if they are not, the equation could be transformed into an
equation with additive equal to 1, and the cakravāla is useless in that case.

We multiply α2 − p by x2
1 and obtain the following identities:

(α2 − p)x2
1 = α2 x2

1 − p x2
1

= α2 x2
1 − y2

1 + k1 (because p x2
1 = y2

1 − k1)

= (αx1 + y1)(αx1 − y1) + k1

en k1 divides the right member of the last identity, because α had been chosen for this
purpose, so k1 must divide the le member and as it does not divide x1, it must divide α2 − p.

e last remark we can make is: How has such a sophisticated method been developed?
e answer might be found in some unknown works or commentaries in the multitude of
manuscripts stored in libraries in India.
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5 Examples

Bhāskara puts forward examples in order to illustrate the theoretical part of the cakravāla.
He asks to solve these two equations:

67x2 + 1 = y2 and 61x2 + 1 = y2

We give briey the solutions according to Kṛṣṇa’s commentary but using our modern no-
tations (starred items indicate the beginning of a cycle).

67x2 + 1 = y2

*1. Choose a suitable triple: [x1, y1; k1] = [1, 8; −3] 67× 12 − 3 = 82

2. Solve the kuṭṭaka: u+ 8 = −3 v : u0 = 1 v0 = −3

3. Calculate p− u2
0 = 67− 1 = 66

4. Calculate p− u2
0 = 67− 1 = 66 e result is not small.

5. Other solutions of the kuṭṭaka are: u = 1− 3t v = −3+ t. Choose t = −2 :

u1 = u0 − 2×−3 = 7 v1 = −3− 2 = −5

6. Calculate p− u2
1 = 67− 49 = 18 which minimises the dierence.

e additive is: k2 = −p− u2
1

k1
= − 18

−3
= 6

e least root is: x2 = v1 = −5

e greatest root is: y2 = 41

*7. A new triple is: [x2, y2; k2] = [5, 41; 6] e new vargaprakṛti is: 67x2 + 6 = y2

8. Solve the kuṭṭaka: 5u+ 41 = 6 v : u0 = 5 v0 = 11

9. Calculate p− u2
0 = 67− 25 = 42

e additive is: k3 = −p− u2
0

k2
= −42

6
= −7

e least root is: x3 = v0 = 11

e greatest root is: y3 = 90

*10. A new triple is: [x3, y3; k3] = [11, 90; −7] e new vargaprakṛti is: 67x2 − 7 = y2

11. Solve the kuṭṭaka: 11u+ 90 = −7 v : u0 = 9 v0 = −27

12. Calculate u2
0 − p = 81− 67 = 14

e additive is: k4 =
u2
0 − p

k3
=

14
−7

= −2

e least root is: x4 = −27

e greatest root is: y4 = 221 67× 272 − 2 = 2212

*13. A new triple is: [x4, y4; k4] = [27, 221; −2] e new vargaprakṛti is: 67x2 − 2 = y2

14. e additive is now −2 and we can use the bhāvanā as a shortcut:

27 221 −2
27 221 −2

e least root is: x5 = 2× 27× 221 = 11934

e greatest root is: y5 = 67× 272 + 2212 = 97684

e additive is: k5 = (−2)2 = 4
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15. e additive being a square, we can now use the simplication rule, dividing k5 by 4 we
have to divide the roots by 2 and nd the solution:

67× 59672 + 1 = 488422

e second example is more impressive and uses fractional intermediary roots.
61x2 + 1 = y2.

*1. Choose a suitable triple: [x1, y1; k1] = [1, 8; 3] 61× 12 + 3 = 82

2. Solve the kuṭṭaka: u + 8 = 3 v : u0 = 1 v0 = 3 and, as in the previous example,
choose other solutions u1 = 1+ 2× 3 = 7 v1 = 3+ 2 = 5, which minimises p− u2

1

3. Calculate p− u2
1 = 61− 49 = 12

e additive is: k2 = −p− u2
1

k1
= −12

3
= 4

e least root is: x2 = v1 = 5

e greatest root is: y2 = 39

*4. A new triple is: [x2, y2; k2] = [5, 39; −4] e new vargaprakṛti is: 61x2 − 4 = y2

5. e additive being a square, we can now use the simplication rule, dividing k2 by 4
we have to divide the roots by 2 and nd fractional solutions with triple: [x3, y3; k3] =

[
5
2
,
39
2
; −1]

6. Using an equal bhāvanā, we get a new triple: [x3, y3; k3] = [
195
2
,
1523
2

; 1]

7. Compose this triple with the preceding one and obtain the triple:

[x4, y4; k4] = [3805, 29718 ;−1]

8. An equal bhāvanā yields the solution:

61× 2261539802 + 1 = 17663190492

Sanskrit texts

Text 1.
vargaḥ prakṛtir yatreti vargaprakṛtiḥ yato 'sya gaṇitasya yāvadādivargaḥ prakṛtiḥ yadvā yā-
vadādivargeṣu prakṛtibhūtād aṅkād idaṃ gaṇitaṃ pravartata iti vargaprakṛtiḥ atra yāvadva-
rgādiṣu prakṛtibhūto yo 'ṅkaḥ sa prakṛtiśabdenocyate sa cāvyaktavargaguṇaka eva ato 'tra
padasādhane vargasya yo guṇaḥ sa prakṛtiśabdena vyavahṛyate

Text 2.
evaṃ cakravālena caturdvyekayutau catuḥkṣepe dvikṣepa ekakṣepe cābhinne pade bhavataḥ
idam upalakṣaṇam yatra kutrāpi kṣepe 'bhinne pade bhavataḥ yutāv ity apy upalakṣanam tena
śuddhāv apīti jñeyam

Text 3.
atha rūpakṣepapadānayane prakārāntaram apy astīty āha ``caturdvikṣepamūlābhyām'' iti
catuḥkṣepamūlābhyāṃ dvikṣepamūlābhyāṃ ca rūpakṣepārthaṃ bhāvanā rūpakṣepārthabhā-
vanā kāryeti śeṣaḥ catuḥkṣepe ``iṣṭavargahṛtaḥ kṣepa'' ityādinā dvikṣepe tu tulyabhāvanayā
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catuḥkṣepapade prasādhya paścād ``iṣṭavargahṛtaḥ kṣepa'' ityādinā rūpakṣepaje pade vā bha-
vata itiyarthaḥ

Text 4.
pūrvaṃ tu guṇaguṇitaṃ kaniṣṭhaṃ kṣepabhaktaṃ sat kaniṣṭhaṃ bhavatīti sthitam idānīṃ tu
guṇaguṇitaṃ kaniṣṭhaṃ jyeṣṭhayutaṃ kṣepabhaktaṃ sat kaniṣṭhaṃ syāt tasmād jyeṣṭhaṃ kṣe-
pabhaktaṃ kaniṣṭhe 'dhikaṃ jātam evaṃ sati prakṛtiguṇe kaniṣṭhavarge kim adhikaṃ bhavatīti
vicāryate

Text 5.
caturadhike antyapadakṛtis tryūnā dalitā antyapadaguṇā antyapadam
antyapadakṛtis vyekā dvihṛtā ādyapadāhatā ādyapadam
caturūne antyapadakṛtī tryekayute vadhadalam pṛthak vyekam
vyekāḍyāhatam antyam padavadhaguṇam ādyam āntyapadam

Text 6.
atreṣṭaṃ tādṛśaṃ kalpanīyaṃ yena guṇitaṃ kaniṣṭhaṃ kṣepabhaktaṃ śuddhyet anyathā kani-
ṣṭham abhinnaṃ kathaṃ syāt
tadarthaṃ kaniṣṭhaṃ kena guṇitaṃ kṣepabhaktaṃ niḥśeṣaṃ syād iti kaniṣṭhaṃ bhājyaṃ pra-
kalpya kṣepaṃ haraṃ ca prakalpya kṣepābhāve guṇāptī sādhye

Text 7.
atra yā labdhis tat kaniṣṭhaṃ padam yo 'tra guṇas tad eveṣṭam iti guṇakavargaḥ pūrvakṣepa-
bhaktaḥ kṣepaḥ syāt jyeṣṭham api guṇaguṇitaṃ kṣepabhaktaṃ jyeṣṭhaṃ syāt

Text 8.
anenādhikena kṣepabhaktā prakṛtiḥ kṣiptā syāt kṣepaṇīyas tu kṣepabhakto guṇavargaḥ tad atra
guṇavargaprakṛtyor antarālam api kṣepabhaktaṃ kṣepyam tathā sati kṣepabhakto guṇavarga
eva kṣipto bhavet

Text 9.
yadā tv iṣṭaguṇaṃ kaniṣṭaṃ jyeṣṭhayutaṃ kṣepabhaktaṃ sat kaniṣṭhaṃ kalpyate tadā guṇa-
vargaprakṛtyor antaraṃ kṣepabhaktaṃ sat kṣepo bhavatīṣṭaguṇaṃ jyeṣṭhaṃ prakṛtiguṇakani-
ṣṭena yutaṃ kṣepabhaktaṃ sat tatra jyeṣṭhaṃ bhavatīti
atra yady apy iṣṭavaśād eva padasiddhir astīti kuṭṭakasya nāpekṣā tathāpy abhinnatvārthaṃ
kuṭṭakaḥ kṛtaḥ ata upapannaṃ hrasvajyeṣṭhapadakṣepān ityādi
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