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Abstract

The main goal of this paper is to present an Indian ‘demonstration’ of the cakravala rules
provided by Bhaskara II. This demonstration was given by Krsnadaivajfia, a mathematician
who lived at the end of the sixteenth century, in his commentary on Bhaskara’s Bijaganita:
the Bijapallava.

The cakravala, or cyclic method, is a procedure to calculate the solutions of a Diophantine
quadratic equation of the form: pz® + k = y°. This cyclic method involves solving linear
Diophantine equations, so we will make a presentation, as short as possible, of the rules
given by Bhaskara in order to handle these linear and quadratic equations: the kuttaka and
the vargaprakrti. When necessary, we will present commentators’ explanations.

1 The kuttaka

or linear Diophantine equations
The kuttaka, or ‘pulveriser’, is an algorithm to solve indeterminate equations of the form:
au+c=>bv

where all numbers are integers; a, b and c are the coeflicients, u and v the unknowns. Bhaskara
gives five rules to describe the full procedure. The first rule stipulates that if a common divisor
to a and b does not divide c, the equation has no solution.

bhajyo harah ksepakas capavartyah

kena apy adau sambhave kuttakartham|
yena cchinnau bhajyaharau na tena

ksepas cet tad dustam uddistam evalll

Firstly, the dividend, the divisor and the additive must be simplified, when possible,
by some [number] for the kuttaka. If the number by which the dividend and the
divisor are divided does not [divide] the additive, the [problem] is impossible.

This stanza tells more than under which circumstances the problem can be solved: It gives
the technical vocabulary which will be used to designate the coefficients of the equation.

« a will be the dividend
« b the divisor

« c the additive'

"We will italicise these terms whenever they are used with their technical meaning.



The word kuttaka (pulveriser) which gives its name to the procedure is, in fact, the name of
what we are looking for when we solve this equation: a multiplier, v in the equation. Problems
given as examples in this kuttaka chapter emphasise the role of this solution in the complete
equation. For instance a problem will be formulated as follows: “O arithmetician! Say quickly
the multiplier by which two hundred and twenty-one is multiplied then added to sixty-five and
divided by one hundred and ninety-five, will leave no remainder”

As for the meaning of the word kuttaka —namely pulveriser— it is a common usage for
Indian mathematicians to name the multiplication, and the multiplier, by terms that mean ‘to
hit’.

The name of one quantity is not quoted in this stanza: v, which is called the quotient.

We now come to the description of the algorithm which is to be followed to find out the
solutions of these equations. We will proceed step by step and explain the meaning at each
step, with our modern mathematical vocabulary.

mitho bhajet tau drdhabhajyaharau
yavad vibhajye bhavatiha ripam|

One will divide mutually these reduced dividend and divisor, until the unity will be
in the place of the dividend.

A new technical expression is used here: ‘divide mutually’; it means the Euclidean algo-
rithm. In the Kriyakramakari, a Keralese commentary to Bhaskara’s Lilavati, from the sixteenth
century, this is explained in this way: “This is said: Having divided the two numbers one by
the other (the dividend by the divisor), one will divide the other (the divisor) by what remains;
having brought [this operation] about again in the same manner, until only one [number] is
left ..”

According to this rule, we have to divide a by b, then b by the remainder of the division, the
first remainder by the second remainder, “until the number one is in the place of the dividend”
To understand this last expression, we have to figure out how the Ancients were conducting
their calculations on sand: They replaced the numbers by the result of the operation; in a divi-
sion, they put the quotient aside, then wiping out the dividend, they wrote the remainder in its
place.

We can find a mimic of this in the manuscripts. Suppose that one wants to divide 17 by 15,
one writes:

17 then: 1 |2
15 15

So, the remainder 2 is put “in the place of the dividend” 17.

The fact that, at the end of the procedure, the number one is in the place of the dividend
—thus being the last remainder— is normal because, after applying the first stanza, the two
numbers, a and b, are relatively prime.

The next step concerns the arrangement of the terms in order to calculate the solutions.

phalany adho °dhas tad adho nivesyah
ksepas tathante kham... [

The quotients [will have to be placed] one under the other; the additive must be
placed below them, then zero at the last place.

Let us examine these first two steps on the first example given by Bhaskara, who asks to
solve the equation: 221 u + 65 = 195v.

After a reduction of the three numbers by 13, we can begin the process with this equation:
17u + 5= 15v.



Following the first step, we divide 17 by 15: 17 = 1 X 15 + 2, then 15 by the remainder 2:
15 =7 X 2 4+ 1 and we are done because we obtain 1 as the last remainder.
We now put these quotients “one under the other”, below them the additive and in the last

place zero:
quotient: 1
quotient: 7
additive: 5
Zero: 0

Indian mathematicians call this setting ‘phalavalli’, the creeper of the results.

Now, we can go through the next step, the very algorithm that calculates the solutions.

... upantimena |l
svordhve hate ’ntyena yute tad antyam
tyajen muhuh syad iti rasiyugmam |

The last but one having multiplied the [number] which is above and the last [num-
ber] having been added, one will remove this last; repeat the operation until there
is a couple of numbers.

Before explaining this stanza, we should point out to how it is written. Things are stated
with great conciseness and, in the case of an algorithm description, as in this stanza, with
expressions that are as general as possible so that they can be used in an iterative process. Here
we have: “The last but one having multiplied the one which is above and the last one having
been added, one will remove this last”, that can be used whatever the length of the creeper, “until
there is a couple of numbers”, which marks the end of the operations, because three numbers
are needed in this process.

We apply this algorithm to the previous example; this is done in two steps.

In the first step, the ‘last but one’ is 5 and the number above is 7, so we have to multiply 7
by 5 and add the ‘last’, 0: 7 X 5 4+ 0 = 35 and we remove 0 from the creeper.

In the second step, we have to multiply 1 by the ‘last but one’ of the new creeper: 35, then
add the ‘new’ last, 5: 1 X 35 + 5 = 40. And the process ends because, after removing the last,
there remains only two numbers.

‘ 1% step | 2" step ‘
1 1 1X35+5= 40
7 7X54+0= 35 35
5 5
0

At this stage, we have the solution of the equation: 40 is the quotient and 35 the multiplier:
17 X 35 4+ 5 = 600 = 15 x 40. But while explaining which of the two numbers found is
the multiplier and which is the quotient, Bhaskara gives the way to find the minimal positive
solutions.

urdhvo vibhajyena drdhena tastah
phalam gunah syad aparo harenall

The uppermost, being reduced to the remainder by the dividend, will be the quo-
tient; the other, [reduced to the remainder] by the divisor, will be the multiplier.



There is a new technical expression to explain: ‘reduced to the remainder’ that we used to
translate the Sanskrit word ‘tasta’. The commentator Sturyadasa says in his Suryaprakasa —a
commentary on Bhaskara’s Bijaganita—: “When the remainder only is needed in a division, the
quotient being useless, the conventionally agreed word ‘%asta’ is used.”

Applying this rule to the example, we have to divide 40 by 17 and 35 by 15 and keep the
remainders respectively as the quotient and the multiplier of the equation:

40 = 2X17+6
35 = 2X15+5

So, 5 and 6 are the minimal positive solutions of this equation:
17X54+5=15X6

A variant of this last rule is given later on, in order to calculate all the solutions for this
form of equation.

istahatasvasvaharena yukte
te va bhavetam bahudha gunaptill

There will be many multipliers and quotients if they are added to their respective
simplifier multiplied by an arbitrary number.

‘Simplifiers’ refer to the divisor and dividend used in the previous rule to find out the min-
imal solutions. By this rule we can calculate all the solutions of the equation au 4+ ¢ = bw.
Once a couple of solutions, (u, vy), has been found, the couple:

(ut, v¢) = (ug +tb, vy +ta)
will be another couple of solutions for any arbitrary integer ¢. Indeed:

au+c = aluy+1tdb)+c

aug+c+tab

bvy +tab

= bvg+ta)=0bu

For the sake of completeness we should mention a last rule, even if we will not use it explic-
itly in this paper. One may have recognised in this method for solving this form of equation,
an algorithm very close to the Euclid-Bézout algorithm and just as in the latter, there is a sign
alternation which concerns the additive at each step of computation.

Let us see how this happens, investigating the first step of Bhaskara’s process.

We divide a by b: a =bg; +r;, 0 <r; <b and replace a in the initial equation:

(bgy+r)u+c=>bv sowe getthe equation: ru+c=>b(v—qu)

Putting w = v — g u as a new indeterminate, we have a new equation of the same form
with —c as the additive: bw — ¢ = ry u.
At the end of the procedure, as the last remainder is r, = 1, the last equation is:

Tn Y+ (=) 'c=rpzx==z

So, we alternately have an equation with ¢ or —c for additive (c if the number of quotients
is even, —c if it is odd) and Bhaskara’s ‘creeper algorithm’ is a means to compute the two
indeterminates v and v going backward from x.



As the coefficient of x is 1, we can choose any integral value for y to have an integral value
for x and hence for v and v. Bhaskara has put 0 as the chosen value for y —which makes the
calculation of u and v simpler— and, in his description of the ‘creeper algorithm’, he does not
take into consideration that the additive could be ¢ or —c according to the parity of the number
of operations, but he gives a last rule to modify the found result if the number of operations
is odd. This is classic in Sanskrit texts: First a general rule (utsarga) is given, then this general
rule is corrected by mentioning exceptions (apavada).

evam tadaivatra yada samas tah
syur labdhayas ced visamas tadanim|
yathagatau labdhigunau viSodhyau
svataksanac chesamitau tu tau stah |

Thus are exactly [the operations] when the number of quotients is even; if this
number is odd the quotient and the multiplier, as obtained, must be subtracted from
their respective Simplifiers and the [correct] quotient and multiplier are equal to
the remainders.

Hence, if the number of quotients is odd, that is to say the number of divisions is odd, we
apply the prescribed algorithm to calculate two numbers: uy and v, and the solutions of the
equation are given by u; = b — uy and v; = a — v, because, if uy and v, are the solutions of
au+c=>bv, u; and v, are the solutions of the equation au — c = bw.

au;—c = a(b—wuy) —c
= ab—(auyg+c)
= ab—->buy
= b(a—v)
= by,

2 'The vargaprakrti
or a study of the properties of the equation: p x*> + k = y*

To begin with, let us explain the meaning of the name of this section: vargaprakrti. It is a
compound noun varga-prakrti, varga means ‘square’ and prakrti ‘origin’. Krsnadaivajiia gives
two explanations in his commentary:

“Vargaprakrti, that is to say: When the original cause (prakrti) is a square (varga),
because the original cause of this calculation is the square of unknown quantities.?”

“Or vargaprakrti, that is to say: Squares of unknowns are calculated from a number
which is at their origin; in this case the number which is the origin for the squares of
unknowns is named by the word ‘prakrti’ and this [number] is the very multiplier
of the squares of unknowns. Therefore, in this computation of roots, the multiplier

of the squares is designated by the word ‘prakrti’>”
We have two interpretations for the name of this section: Either the origin of the calcu-
lation is to find a square quantity and we can think that this refers to a following chapter
(madhyamaharanabhedah) where the construction of a square is needed to solve an equation.

’Krsna’s text reads: yavadadi. In Sanskrit mathematical texts, the unknowns are denominated by colour names
kala, black, nila, blue ... and the first one, our z, is called yavattavat: so much as; so, yavadadi means: yavat[tavat],
kala, nila etc.

*See text 1, page 19.



For instance: “What is the number which multiplied by two and added to six times its square
gives a square root?”

We have to solve: 6 2> + 22 = y°. Bhaskara’s method is to multiply both sides by 6 and
add 1, which yields the following equation:

367 + 120 +1=6y"+1 or (6x+1)°=6y"+1

In this case the reason for the calculation is to find a square equal to 6 * + 1, and he applies the
methods of this chapter, then finds the values of x (v = 3/2,38, - - -).

Or the origin of squares is the coefficient p of the square z* in the identity p 2* &+ k = y°.
This coefficient plays a central role in the study of this identity because it is the only value
which remains fixed throughout the analysis of the properties of three numbers verifying the
previous relationship.

istam hrasvam tasya vargah prakrtya
ksunno yukto varjito va sa yenal

milam dadyat ksepakam tam dhanarnam
mulam tac ca jyesthamulam vadantill

Let an assumed [number] be the least root; its square is multiplied by the prakrti;
the additive is this [number], positive or negative, by which this [square multiplied
by the prakrti] is increased or decreased to produce a root and [mathematicians]
call this root, the greatest root.

As for the kuttaka, the first rule gives the definition of the technical words used in this
chapter and what the relationships between the different elements involved in this rule are:
A number, the square of which is multiplied by a given number, the prakrti, and added or
subtracted to another number, ‘produces a root’, that is to say: is a square.

According to this stanza, in the identity p 2* £+ k = 1%,

« pis the prakrti
« x is called the least root
« y is the greatest root

« k is the additive which can be positive or negative. The Sanskrit words used are dhana
(wealth) and rna (debt).

Regarding the prescription for an operation given in this rule, it is very simple: Choose a
number as the least root, x, then complete to the nearest square the value of its square multiplied
by the prakrti, adding or subtracting the right number, k, to obtain a square, the root of which is
the greatest root: y. Mostly, the chosen least root will be 1, making the additive the complement
of the prakrti to the nearest square.

The bhavana

or how to calculate many least and greatest roots

Once we have found three numbers, z, y and k, using the preceding rule, the bhavana, which
we can translate by ‘composition’, is a procedure to calculate several triples of numbers which
verify the relation px* & k = y* with a fixed prakrti. As a convention, we will note such a
triple: [, Yn; kn)-

Bhaskara gives the bhavana rule in two parts: The first part gives the setting of the numbers
in order to make the calculation, the second is the description of how to proceed.



hrasvajyesthaksepakan nyasya tesam
tan anyan vadho nivesya kramenal
sadhyany ebhyo bhavanabhir bahuni
malany esam bhavana procyate “tah |l
vajrabhyaso jyesthalaghvos tadaikyam
hrasvam laghvor ahatis ca prakrtyal
ksunna jyesthabhyasayug jyesthamulam
tatrabhyasah ksepayoh ksepakah syat |l

Having set down a least root and a greatest root and an additive, then successively
placed under them, the same ones or others, many roots can be calculated by com-
positions (bhavana); that is why the composition is taught.

Given the cross products of the greatest and least roots, their sum is a least root. And
the product of the least roots, multiplied by the prakrti and added to the product of
the greatest root, is a greatest root. The product of the additives will be an additive.

The arrangement is very simple: We put two triples on two lines, one under the other; if
we have only one triple we can put the same triple on the second line.

To calculate a new least root, we have to make a ‘cross product’ of the least and greatest
roots: We multiply the least root on the first line by the greatest root on the second line and add
the product of the greatest root on the first line by the least root on the second line. The expres-
sion ‘cross product’ is the translation of the Sanskrit technical term: vajrabhyasa, meaning ‘a
multiplication like a thunderbolt’.

For a new greatest root, we multiply the product of the two least roots on the two lines by
the prakrti and add the product of the two greatest roots.

And for a new additive, we multiply the two additives on the two lines.

We can summarise these calculations in the following way: Arrows connect numbers to be
multiplied, then results are added:

€1 Y1 k4 p— T hn k4 T U Ky

< Lol v
T2 Y2 k, T2 Yo k, X2 Yo k,
T3 = T1Y2 + T2l Y3 = pT1%2 + Y192 ks = kik,

It is easy to demonstrate that the new triple [x3, 3 ; k3] verifies the same relation as the
two triples [z1, y1; k1] and [x2, ys ; k2.

Bhaskara also gives the same rule of composition by replacing the addition by the difference
of the products. Commentators explain that the use of this latter rule is useful if we need smaller
numbers as roots.

Solving ‘simple’ Pell’s equations
Before coming to an example, we need a last rule given by Bhaskara in this vargaprakrti chapter.

istavargahrtah ksepah
ksepah syad istabhajite|
mile te sto thava ksepah
ksunnah ksunne tada padel

The additive divided by the square of an assumed number will an additive; the two
roots divided by this assumed number, are the [roots]; or the additive multiplied is
an additive, in this case the roots are multiplied.



This rule is to be used in order to reduce triples obtained by the bhavana.
It is quite obvious: If we have a triple [z, y; ; k1], suppose that the square of a number
d divides the additive k;, then we can write: k; = dzk; and if we write the relationship

between the three numbers of the triple as:  k; = y; — p:):f we have:

&'k, = yi—pat
ko = (%)Z—P(%)z

So, if we can simplify the additive by the square of the number, then we have to simplify the
least and greatest roots by the number itself. Similarly, if we multiply the additive by a square,
the two roots are multiplied by the number:

dzkl = (dyl)z —p(dl'l)z

Now, let us see how to use this material to solve a simple Pell’s equation. Bhaskara gives
this example:
Which square multiplied by eleven and increased by one is a square? O my friend!

And the solution runs as follows:

1. According to the first rule, we choose 1 as least root and complete the prakrti, 11, to the
nearest square with the additive —2:

1,3 —2] 11x1*-2=3°

2. We use the bhavana to find another triple; as we have only one triple, we put it on the

two lines:
1 3 —2
L3 _p IX3H3X1=6; 1IXIX14+3X3=20; (=2) x (-2) =4

And we obtain a new triple for the same prakrti:

6, 20; 4] 11 x 6% + 4 = 20°

3. As the additive of this last triple is a square we can use the simplification rule and divide
it by 4. So we have to divide the least and greatest roots by 2. Fortunately these two are
even! Thus we have the solution of the question asked by Bhaskara:

3, 10; 1] 11 x 3° +1=10°

4. And now, because the additive is 1, we can use repetitively the bhavana to find all the
triples which are solutions to the equation:

[60, 199; 1] : 11 X 60° + 1 = 199
3 10 1
3 10 2 2
[1197, 3970; 1] : 11 X 1197° + 1 = 3970
60 199 1

Evam anantyam, ‘thus is infinity’ is generally the conclusion of the commentators.



3 'The cakravala
or the cyclic method to solve Pell’s equations

From the example in the previous section, we can have an idea of what the method to solve a
Pell’s equation will be. Unfortunately when reading the third step things do not go as smoothly
because there is no knowing that the calculated roots will be divisible by the number whose
square divides the additive found by way of the bhavana.

The cakravala is a method to solve this problem.

One rule is given in two parts; the first part expounds the way to proceed.

hrasvajyesthapadaksepan
bhajyapraksepabhajakan |
krtva kalpyo gunas tatra
tatha prakrtitas cyute |
gunavarge prakrtyone
‘thavalpam Sesakam yathal

Having made the least and greatest roots and the additive, a dividend, a k-additive*
and a divisor, a multiplier must be produced so that, in this procedure, the remain-
der will be small when the square of the multiplier is removed from the prakrti, or
when it is decreased by the prakrti.

Given a triple [xy, y;; k] of integers found using the rules from the vargaprakrti chapter,
we have to solve a kuttaka defining the least root, x4, as the dividend, the greatest root, y,, as the
k-additive and the additive as the divisor:

U+ Yy = kv

The rule stipulates to choose a solution (u, v) = («, () such that the multiplier, i.e. «, min-
imises the difference between its square and the prakrti.

The second part of the rule explains how to build a new triple [z, y,; k2] from the solutions
of the kuttaka.

tat tu ksepahrtam ksepo
vyastah prakrtitas cyute|

gunalabdhih padam hrasvam
tato jyestham ato ’sakrt|

tyaktva purvapadaksepac
cakravalam idam jaguh |l

This remainder, divided by the additive is an additive, reversed if there was sub-
traction from the prakrti. The quotient associated to the multiplier is a least root,
whence a greatest root. Putting them aside again and again from the previous roots
and additives, [mathematicians] call this [procedure] the cakravala.

“This remainder’ is the remainder of the subtraction between the square of the multiplier,

2 2
ot — —
which is a solution of the kuttaka, and the prakrti. So we have: k, = A p, orky, = _P 3
1 1
because it is mentioned: “Reversed if there was subtraction from the prakrti”
r1o+
The quotient obtained as a solution of the kuttaka is a new least root: x, = § = ! k h
1

And we calculate from these two, k, and x,, the greatest root, using the relation: yg =p x% + ks.

“We introduce here a new technical notation because in both, the vargaprakrti and kuttaka chapters, the term
‘additive’ is used. We will note the additive related to the kuttaka as: ‘k-additive’ to avoid confusion.



Cakravala means ‘a circle’; commentators say that this method is thus called because from
roots arises a kuttaka, the solutions of which give new roots from which we solve a new kuttaka
and so on until we find the solution of a Pell’s equation.

We now give a last rule by Bhaskara before going into the explanations given by Krsnadai-
vajiia to justify the cakravala as a method leading to integral solutions of a Pell’s equation.

caturdvyekayutav evam abhinne bhavatah pade|
caturdviksepamillabhyam ripakseparthabhavanall

Thus, there are two non-fractional roots when the additive is four, two or one. From
two roots associated with the additives four and two, a composition whose goal is
additive one [must to be carried out].

Krsnadaivajiia provides this commentary to the first verse:

““Thus’, that is to say: with the cakravala. If the additive is four and if the additive
is two and if the additive is one, there are two non-fractional roots; this is a way to
imply that there are two non-fractional roots whatever the additive. ‘Additive’ also
is a synecdoche, with this word, subtractive is also to be understood.””

Krsna’s interpretation of this verse is a clear cut affirmation that the cakravala will yield
integral solutions to a Pell’s equation whatever the additive.
He also explains the second verse:

“Now, in order to calculate roots associated to an additive one, [the author] says
that there is also another method: A composition must be performed and there are
two roots from additive one, if the additive is four, [directly] using [the rule]: “The
additive divided by the square of an assumed number, etc”, if the additive is two,
after calculating two roots associated to additive four by an equal composition, and
applying the same rule afterwards.®”

This rule claims that by an iterative use of the bhavana, solutions of the equation with
additive 1, can be obtained from equations with additives +2 or £4. This result has been known
since Brahmagupta’s times.

If the additive is -2 and x; and y; are the least and greatest roots of the equation, then the
bhavana gives T, = 2x,y;, which is even, as the least root and y, = pa? + y2 = 2y> £ 2 (for
pa? = y? £ 2), which is also even, as the greatest root of the equation p 2> + 4 = y°. Then the
simplification rule applies and x,/2 and ¥, /2 are integral solutions of p % + 1 = 3.

In his Brahmasphutasiddhanta, Brahmagupta adds these rules if the additive is 1-4:

“If the additive is four, the square of the last root” less three, halved and multiplied
by the last root is a last root. The square of the last root less one, divided by two
and multiplied by the first root is a first root.

If the additive is minus four, let two squares of the last root be added to three and
one; let half of their product separately put: Then, minus one and multiplied by the
first [term of the product] decreased by one, it is a last root, and multiplied by the
product of the roots it is a first [root] associated to this last root.*”

*See text 2 page 19.

“See text 3 page 19.

"Brahmagupta calls last root (antyapada) what Bhaskara calls greatest root (jyesthapada) and he calls first root
(adyapada) what Bhaskara calls least root (kanisthapada).

*See text 5 page 20.
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According to the first rule, if z; and ; are solutions of equation p z* + 4 = 3%, then:

2 2
-3 —1
v = ylz y1 and wu; = y12 1

are solutions of equation pu® + 1 = v°.

This is true but one can remark that if x; is odd and y, is even, then u; is not an integer, as
shown by example 60 2> + 4 = 3. Taking z; = 1and y; = 8, uy = 63 and one may wonder
whether the goal of solving this form of equation has always been to find integral solutions.
Bhaskara also gives examples with rational solutions and, while solving the famous equation
671> + 1 = 4*, which is given as an example in the cakravala chapter, at one step, rational
solutions are found and composed using the bhavana to find integral solutions at the end of the
procedure.

The second rule yields integral solutions, whatever the parity of z; and y; is. If z; and
((yf +3)(wi +1)

2

y; are solutions of equation pa* — 4 = 3, then v; = —1)(y; + 2) and

_ (w3t
uy = ( 2
These formulee can be found using the bhavana recursively, starting from:

)xlyl are solutions of equation pu? + 1 = v%.

L1y2 Y1y2
p(5) 1= ()
For the first formula we should apply the bhavana twice, first composing y;/2 and z;/2 with
themselves, then with the result of this composition.
The second formula is more difficult to establish because the additive is alternately —1 and
1 and five successive compositions are needed.
From a modern point of view, the bhavana expresses that the norm in the quadratic field

QI[+/p] is multiplicative and Brahmagupta’s formule are obtained expanding (% + % \/13) °in
the first case and (% + %\/]3)6, in the second case, the norm of % + %\/}3 being respectively
land —1.

4 Krsna’s upapatti

Krsnadaivajiia

He is from an important family of astronomers who emigrated from Vidharba, in the eastern
part of Maharashtra, to Varanasi during the sixteenth century. He was a protégé of the Mughal
emperor Jahangir and was an astrologer at the Mughal court. His commentary on Bhaskara’s
Bijaganita: the Bijapallava is dated “Saturday, the fourth tithi of the dark fortnight of the Caitra
month, 1523 Saka year”: Saturday April 21, 1601.°

According to Professor Sreeramula Rajeswara Sarma,'® in the following illustration, Krsna
might be the astrologer in the centre of this miniature, seated between two Muslim astrologers,
and casting a horoscope for the birth of Salim, the future emperor Jahangir. The painting is in
the Museum of Fine Arts, Boston (courtesy of Pr. Sreeramula Rajeswara Sarma).

°’Date conversion was done using Michio Yano’s pancanga program.

1“Astronomical Instruments in Mughal Miniatures” in Studien in Indologie und Iranistik 16-17 (1992) 235-276.
Reprinted in The Archaic and the Exotic: Studies in the History of Indian Astronomical Instruments, Manohar, New
Delhi 2008.
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Figure 1: Krsnadaivajia'!

The word upapatti

This word is used by commentators when they want to give an explanation or a justification
of a rule given in the work they are commenting upon. In mathematical texts, rather than a
full demonstration such as we may know nowadays, this word indicates that the operation or
the procedure formulated by the author is coherent and achieves the result which it has been

created for.

Here Krsnadaivajia justifies the cakaravala rule by showing why the use of the kuttaka is

necessary to find integral solutions of a Pell’s equation.

Notations for operations

To support his reasoning he makes some calculations and uses formal notations. Here is a page

of a manuscript with an example of these notations.

i ?Quﬂmlmawww\wun(ﬁ«uqﬁllimmmﬁﬁ
RN AT T AT e AT [ F Y HT

A N L Ay KR EC L AL A AT
‘:zaagmé-%mtm |53 rater LT

&g &
R T TR 1L e A AR A R E L R T ﬁ< w\ G
AT R : I AT T u@mamﬁ BT T JRETTH |99 T um
TR TR eI L aeral SR ey T e T A IR AT R

Figure 2: A manuscript page of the Bijapallava

u. s {'(FNHET"I i

R EARC R R e M NE (RcER A
oA R HYF AT A A5 ?«a\wmm #3- L5297 7~ FETAl
TP R T BT IT I~ F AT TR T T3 F T mﬁmﬁvﬁm@mﬁ

We can read on lines 3 to 5 (we have supplied between square brackets some words or signs

which are missing but which can be found in other manuscripts):

“Astrologers casting the Horoscope,” detail from the “Birth of Salim,” Museum of Fine Arts, Boston, 17.3112. Cf.

Stuart Cary Welch, Imperial Mughal Painting, London 1978, P1. 16, pp. 70-71.
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tatra purvakanistam |i * ka 1| asya vargah |iva * kava| prakrtigunah |iva  kava  pra 1| jyesthasadhartham ksepas ca-
kse kseva 1 kseva 1
yam ||iva 1
kse 1

atha ksepabhaktajyesthadhikam [kanistham]|i * ka 1 jye 1| asya vargah
kse [1]

krtigunah |pra ¢ i[va *] kava 1 [pra *] i [*] ka [*] jye 2 pra [*] jyeva 1
kseva [1]

iva * kava [1] i « ka [] jye [2] jye[va] 1| pra-
[kseva 1]

The explanation of this system is as follows: It uses the first syllable of a word as algebraic
symbols: i stands for ista (assumed number), ka for kanistha (least root), jye is jyestha (greatest
root), pra for prakrti and kse for ksepa (additive). The Sanskrit word for square is varga, so to
denote the square of one quantity, the syllable va is postponed to the syllable representing the
quantity: kava means the square of the kanistha, x*.

A bullet is a multiplication sign, but not in all manuscripts. Fractions are noted by putting
the numerator above the denominator, without any fraction line. There is no sign for addition,
only a number is placed after a symbol as a counting indication; for instance if we want to note
the square of the sum of the least (ka) and greatest roots (jye), it will be written like this: kava 1
kaejye 2 jyeva1 (x* + 2xy+ vy%).

Finally the calculations are separated from the text by a frame.

Here is the translation of this passage:

2.2

k2

Now, the preceding least root is %; its square multiplied by the prakrti is:

k

2

2,.2
«
and, in order to calculate the greatest root, the additive is this one: [k .

k2

Then, [the least root], added to the greatest one divided by the additive is: o ]:_ y;

a’x® + 2axy + patz? + 2pax y + py?

its square, 12 , multiplied by the prakrtiis: 12

A preliminary study

As a starting point to his justification, Krsna mentions the rule for the additive simplification
by a square: “If the additive is divided by the square of an assumed number..” (see page 7) and
he uses it twice: First in the ‘multiplicative form’, multiplying the least root by an arbitrary
number, he says that the additive must be multiplied by the square of that number. If we denote
« the arbitrary number and if we have a triple [z1, y;; k1], we have a new least root ax; and a
new additive a*k;.

Then he uses the same rule, choosing as assumed number the additive of the triple and
dividing the just obtained least root and additive. Doing this, he concludes that we have again
a new least root and additive:

ax o’k o
k4

Ty =

And he remarks:

“In these conditions, one must imagine a number chosen in this way: Once the
least root is multiplied by this number, there will be a simplification if it is divided
by the additive, if not how could the least root be non-fractional?

For this purpose —that is to say: What is the number by which the least root being
multiplied then divided by the additive will be without remainder?— a multiplier

13



and a quotient must be calculated after making the least root a dividend, the additive
a divisor without any k-additive.'*”

Indeed, if we want x, to be an integer we must choose « such that k; divides ax; so, we
must solve the following kuttaka:
Tiu =k v

And Krsna concludes:

“In that case, the quotient will be the least root. The square of the multiplier —the
very [number] sought, which is the multiplier in this [kuttaka]— divided by the
previous additive will be the additive. Then, the greatest root multiplied by the
multiplier and divided by the additive will be the greatest root.**”

If the couple («, () is a solution of the kuttaka x1 u = k; v, the quotient is § = % and we

recognise the value calculated above by Krsna as the new least root, x,; the associatled values
for the additive, k;, and the greatest root, y,, follow. From the general solution of this kuttaka
without k-additive, namely: © = k;t, v = x;t with ¢ an arbitrary integer, we can see that
the new triple [x,, y2; k] is composed of integral values:

axr;  kitz o kAR ) ay,  kity
Ty = i e Z1; 27 T e s Y e i

:tyl

Of course we recognise the ‘simplification rule’ (page 7) under its multiplicative form, but
what is interesting in Krsna’s explanation is the reason for introducing the kuttaka and the
distribution of the roles: The least root is a dividend and the additive a divisor. He will never
explain why the greatest root is chosen as the k-additive but will show by a calculation that this
choice allows the new additive to be minimised.

Explanation of Bhaskara’s rule for the cakravala

“The master endeavoured to calculate differently because in the [preceding calcu-
lation] the additive is too large. A multiplier and a quotient are calculated putting
the least root (x;) as the dividend, the greatest root (y;) as the k-additive and the
additive (k) as the divisor.**”

The ‘preceding calculation’ is the one done by Krsna in his preliminary study; according to

it, the new additive obtained after applying the kuttaka is: k; = %, « being the multiplier of
the resolved kuttaka. '

Of course, even if the preliminary study clearly shows how to produce integral solutions
for a Pell’s equation, as the goal of the cakravala is to produce an additive equal to =1 or £2
or 4, as stated in the Bhaskara’s last rule: “If the additive is two or four ..” (see page 10), and
from there to use the bhavana as a shortcut to find the integral solutions of px* + 1 = 37, in
Krsna’s study the size of the additive cannot be mastered.

2
a? —
. which

1
can be minimised by the choice of o, is the right additive, if the new least root is set to be the
quotient obtained in the kuttaka with k-additive fixed as the previous greatest root, y;.

Krsna will now justify that the new additive proposed by Bhaskara, k, = &

?See text 6, page 20.
PText 7, page 20.
*“See the rule page 9.

14



Comparing the least root in Krsna’s study with Bhaskara’s least root
Krsna introduces his calculations like this:

“A [new] least root has been previously put as the least root multiplied by the mul-
tiplier'® and divided by the additive but now the least root multiplied by the multi-
plier and added to the greatest root then divided by the additive will be a [new] least
root. Therefore the greatest root divided by the additive is produced as an additional
[number] to the least root. Thus, let us see what number is added to the square of
the least root multiplied by the prakrti**”

Applying Bhaskara’s rule, let («, 3) be a solution of the kuttaka: x;u + y; = k; v, a new

_l’_
least root is B = w and Krsna makes this calculation:
1
p(ozsm + y1)2 _ pofatt2poxiy + pyt
k1 k2
pafat+2paziyi+p(pat+ki) 2 2

= K2 using y; =pz;+k
_ pafzit2pary; + pPai+pk
= ¥

ari\2 | 2paxy + piai+pk
=n(%) + ;
3 2

So, the boxed number is the sought one.

Then Krsna remarks that in his previous reasoning the square of the multiplier (o) divided
by the additive has to be added in order to find the greatest root and, for this purpose, he splits
the number he has just calculated in two components:

2paxyyy +pPal +pky  2pamyy +ptal | p

% K w Y

And now the argument is:

“With this additional number, the prakrti divided by the additive is added, but the
square of the multiplier divided by the additive must be added, thus in this [rule]
the difference between the square of the multiplier and the prakrti divided by the
additive must be also added, because doing this, only the square of the multiplier

divided by the additive will be added.*””

2

With this argument the new additive, @ p’ given by Bhaskara’s rule is now justified:

az
since this last result will enable us to find a greatest root if we add it to p( ! )2 as shown in

1

the preliminary study.

Krsna also explains why the new additive has to be ‘reversed’ if the prakrti is greater than
the square of the multiplier, the result being the same in both cases. Let us summarise these
reasons using modern notations:

Calculated by the kuttaka.
*Text 4, page 20.
"Text 8, page 20.
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ifa® >p then £+ = —

ifa? <p then -+

Putting things together

After this separate study about the additive according to Bhaskara’s rule, Krsna takes into ac-

count the first member of the number (%) he had split in two parts and says: “No doubt then

2p axyys + pPai
ki

that this very number, , is added to the square of a greatest root, namely the

QY1
square of T
1
To understand what is meant here, let us summarise the full calculation made by Krsna

axy+ U

2
? ) and, using the identity: y* = p 2% + k1, he obtains this
1

1. Firstly he develops p(
equality:

a T+ y1\2 ax\? 2paxyy +pirt p
() = () +

k, Ky k2 "
az—p‘_

1

2. He then adds, or subtracts, the additive given by the rule: ‘

2

Lo
2 ey

2 2 _ 2 2 2,.2
p<a$1+yl) :I:‘a p :p<0¢$1> n pax1y; + pag
k1 ky kq

3. He adds the first and the last terms of the second member of the equality, after remarking
that this sum is a greatest root:

axy+ 2 a?— Q 2 2paxy; + pPad
p( 1 3/1) 4 ‘ Pl _ ( yl) i p 1y12 p
ky kq k1 ki

Now the justification of the cakravala rule is complete because the last result is a square:

(ayl)2+ 2paxy; + pPai _ (ay1+pxl)2
]{31 k% kl

And thus we have a new triple that verifies the relation p 23 + k, = y2

azy+ Y1
k4

Krsna concludes his upapatti like this:

o —p ay+pa
YT T

-]

Ty =

“When a least root multiplied by an assumed number and added to a greatest root
[the result] being divided by an additive is put as a least root, then the difference
between the square of the assumed number and the prakrti divided by the additive
is an additive. The greatest root multiplied by the assumed number and added to
the least root multiplied by the prakrti, [the result] being divided by the additive is
then the [new] greatest root.

In this procedure, even if there is no requirement of the kuttaka —roots being ob-
tained only by force of an assumed number— a kuttaka is nevertheless performed
for a state of non-fractionation [of the roots]; hence the statement: “Having made
the least and greatest roots and the additive...*® is justified”

*Text 9, page 20.

16



The first paragraph is a summary of Bhaskara’s rule with a slight difference: while the rule
says: “The quotient associated to the multiplier is a least root, whence a greatest root”, that is to
say that once we have a least root and an additive, we can calculate the associated greatest root

by the general relation: p 2° + k = y*, we can nevertheless calculate the greatest root using the
_ayi+pay

ki

result of Krsna’s calculations: ¥ where « is a solution of the kuttaka laid

down for the cakravala.
In the second paragraph, we have an interesting observation: Whatever the number d is, if
[#1,y1; k1] is a triple, solution of a Pell’s equation, [dx, dy;; d*k,] is another such triple. Krsna

uses this to prove that the result in the cakravala rule is a square when he remarks that the
2
o — a2
additive P eliminates 2 and that, in fact, we get a greatest root while combining p( A : )
1 1 1

«
and what remains: —

ki
Final remarks
What Krsna really demonstrates here is that if we follow Bhaskara’s rule, putting as a least root

a Ty + yl ) 2
Ty = — the quotient of a well-chosen kuttaka, and as additive

, the result is a
square. !
Another very interesting point is his attempt, in the preliminary study, to justify the use of
the kuttaka if we want integral solutions. The use of the full kuttaka, with the greatest root as
a k-additive, is not explained though, but it is certainly not obvious!
The expression found for the greatest root allows to make an iterative description of the
cakravala process: Let [1, y1; k1] be a triple of integers such as px? + k; = 3* and let u; and

vy be integral solutions of x; u 4+ y; = k; v, such that |u§ — p| is minimal, then:

iU+

UL Y1 + Py
xz— - —_
k4

ki

uj —p
Ky

-2
is a new triple of integers verifying the same relation.
From there, other triples can be calculated by induction; but, as the difference between the
square of the solution of the kuttaka and the prakrti is minimised —that is to say: the additive—
at each step, the process will come to an end with an additive equal to 1. This also is not obvious.

A question which is not approached by Krsna —nor by Bhaskara— is: Why is the additive,

o? —

an integer? We can answer this question, supposing that the least root, z; and the
1
additive, k, , are relatively prime —if they are not, the equation could be transformed into an

equation with additive equal to 1, and the cakravala is useless in that case.
We multiply o — p by 2% and obtain the following identities:

(o —p)ai=a’a2f - pay
= o? l‘% - ?/% + ki (becausepl”? - yf —F)

=(azi+y)(ax; —y1) + ks

Then k; divides the right member of the last identity, because a had been chosen for this
purpose, so k; must divide the left member and as it does not divide x4, it must divide o* — p.

The last remark we can make is: How has such a sophisticated method been developed?
The answer might be found in some unknown works or commentaries in the multitude of
manuscripts stored in libraries in India.

17



5 Examples

Bhaskara puts forward examples in order to illustrate the theoretical part of the cakravala.
He asks to solve these two equations:

672 +1=y9y* and 612°+1=1"

We give briefly the solutions according to Krsna’s commentary but using our modern no-
tations (starred items indicate the beginning of a cycle).

672> +1=1yg°

*1. Choose a suitable triple:  [x1, y1; k1] = [1, 8; —3] 67 x 1> — 3 = 8

2. Solve the kuttaka: uw+8=—-3v: wuy=1 vy=—-3
2
3. Calculate p—wu; =67 —1=66
4. Calculate p—uj=67—1=66 The result is not small.
5. Other solutions of the kuttaka are: wu=1—3t v = —3+t¢. Chooset = —2:

UG =Uy —2X —3=7 vp=-3—2=-5

6. Calculate p — u? = 67 — 49 = 18 which minimises the difference.
The additive is:  ky = _p—iu% = _ 1B =6
k4 -3
The least root is: 3 = vy = —5
The greatest root is:  y, = 41
*7. A new triple is: [y, yo; ko] = [5, 41; 6] The new vargaprakrtiis: 67 x* + 6 = y/*
8. Solve the kuttaka: 5u+41=6v: uy=5 vy=11

9. Calculate p—ul = 67 — 25 = 42

The additive is: k3 = — =——=-7

The least root is: 3 = vy = 11
The greatest root is:  y3 = 90
*10. A new triple is: [z3, ys; k3] = [11, 90; —7]  The new vargaprakrtiis: 67 2* —7 =y
11. Solve the kuttaka: 11u+90=—7v: uy=9 vy= —27
12. Calculate u’—p=81—67 =14

2
Uy — 14
The additive is: ks = — P_22_ -2
ks —7

The least root is:  z, = —27

The greatest rootis: 3, = 221 67 x 27° — 2 = 221°
*13. A new triple is: [x4, ys; ks] = [27, 221; —2]  The new vargaprakrtiis: 672° —2 =y
14. The additive is now —2 and we can use the bhavana as a shortcut:

27 221 —2
27 221 =2

The least root is: x5 = 2 X 27 X 221 = 11934
The greatest root is:  ys = 67 x 27° + 221% = 97684
The additive is: ks = (—2)* = 4
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15. The additive being a square, we can now use the simplification rule, dividing k5 by 4 we
have to divide the roots by 2 and find the solution:

67 X 5967% + 1 = 48842°

The second example is more impressive and uses fractional intermediary roots.
612° + 1=y

*1. Choose a suitable triple:  [xy, y1; k1] = [1, 8; 3] 61x 1> +3 =28
2. Solve the kuttaka: uw+8 =3v: wuy =1 v, = 3 and, as in the previous example,
choose other solutionsu; = 1+2x3 =7 v1 = 3 + 2 = 5, which minimises p — uf

3. Calculate p — u? = 61 — 49 = 12

The additive is:  ky = —

The least rootis: o, = v; =
The greatest root is: 4, = 39
*4. A new triple is: [Ty, yo; ko] = [5, 39; —4]  The new vargaprakrtiis: 611% — 4 = y*

5. The additive being a square, we can now use the simplification rule, dividing k, by 4
we have to divide the roots by 2 and find fractional solutions with triple: [x3, y3; k3] =

5 39
[57 ?7 _1}
195 1523
6. Using an equal bhavana, we get a new triple: [x3, ys3; k3| = [7, — 1]

7. Compose this triple with the preceding one and obtain the triple:
(24, ys; ks] = [3805, 29718 ; —1]

8. An equal bhavana yields the solution:

61 X 226153980% + 1 = 1766319049°

Sanskrit texts

Text 1.

vargah prakrtir yatreti vargaprakrtih | yato 'sya ganitasya yavadadivargah prakrtih | yadva ya-
vadadivargesu prakrtibhatad ankad idam ganitam pravartata iti vargaprakrtih | atra yavadva-
rgadisu prakrtibhiito yo 'nkah sa prakrtiSabdenocyate | sa cavyaktavargagunaka eva | ato 'tra
padasadhane vargasya yo gunah sa prakrtisabdena vyavahryate |

Text 2.

evam cakravalena caturdvyekayutau catuhksepe dviksepa ekaksepe cabhinne pade bhavatah |
idam upalaksanam | yatra kutrapi ksepe 'bhinne pade bhavatah | yutav ity apy upalaksanam tena
suddhav apiti jieyam |

Text 3.

atha ripaksepapadanayane prakarantaram apy astity aha " caturdviksepamalabhyam" iti |
catuhksepamulabhyam dviksepamilabhyam ca ripaksepartham bhavana rapakseparthabha-
vana karyeti Sesah | catuhksepe *istavargahrtah ksepa" ityadina dviksepe tu tulyabhavanaya
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catuhksepapade prasadhya pascad " istavargahrtah ksepa" ityadina rapaksepaje pade va bha-
vata itiyarthah |

Text 4.

purvam tu gunagunitam kanistham ksepabhaktam sat kanistham bhavatiti sthitam | idanim tu
gunagunitam kanistham jyesthayutam ksepabhaktam sat kanistham syat|tasmad jyestham kse-
pabhaktam kanisthe 'dhikam jatam |evam sati prakrtigune kanisthavarge kim adhikam bhavatiti
vicaryate |

Text 5.

caturadhike antyapadakrtis tryGina dalita antyapadaguna antyapadam |
antyapadakrtis vyeka dvihrta adyapadahata adyapadam |

caturine antyapadakrti tryekayute vadhadalam prthak vyekam |
vyekadyahatam antyam padavadhagunam adyam antyapadam |

Text 6.

atrestam tadr$am kalpaniyam yena gunitam kanistham ksepabhaktam $uddhyet | anyatha kani-
stham abhinnam katham syat |

tadartham kanistham kena gunitam ksepabhaktam nihsesam syad iti kanistham bhajyam pra-
kalpya ksepam haram ca prakalpya ksepabhave gunapti sadhye |

Text 7.
atra ya labdhis tat kanistham padam | yo 'tra gunas tad evestam iti gunakavargah purvaksepa-
bhaktah ksepah syat | jyestham api gunagunitam ksepabhaktam jyestham syat |

Text 8.

anenadhikena ksepabhakta prakrtih ksipta syat ksepaniyas tu ksepabhakto gunavargah|tad atra
gunavargaprakrtyor antaralam api ksepabhaktam ksepyam | tatha sati ksepabhakto gunavarga
eva ksipto bhavet |

Text 9.

yada tv istagunam kanistam jyesthayutam ksepabhaktam sat kanistham kalpyate tada guna-
vargaprakrtyor antaram ksepabhaktam sat ksepo bhavatistagunam jyestham prakrtigunakani-
stena yutam ksepabhaktam sat tatra jyestham bhavatiti |

atra yady apy istavasad eva padasiddhir astiti kuttakasya napeksa tathapy abhinnatvartham
kuttakah krtah | ata upapannam hrasvajyesthapadaksepan ityadi |
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