
HAL Id: hal-00584763
https://hal.science/hal-00584763

Submitted on 10 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplified Marching Cubes: an efficient discretization
scheme for simulations of deposition/ablation in

complex media
Gerard L. Vignoles, Marc Donias, Christianne Mulat, Christian Germain,

Jean-François Delesse

To cite this version:
Gerard L. Vignoles, Marc Donias, Christianne Mulat, Christian Germain, Jean-François De-
lesse. Simplified Marching Cubes: an efficient discretization scheme for simulations of deposi-
tion/ablation in complex media. Computational Materials Science, 2011, 50 (3), pp.811-1218.
�10.1016/j.commatsci.2010.10.027�. �hal-00584763�

https://hal.science/hal-00584763
https://hal.archives-ouvertes.fr

Simplified Marching Cubes: an efficient discretization
scheme for simulations of deposition/ablation in

complex media

Gerard L. Vignolesa,∗, Marc Doniasb, Christianne Mulatb,a, Christian
Germainb, Jean-François Delessec

aUniversity Bordeaux - Lab. for ThermoStructural Composites (LCTS)
3, Allée La Boëtie - F33600 Pessac, France

bUniversity Bordeaux - Lab. for Integration from Materials to Systems (IMS)
351 Cours de la Libération - F33410 Talence Cedex, France
cUniversity Bordeaux - Lab. of Computer Resarch (LaBRI)
351 Cours de la Libération - F33410 Talence Cedex, France

Abstract

Surface growth or recession models depend on accurate and efficient descrip-

tions of the moving surface. We propose a simplified alternative to the popular

marching cubes algorithm for isosurfacing, in which the surface consists of tri-

angles which are composed from vertices of the regular 3D grid on which the

data to be processed (e.g. the volume of fluid) is defined. Consequently, the

new algorithm does not require any interpolation. In contrast with the original

method, a switch of the relative status (above or below the threshold value)

of vertices does not lead to similar triangle models. The obtained meshes are

guaranteed to be manifold i. e. to be topologically consistent and with no holes.

The implementation of the new method is simple. Comparison of both schemes

in a random-walk gas diffusion simulation algorithm shows a substantial time

improvement with SMC. An example of Chemical Vapor Infiltration modelling

is described.

Keywords: Front tracking, Marching Cube, Volume-Of-Fluid methods (VOF),

∗To whom correspondence should be addressed.
Email addresses: vinhola@lcts.u-bordeaux1.fr (Gerard L. Vignoles),

marc.donias@ims-bordeaux.fr (Marc Donias), christiannemulat@hotmail.com (Christianne
Mulat), christian.germain@ims-bordeaux.fr (Christian Germain), delesse@freesurf.fr
(Jean-François Delesse)

Preprint submitted to Elsevier September 15, 2010

Level-Set methods

1. Introduction

Triangle models of isosurfaces from volumetric scalar fields are used for sci-

entific visualization (rendering of 3D medical data, geological volumes, synthetic

data,...) and for algorithms involving explicit surfaces within volumes like simu-

lations of diffusion processes on or through interfaces. In the case of data defined

on a cuberille grid (i. e. a regular 3D cubic mesh), Marching Cubes (MC) is

the reference algorithm to perform triangle models of isosurfaces defined by a

threshold value. Since the early work of Lorensen and Cline[1], many methods

[2] have been proposed in order to enhance triangle representations or to obtain

more efficient implementations. On the one hand, successive improved versions

have completed the various configurations of the original look-up table in order

to obtain more accurate models with correct topology[3, 4, 5, 6]. Improvements

of the robustness with respect to perturbations of the data and of the thresh-

old value have also been investigated[7]. On the other hand, particularly in

the case of large data sets, many works have been carried out to optimize the

search process of the cubes intersected by the isosurface[8, 9], in order to re-

duce the number of the resulting triangles[10] and to decrease dramatically the

computation time with hardware-accelerated strategies[11].

As far as visualization and surface extraction are concerned, the MC al-

gorithms are excellent solutions, which have proven their efficiency. However,

there is a strong demand from the applied science community to develop soft-

ware capable of physico-chemical modelling inside complex, heterogeneous me-

dia subject to morphological evolution. Among many examples we can cite the

clogging of porous media like filters, catalysts or rocks undergoing diagenesis,

or the opening of pore space such as in rock dissolution. Fabrication or degra-

dation of materials are other application fields, as will be seen later. Since the

considered media exhibit rather complex geometrical features, there is a need to

handle large datasets for their internal representation. Simultaneously, trans-

2

port phenomena involved in the evolution of the materials have to be accounted

for. This implies the discretization of conservation equations in the interior of

domains which are delimited by the surfaces that an MC algorithm has to pro-

duce ; boundary conditions for these equations have also to be stated on those

surfaces. For instance, in Finite Volume (FV) scheme, we have to compute in

each cell the current volume and the surface (and possibly the normals) of the

interfaces with the adjacent cells. These quantities have to be computed as

quickly as possible. Moreover, when the surface (e.g. some fluid/solid interface)

is evolving, remeshing has to occur in some way. Moving boundaries have mo-

tivated numerous approaches like, among others, level-set algorithms [12] and

Volume-Of-Fluid (VOF) [13] methods. In the case of a surface extracted by an

MC-like algorithm which is subject to morphological evolution, there are some

conditions that the surface mesh has to verify all the time. First, as far as

transfer phenomena are involved, holes are forbidden. Second, the node density

has to remain more or less constant on the surface. The recent MC algorithms

are consistent with the ”no-hole” prerequisite. If it is chosen to modify the data

values of the 3D grid from which the surface is extracted, we have a convenient

dynamic scheme for moving boundaries, since the MC methods are essentially

local. So there is a motivation to keep these interesting properties, while sim-

plifying the MC structure.

Combining the three elements of (i) large and complex 3D images, (ii) trans-

fer phenomena, and (iii) surface evolution, we face the question of optimizing

computational time and memory requirements. One of the compromises may be

to use a surface discretization scheme which lies halfway between the most accu-

rate ones (i. e. MC algorithm and variations) and the simplest one (cuberille),

which is known to be inaccurate for the estimation of various geometrical pa-

rameters (normals, for instance). This is why, in this article, we propose a trian-

gulation method, called simplified marching cubes (SMC), which can be viewed

as a simplified alternative to the MC algorithm. The complete implementation

lies on a simpler code than MC, because either no configuration table or no

graph permutation lookup is necessary. The accuracy of the obtained meshes

3

is lower than the standard MC and higher than the cuberille approximation.

The principle of the proposed method is similar to the discretized marching

cubes (DiscMC) [10]. However it does not require any interpolation, the steps

of the algorithm are very different. Triangles are indeed composed of vertices

of the cuberille grid on which the processed data is defined. Moreover, meshes

are guaranteed to be manifold, i. e. to be topologically consistent and without

holes. Originally designed for simulations involving triangulated interfaces, our

method is also appropriate for fast visualization in order to find the adequate

threshold value.

Section II presents the principle and look-up table of the SMC algorithm.

The proposed method is then used in section III for visualization of synthetic

data and in section IV for simulation of diffusion-reaction processes in evolving

porous media, by coupling with a random-walk algorithm.

2. Simplified Marching Cubes Algorithm

2.1. Principle

Considering a data sampled on a cuberille grid, the MC algorithm consists

of processing each group of 8 neighboring vertices forming a cube and deter-

mining whether the cube edges intersect the isosurface defined by a threshold

value. An intersection appears when an edge links a vertex with value below the

threshold value to a vertex with value above the threshold value. Intersection

points, the coordinates of which are accurately computed using linear interpola-

tions, are collected together to constitute triangles, according to a look-up table

containing all different configurations. The original paper [1] presented a first

set of 15 configurations, of which one has been later found out to be redundant

[7]. Later on, some inconsistencies in the configuration list have been identified,

which eventually lead to surfaces with holes. Indeed, there is one face config-

uration for which the disposition of the triangle edges is ambiguous [3]. This

is one of the main reasons that has led various authors to propose improved

MC modifications. One of the simplest and coherent solutions is ”MC-patch”

4

[14], which we will retain in the following, though we choose here to consider

that configurations 11 and 14 are not distinct since they are symmetrical with

respect to a mirror plane [15]. Figure 1 is a description of this configuration

list. The 22 configurations correspond to all distinct possible graphs on a cube

with black or white vertices, based only on the consideration of the number of

first, second and third neighbors with the same color.

2

6

10

15

19

3

7

11 and 14

16

20

0

4

8

12

21

17

1

5

9

13

22

18

Figure 1: The ”MC22” configuration list, with 6-connectivity of nodes respected in all con-
figurations. Note that the 14 first configurations are present in the original report [1]. The
numbering is similar to ref. [14] except that our configurations 14-21 match configurations
15-22 of this paper.

5

The SMC mesh is equivalent to an MC mesh where each intersection point

(triangle vertex) has been moved along its edge to the grid vertex above the

threshold. Degenerated triangles with collapsed points and null surfaces are

naturally removed. The resulting mesh consists in triangles linking only vertices

of the cuberille grid.

Let us now give another, more formal formulation of SMC. From a volumetric

scalar field F (x, y, z), MC produces a triangle model T of an isosurface Sλ =

{(x, y, z) : F (x, y, z) = λ} where λ is a threshold value. Theoretically, the

application of the SMC could consist of the following two steps:

• The original data set F is binarized using the threshold value λ and gives

a new data set FB defined by

FB =







1 if F (x, y, z) ≥ λ

0 else
·

• The standard MC algorithm is applied to FB using the threshold value

λ = 1.

Contrary to MC, it has to be noted that the difference between the value of

vertices and the threshold value is not used by the proposed algorithm. Only

the relative status (above or below) is considered.

Actually, implementing SMC by means of MC on thresholded nodes is way

too suboptimal. It is just a conceptual model. Details of the actual method can

be found in the Appendix. It is not based on the construction of a lookup table,

but it is easy to build a lookup table out of it.

Figure 2 describes the SMC configuration list, as obtained from the ”MC-

patch” lookup table.

2.2. Discussion

The major advantage of the SMC is that all computations can be made with

integer arithmetic. The computation of surface area and volume in SMC is quite

6

2

6

10

15

19

3

7

11 and 14

16

20

0

4

8

12

21

17

1

5

9

13

22

18

Figure 2: The SMC configuration list, as inferred from ”MC-patch”. See Fig. A.6 for an
explanation of the symbols.

7

as simple as in the Cuberille case: indeed, for each configuration listed at Fig.

2, the volume and interface area are already known.

3. Application to visualization and computation of surfaces and vol-

umes

3.1. Examples

SMC has been applied to standard datasets [16]. Figure 3 shows the resulting

mesh in comparison with the cuberille method and the original MC, which

confirms that SMC has intermediate performances between the other two.

Table 1 gives quantitative data on the number of vertices and triangles. The

total memory is also reported in bytes, according to the following assumptions:

• For SMC and Cuberille, the vertex memory requirement is 3 short (2-byte)

integers per vertex (i.e integer coordinates less than 65535).

• For the MC scheme, the vertex memory requirement is 3 single-precision

(4-byte) floats per vertex.

• For all schemes, the triangle memory requirement is 3 long (4-byte) inte-

gers per triangle.

Table 1 shows that the SMC memory requirements are half of the other two ;

the number of triangles and of vertices is approximately cut by half. Computed

surface area and volumes are also reported in this Table.

3.2. Discussion

The accuracy of the obtained SMC meshes is lower than the standard MC

and higher than the cuberille approximation. As a consequence, the SMC sur-

face area computation gives values which may lie between the cuberille and MC

estimations. The difference between the values of the computed surfaces of a

discretized object (e.g. a sphere) and its actual theoretical value arises from

two sources: one is a possible bias on the interface position, and the other is the

”intrinsic roughness” arising from the algorithm.

8

Figure 3: Resulting meshes of the Neghip image [16] with cuberille approximation (first row),
SMC (second row) and MC (third row).

9

SMC Cuberille MC Rel. diff. w.r.t.
Cuberille MC

Image ”large buckyball”, threshold = 80
points 119 100 119 136 65 880 −44.7% −44.7%

triangles 238 272 238 344 131 832 −44.7% −44.7%
memory 3 573 864 4 289 760 1 977 264 −44.7% −53.9%
surface 119 136 79 823 86 556 −27.3% +8.4%
volume 711 648 708 248 680 284 −4.4% −3.9%

time (ms) 43 67 53 +21.7% −21.2%
Image ”neghip”, threshold = 40

points 17 881 17 974 9 641 −46.1% −46.4%
triangles 35 948 35 734 12 290 −65.8% −65.6%
memory 538 662 644 496 205 326 −61.9% −68.1%
surface 17 974 12 250 12 306 −31.5% +0.5%
volume 33 484 33 526 28 743 −14.2% −14.3%

time (ms) 5.5 9.0 6.6 +19.4% −27.0%

Table 1: Comparison of the cuberille, SMC and MC algorithms on classical datasets.

By construction, all discretization schemes produce a bias on the estimation

of the volume of an object, which tends towards zero when the sampling rate

increases. This leads to the existence of a bias in the surface area estimation.

Locally, if the sampling rate is substantially larger than the size of any surface

roughness feature, the two estimates are linked by:

∆S = ∆V

(

1

r1

+
1

r2

)

where r1 and r2 are the algebraic Gaussian curvatures.

Contrary to the other two methods, SMC systematically produces negative

volume biases. This ensures that a convex object has a negative surface bias,

while a concave object has a positive surface bias. However, the SMC volume

bias is always larger than in the other two methods.

Aside from this first effect, approximation of any smooth surface by a collec-

tion of triangles gives a systematically positive bias in the surface estimation,

whatever the method. Unfortunately, this bias does not vanish when the sam-

pling rate increases.

Let us illustrate these concepts with the case of a discretized sphere. Figure

10

Figure 4: Comparison of surface error with MC and SMC for discretized spheres of growing
radius.

4 shows that the SMC scheme goes to an error of 7% while the MC error limit

is much lower (around 0.4%). The cuberille method has a much worse bias: the

surface area of a sphere computed by this method is exactly the area of the

embedding cube, which gives a ratio of 6/π, i. e. a error of 90%, whatever the

discretization size. Inverting black and white domains gives a different curve

for SMC: instead of approaching the non-vanishing bias limit by inferior values,

the convergence is by superior values, as can be expected since the sign of the

volume estimation bias is reversed.

In the case of the ”neghip” image, the surface area estimates of MC and SMC

are in close agreement because of error cancellation: the ”roughness-induced”

surface excess of SMC is compensated by the negative bias originating from the

positive curvature zones. Conversely, in the case of the ”large buckyball” image,

there are less positive curvature regions, which favor a positive bias.

The performances of both schemes have been also tested with respect to the

errors made in approximating normals of discretized ideal objects. Spheres and

11

MC SMC
Nb. Std. error Nb. Std. error

triangles (deg) triangles (deg)
Sphere

r = 25 2 941 10.1 1 591 10.8
r = 35 5 779 10.0 3 135 10.7
r = 55 14 125 9.9 7 789 10.6

Torus
R = 75, r = 25 26 632 11.3 15 765 12.4
R = 75, r = 35 37 360 11.3 22 147 12.4
R = 75, r = 55 58 868 11.4 34 925 12.5

Table 2: Comparison of MC and SMC RMS errors on face normals on binarized images of a
sphere and a torus

tori have been generated, then the SMC and MC surfaces have been extracted

; the normals of each face have been computed, as well as the normal that each

face center should have on the associated ideal sphere or torus. The root-mean-

square of the deviation between the actual and ideal normals is reported in

Tables 2 for binarized images and 3 for smooth images. In binarized images,

MC and SMC have comparable performances. On the other hand, in smooth

images, the error using MC is cut by half, while it is practically unchanged

when using SMC. This fact arises from the relative wealth of normal orientation

possibilities in MC:a priori 5113− 1 = 133 432 830 distinct orientations for MC

against 26 for SMC, which is fully exploited when extracting a surface from a

smooth data set.

4. Application to diffusion-deposition and diffusion-erosion problems

4.1. Context

The SMC algorithm has been developed and used in two practical cases of

modeling in materials science, related to thermostructural composites. The first

is the matrix fabrication by Chemical Vapor Infiltration (CVI) and the second

is the surface degradation by ablation.

A practical problem of interest is the fabrication of ceramic or carbon-matrix

composites by the Chemical Vapor Infiltration technique [17, 18, 19]. A preform

12

MC SMC
Nb. Std. error Nb. Std. error

triangles (deg) triangles (deg)
Sphere

r = 25 2 941 4.8 1 585 10.3
r = 35 5 779 4.3 3 135 10.7
r = 55 14 125 4.2 7 789 10.6

Torus
R = 75, r = 25 26 632 6.6 15 750 12.3
R = 75, r = 35 37 360 6.4 22 143 12.4
R = 75, r = 55 58 868 6.5 34 899 12.5

Table 3: Comparison of MC and SMC RMS errors on face normals on smoothed images of a
sphere and a torus

made of carbon or ceramic fibers arranged in woven fabrics or mats, possibly

punched with needles in order to lock the plies together, is infiltrated by the

chemical cracking of a vapor precursor of the matrix material. In order to have

a proper insight of the infiltration quality, it is of great interest to perform

pore-scale modelling of the gas diffusion and of the deposition process [20].

4.2. Methods

The SMC discretization scheme is used both for the computation of effec-

tive diffusivities in porous media, and for the simulation of the matrix depo-

sition, in combination with a Monte-Carlo/Random Walks (MC/RW) tech-

nique. The MC/RW technique has been used many times in media described

by distributions of ideal objects, mostly overlapping or non-overlapping cylin-

ders [21, 22, 23, 24] ; however, as far as real porous media are concerned, the

material surface description by MC algorithms is necessary [25]. One of the

interests of SMC in the case of random walks in porous media is that it is an

interesting compromise between accuracy and computational speed. Indeed, in

rarefied regime, the random walkers go straight from one surface point to an-

other, and the orientation distribution law at surfaces depends on the normal

exactly as in Lambert’s law in optics. So, very accurate results are not expected

for rarefied flow computations in a cuberille surface discretization scheme. On

13

Reduced Description SMC cases
configuration

0 Void cube 0;1;2;3;4;6;7;10;13
1 One type I triangle 5;12
2 One rectangle 8;19
3 One type III triangle 9;14;20
4 Two type II triangles 11;16
5 Two type III triangles 17;18
6 One rectangle 15

+ one type III triangle
7 Solid cube 21

Table 4: Reduced configurations handled by the MC/RW algorithm

the other hand, using a full MC algorithm is a difficult task and leads to rather

high memory usage for the storage of the data structure, though efficient tech-

niques have been developed [26]. In the MC/RW - SMC combination, random

walkers essentially have to manage their path through contiguous cubes con-

taining up to two distinct surface pieces, either triangles or rectangles. Table 4

summarizes the distinct cases that are handled by SMC: they can be grouped

into 8 ”reduced” cases. A convenient data structure is then, for each cube, a

case indicator in (0, 7) ∩ N, and coefficients for the description of at most two

planes like hx + ky + lz + m = 0 with (h, k, l) ∈ {−1, 0, 1}3 (at most 27 distinct

triplets) and m ∈ N. For example, this can be coded on 7 bytes: one for the

case indicator, two for the description of the normal coefficients (h, k, l) of at

most two planes, and four bytes for the integer m of at most two planes.

Here the SMC discretization technique, associated to the MC/RW method

for fluid diffusion/reaction, is used for the prediction of the structural evolution

of a given porous medium sample in CVI conditions. Compared to the diffusion

code, the extra feature is the possibility to modify the surface, according to

the local flux of reactive walkers received by a surface element. The chemical

deposition is simulated by the introduction of a sticking probability associated

to the walkers: when they hit a surface, a random number is drawn between 0

and 1; if it is inferior to the sticking probability, then the walker is stuck. In

14

order to simulate surface growth in accordance with the surface fluxes, there has

to be a counter of sticking events associated to each surface element, and the

surface should move forward in its normal direction by an amount of distance

which is proportional to the received flux. There exists a very simple way to deal

with these modeling requisites. Let us consider that we start with a black and

white image. Black nodes (value = 255) are solid phase, white negative vertices

(value = 0) are fluid vertices. Every time a walker gets stuck, we have to seek for

the negative vertex which lies closest to the sticking point, and increase its grey

level value by a given quantity. When this quantity exceeds a given threshold,

then the vertex is converted into a surface node. The SMC discretization has

to be performed again only on the 8 cubes sharing this new node: this provides

a flexible, ”on-the-fly” surface evolution algorithm.

4.3. Results

Combination of MC/RW and SMC has been used first in media consisting

in an idealized description of stacked woven fabrics [27]. More recently, the

acquisition [28] and segmentations [29, 30, 31] of high-resolution 3D images of

carbon/carbon (C/C) fibrous preforms has been made possible. The SMC algo-

rithm has been used for the computation of the surface area and pore diameter

distribution, with an excellent validation with respect to experimental data [32].

quantitative comparison of the above estimates (surface area and pore diameter)

using both SMC and MC could be provided.

Then, computations of effective gas diffusivities in the continuum (ordinary)

and rarefied regime have been carried out, with an excellent agreement as com-

pared to experimental data [33] and previous results on idealized media [34].

The random-walk algorithm has also been implemented together with the

full MC discretization scheme, associated to an efficient memory storage strategy

[26, 15], so this gives an opportunity to compare both discretization schemes

directly with respect to a physical modelling application.

We report test results on a typical computation, performed on a 1003 voxel

image shown in fig. 5. The pore volume fraction was 86.9 %, the internal surface

15

Figure 5: Typical image of a fibrous medium. Size = 1003 voxels.

area was 0.0528737 pixel−1 (total surface = 52873.7 pixel2) and the hydraulic

diameter is around 66 pixels.

The effective diffusion coefficient was determined by averaging on 2,000 ran-

dom walks, each 10,000 pixels in length ; whenever a random walker exits the

image, it is reintroduced by translation ; the mean free path between two ran-

dom direction changes (i. e. scattering events in the gas phase) has been varied

from very small to very large values, allowing to cover the whole regime variation

between continuum and rarefied regimes. The diffusion coefficient values found

with both methods were in close agreement (within numerical noise amplitude)

; the CPU memory and time requirements are reported in table 5. We can see

that in the rarefied regime the ratio between execution time for both codes gets

worse ; indeed, it is the limit in which the codes spend relatively more time for

an inspection of the surface triangles.

Moreover, the code performances have been compared for selected images, all

of the same size, with different internal surface area. The results are summarized

in Table 6. We can clearly see that the speedup gained by using the SMC scheme

is more interesting when the surface area increases.

Table 8 is an example of infiltration movie obtained on a 100×100×100

16

MC SMC

Memory size (Mb) 18 6.7

Mean free path (vox.) CPU time (s)
0.05 1213 700
0.1 514 307
0.5 126 83
1.0 86 56
5.0 56 32

10.0 48 29
50.0 58 27

100.0 83 33

Table 5: Comparison of CPU memory and time consumption in a computation of an effective
diffusion coefficient by random walks.

Porosity Int. surface Rel. error
area (pix−1) SMC/MC

SMC MC SMC MC Surface Porosity
1 0.874 0.856 0.051 0.054 5.64% -2.14%
2 0.676 0.628 0.128 0.132 2.88% -7.67%
3 0.475 0.435 0.200 0.198 -0.97% -9.14%

Table 6: Comparison of SMC and MC RW code performances on selected images with 1003

voxels in size.

Mem.size Time Ratio
(Mb) (s) MC/SMC

SMC MC SMC MC Mem. Time
1 6.7 18 27 77 2.7 2.9
2 8.5 19 28 191 2.2 6.8
3 10.3 21 31 406 2.0 13.1

Table 7: Comparison of SMC and MC RW code performances on selected images with 1003

voxels in size.

17

Step 1 2 3

Images
Solid volume 12.6% 25.3% 86.2%

fraction
Internal

surface area
(voxel edge−1) 0.0507 0.0677 0.0549

Table 8: An example of CVI simulation: three stages of the computation have been extracted
among the 30 produced images.

cubic voxels image. Moderate values of the rarefaction degree and sticking

probabilities have been chosen. The total infiltration has been run in 6 hours 30

on a Pentium4 CPU with 3.2 GHz clock rate. Such a kind of program is able to

deliver a precise evolution of the internal surface area and transport properties

(diffusivities, etc ...) as a function of infiltration progress, which is a valuable

tool for large-scale infiltration modelling [20, 31].

The interest of such a combination of algorithms lies in the fact that it

is a compromise between accuracy, CPU time consumption and memory re-

quirements. It has also been used in the frame of C/C composite ablation

modeling [35], with excellent results in terms of fidelity with respect to analyt-

ical cases [36], and computational speed in large images. Extensions featuring

orientation-dependant sticking coefficients have been also tested [37], resulting

in an excellent behavior.

5. Conclusion

The construction of a Simplified Marching Cubes algorithm was a demand

arising from the community of materials numerical simulation, because of the

necessity of managing physically complex simulations inside potentially huge

3D blocks. This has led to analyse thoroughly the nature and properties of

18

the historical Marching Cubes approach; after this, it was possible to propose

a simplified (i. e. binarized) version of MC. The Simplified Marching Cubes

rely on a mesh consisting in triangles linking only vertices of the cuberille grid.

Therefore, computation can be made with integer arithmetic. Moreover, SMC

produces a reduced number of points and triangles. These characteristics make

the SMC computation faster than the standard MC and with less memory. Be-

sides, the computation of surface area and volume in SMC is quite as simple as

in the Cuberille case but much more accurate. Coupled together with a Monte-

Carlo/Random Walk algorithm and an efficient surface deposition/erosion pro-

cedure, SMC has shown efficiency in performing computations of geometrical

characteristics, gas transport by diffusion in rarefied regime, deposition by chem-

ical reaction, and ablation by solid gasification.

One of the perspectives of SMC is to couple it with non-random numerical

techniques like Finite Differences, Finite Volumes, Finite Elements or Boundary

Integrals, always in the idea of solving moving boundary problems.

Acknowledgements

The authors wish to thank the French Ministry of Education for Ph. D.

grants to Jean-François Delesse and Christianne Mulat.

References

[1] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D surface

construction algorithm, in: M. C. Stone (Ed.), SIGGRAPH ’87 Proceed-

ings, Vol. 21 of ACM Computer Graphics, ACM Press, New York, 1987,

pp. 163–169.

[2] T. S. Newman, H. Yi, A survey of the marching cubes algorithm, Elsevier

Computer & Graphics 30 (1996) 854–879.

[3] G. M. Nielson, B. Hamann, The asymptotic decider: Resolving the ambi-

guity in marching cubes, in: G. M. .Nielson, L. Rosenblum (Eds.), Pro-

19

ceedings of the conference on Visualization ’91, IEEE Computer Society

Press, 1991, pp. 83–91.

[4] G. M. Nielson, On marching cubes, IEEE Trans. on Visualization and Com-

puter Graphics 9 (3) (2003) 283–297.

[5] E. V. Chernyaev, Marching cubes 33: Construction of topologically correct

isosurfaces, Tech. Rep. CN/95-17, CERN (1995).

[6] T. Lewiner, H. Lopes, A. W. Vieira, G. Tavares, Efficient implementation

of marching cubes cases with topological guarantees, Journal of Graphics

Tools 8 (2) (2003) 1–15.

[7] A. Lopes, K. Brodlie, Improving the robustness and accuracy of the march-

ing cubes algorithm for isosurfacing, IEEE Transactions on Vizualisation

and Computer Graphics 9 (1) (2003) 16–29.

[8] P. Cignoni, P. Marino, C. Montani, E. Puppo, R. Scopigno, Speeding up

isosurface extraction using interval trees, IEEE Transactions on Vizualisa-

tion and Computer Graphics 3 (2) (1997) 158–170.

[9] Y. Livnat, H.-W. Shen, C. R. Johnson, A near optimal isosurface extraction

algorithm using the span space, IEEE Transactions on Vizualisation and

Computer Graphics 2 (1996) 73–84.

[10] C. Montani, R. Scateni, R. Scopigno, Discretized marching cubes, in: Pro-

ceedings of the IEEE Conference on Visualization ’94, IEEE Computer

Society Press, 1994, pp. 281–287.

[11] A. del Rı́o, J. Fischer, D. Bartz, W. Straßer, Fast rendering of large en-

coded isosurfaces from uniform grid datasets, in: G. Greiner (Ed.), Vision,

Modelling, Visualization (VMV), AKA, Akademische Verlagsgesellschaft,

IOS Press (Berlin, Amsterdam), 2005, pp. 71–78.

[12] S. Osher, R. P. Fedkiw, Level sets and dynamic implicit surfaces, Vol. 153

of Applied Mathematical Sciences, Springer-Verlag, New York, 2002.

20

[13] C. W. Hirt, B. D. Nichols, Volume of fluid (VOF) method for the dynamics

of free boundaries, J. Comput. Phys. 39 (1981) 201–225.

[14] G. M. Nielson, Dual marching cubes, in: Proceedings of the IEEE Confer-

ence on Visualization ’04, IEEE Computer Society Press, 2004, pp. 489–

496.

[15] J.-F. Delesse, Diffusion et réaction des gaz en milieux poreux, PhD thesis

n◦2598, Université de Bordeaux I (2002).

[16] S. Roettger, The volume library (January 2006).

URL http://www9.informatik.uni-erlangen.de/External/vollib/

[17] T. M. Besmann, B. W. Sheldon, R. A. Lowden, D. P. Stinton, Vapor-

phase fabrication and properties of continuous-filament ceramic composites,

Science 253 (1991) 1104–1109.

[18] R. Naslain, F. Langlais, Fundamental and practical aspects of the chemical

vapor infiltration of porous substrates, High Temperature Science 27 (1990)

221–235.

[19] R. Naslain, F. Langlais, CVD-processing of ceramic-ceramic composite ma-

terials, in: R. Tressler, G. Messing, C. Pantano, R. Newnham (Eds.), Tai-

loring multiphase and composite ceramics, Vol. 20 of Mat. Sci. Res., Kluwer

Acad. Pub., Dordrecht, The Netherlands, 1986, pp. 145–164.

[20] G. L. Vignoles, Modelling of the CVI processes, Adv. Sci. Technol. 50 (2006)

97–106.

[21] V. N. Burganos, S. V. Sotirchos, Knudsen diffusion in parallel, multidimen-

sional, or randomly oriented pore structures, Chem. Eng. Sci. 44 (1989)

2451.

[22] M. M. Tomadakis, S. V. Sotirchos, Effects of fiber orientation and over-

lapping on Knudsen, transition, and ordinary regime diffusion in fibrous

21

structures, in: T. M. Besmann, B. M. Gallois, J. W. Warren (Eds.), Chem-

ical Vapor Deposition of Refractory Metals and Ceramics II, Vol. 250 of

Mat. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh, 1992,

pp. 221–226.

[23] R. R. Melkote, K. F. Jensen, Computation of transition and molecular

diffusivities in fibrous media, AIChE J. 38 (1992) 56–61.

[24] M. Tassopoulos, D. E. Rosner, Simulation of vapor diffusion in anisotropic

particulate deposits, Chem. Eng. Sci. 47 (1992) 421–443.

[25] P. Blasi, B. L. Saëc, G. L. Vignoles, Application of rendering techniques to

Monte-Carlo physical simulation of gas diffusion, in: J. Dorsey, P. Slusallek

(Eds.), Eurographics Rendering Workshop 1997, Eurographics, Springer

Wien, New York City, NY, USA, 1997.

[26] J.-F. Delesse, B. Le Saëc, G. L. Vignoles, A new data structure for the

computation of equivalent properties in 3d porous media, in: D. Dutta,

H. P. Seidel (Eds.), Solid Modelling 2001 (Proc. 6th ACM symposium on

Solid Modelling and Applications), ACM Press, New York, NY, 2001.

[27] G. L. Vignoles, Modelling binary, Knudsen, and transition regime diffusion

inside complex porous media, J. de Physique IV C5 (1995) 159–166.

[28] O. Coindreau, G. L. Vignoles, P. Cloetens, Direct 3D microscale imaging

of carbon-carbon composites with computed holotomography, Nuclear In-

struments and Methods in Physics Research Section B: Beam Interactions

with Materials and Atoms 200 (2003) 308–314.

[29] G. L. Vignoles, Image segmentation for hard X-ray phase contrast images

of C/C composites, Carbon 39 (2001) 167–173.

[30] J. Mart́ın-Herrero, C. Germain, Microstructure reconstruction of fibrous

C/C composites from X-ray microtomography, Carbon 45 (5) (2007) 1242–

1253.

22

[31] G. L. Vignoles, C. Germain, O. Coindreau, C. Mulat, W. Ros, Fibre-scale

modelling of C/C processing by chemical vapour infiltration using X-ray

CMT images and random walkers, in: M. T. Swihart, D. Barreca, R. A.

Adomaitis, K. Wörkhoff (Eds.), Procs. ICVD XVII & EuroCVD 17, Vol. 25

of ECS Transactions, The Electrochemical Society, Pennington, NJ, 2009,

pp. 1275–1284.

[32] O. Coindreau, G. L. Vignoles, Assessment of geometrical and transport

properties of a fibrous C/C composite preform as digitized by X-ray com-

puted micro-tomography. Part I : Image acquisition and geometrical prop-

erties, J. Mater. Res. 20 (2005) 2328–2339.

[33] G. L. Vignoles, O. Coindreau, A. Ahmadi, D. Bernard, Assessment of ge-

ometrical and transport properties of a fibrous C/C composite preform as

digitized by X-ray computed micro-tomography. Part II : Heat and gas

transport, J. Mater. Res. 22 (6) (2007) 1537–1550.

[34] O. Coindreau, G. L. Vignoles, J.-M. Goyhénèche, Multiscale X-ray CMT of

C/C composites : a tool for properties assessment, in: N. P. Bansal, J. P.

Singh, W. M. Kriven (Eds.), Advances in Ceramic-Matrix Composites XI,

Vol. 175 of Ceram. Trans., The American Ceramic Society, Westerville,

OH, 2005, pp. 77–84.

[35] G. L. Vignoles, Y. Aspa, J. Lachaud, Roughness evolution in ablation of

carbon-based materials: multi-scale modelling and material analysis, in:

K. Fletcher (Ed.), 5th European Workshop on Thermal Protection Systems

and Hot Structures, Vol. SP-631 of ESA Confs. Procs., ESA-ESTEC, ESA,

Noordwijk,The Netherlands, 2006.

[36] J. Lachaud, Y. Aspa, G. L. Vignoles, Analytical modeling of the steady

state ablation of a 3D C/C composite, Int. J. of Heat and Mass Transfer

51 (2008) 2614–2627.

[37] J. Lachaud, Y. Aspa, G. L. Vignoles, J.-M. Goyhénèche, 3D modeling of

thermochemical ablation in carbon-based materials: effect of anisotropy on

23

surface roughness onset, in: M. Dinguirard, J. Kleiman (Eds.), Proc. 10th

International Symposium on Materials in a Space Environment, Vol. SP-

616 of ESA Confs. Procs., ESA Publications, Noordwijk, The Netherlands,

2006, 10 p.

24

Appendix A. Algorithm

Terminology, concepts and graphical symbols

First of all, let us define terms and introduce concepts or symbols which will

be useful for the explanation of the SMC method.

Vertices

• Positive and negative vertices (positive vertices are also called ”nodes”)

Vertices with a value above or equal to the threshold value are called

positive vertices , while the other ones are called negative vertices [5]. For

sake of brevity, we choose to call ”nodes” the positive vertices.

• Interface nodes

An interface node is a positive vertex which has at least one negative

vertex as a neighbor (in 6-connectivity, see the section ”Neighbors” be-

low). Some nodes lie on the interface whereas the other nodes are outside

it.

Coordinates and cumulative coordinates

Without loss of generality, it is convenient to assume that each processed

cube is composed of 8 neighboring vertices with normalized coordinates denoted

cn
x (n = 0...7) and equal to 0 or 1 along the three directions x = i, j or k (Fig.

A.7). Cumulative coordinates Cx are defined as the sum of coordinates of the

nodes:

Cx =
∑

n∈{nodes}
cn
x .

For a given configuration, the first step of MC is to identify the similar case in

the lookup-table. In the SMC method each configuration is evaluated without

a reference table: the cumulative coordinates are used to identify subcases.

25

Neighbors

Using 6-connectivity, each vertex of a cube has three immediate neighboring

vertices which are linked by edges. Noticing that the number n of a vertex and

its coordinates are related by the expressions:

n = cn
i + 2× cn

j + 4× cn
k ←→



















cn
i = n%2

cn
j = (n%4)/2

cn
k = n/4

(A.1)

where / and % denotes respectively the quotient and the remainder of the

euclidian division, the number Nx(n), (x = i, j, or k) of neighbors of a vertex

can be easily computed. For example, the number Ni(n) of neighbors along the

direction i is defined as follows:

Ni(n) = cn
i + 2× cn

j + 4× cn
k

where a denotes the complement to 1 of a. Interface nodes are nodes with

less than three nodes as immediate neighbors, in 6-connectivity. As a con-

sequence, the negative vertices have a neighboring scheme which is based on

18-connectivity.

Triangle types

By linking vertices of a cube, three types of triangles can be formed: one

isosceles-right triangle (type I), one rectangle triangle (type II) and one equilat-

eral triangle (type III). They differ by their total edge length L, surface area S

and normal vector orientation. Moreover, their normal vector has coordinates

1
Nn

(h, k, l) ∈ {−1; 0; 1}3 such that N2
n = h2 + k2 + l2 equals 1 (type I); 2 (type

II) or 3 (type III). In addition to these three criteria, we propose another crite-

rion exclusively based on integer arithmetics, which may help to speed up the

26

Type L S N2
n CL Scheme

I 2 +
√

2 1
2

1 6

II 1 +
√

2 +
√

3
√

2
2

2 14

III 3
√

2
√

3
2

3 12

Table A.9: Criteria L (edge length), S (surface), N2
n and CL for the three types of triangles.

computations:

CL(n1, n2, n3) =

3
∑

l=1

3
∑

m=l+1





∑

x=i,j,k

(cnl

x − cnm

x)
2





2

.

For the three types of triangle, the value of the criteria L, S N2
n and CL are

summarized in table A.9.

Graphical symbols

Since the status of neighboring vertices is taken into account to determine

the triangle model of each case, introduction of some graphical symbols (Fig.

A.6) can facilitate the explanation. We choose to draw a node with a dark

disc and a vertex (positive or negative) which has three nodes as immediate

neighbors with a larger circle.

Interface node

Positive vertex with 3

neighboring nodes

Negative vertex with 3

neighboring nodes

Figure A.6: Symbols.

27

(0,1,1) (1,1,1)

(1,1,0)

(0,0,0) (1,0,0)

(1,0,1)(0,0,1)

(0,1,0)

0 1

2

3

4
5

6 7

Figure A.7: Coordinates. Numbers on black background refer to n in text and eq. A.1

Algorithm

A major difference between the SMC algorithm and the MC algorithm is

the way the configurations are analyzed. MC operates with a look-up table:

the first step consists in identifying the equivalent case; the transformation to

apply to vertices which leads to it must be inverted in the last step in order to

obtain the triangle model. In the SMC, there is no need to identify an equivalent

configuration and each case is analyzed independently from the others. However,

it is rather illustrative to build an SMC look-up table: it will allow to describe

the distinct triangle models and to give a clear comparison with MC algorithms.

Now, the SMC table may be deduced from the MC table, as displayed at

Fig. 2 . The SMC algorithm consists in choosing triangles composed from in-

terface nodes according to the number of nodes, the cumulative coordinates,

the number of interface nodes and neighborhood of vertices. The first step is to

build the list of all nodes: other computations depend on subcases.

Inspection of all configurations

There is no triangle model for configurations with 0, 1, 2 or 8 nodes. For

other configurations, all subcases are discussed according to the denomination

of the original look-up table of MC taking into account the switch of status of

vertices.

28

• Configurations with 3 nodes. These configurations are composed of cases

5, 6 and 7. Only the first subcase leads to one triangle (type I). It corre-

sponds to three nodes on a cube face and can be checked by the following

test:

Cx = 0 or 3, x = i, j or k.

• Configurations with 4 nodes. These configurations are composed of cases

8 to 14.

– Case 8. This first case corresponds to four nodes on a cube face. It

can be checked by the following test:

Cx = 0 or 4, x = i, j or k.

The triangle model is composed of two type I triangles belonging to

the adequate face.

– Cases 10 and 13. These cases do no lead to triangles. They

correspond to two nodes on all cube faces and can be checked by the

following test:

Cx = 2, x = i, j and k.

– Case 9. Only one node is not an interface node. It can be identified

by an exhaustive test of all nodes. This case leads to one type III

triangle formed by the interface nodes.

– Case 12. One singular node has only negative vertices as neighbors.

This case leads to one type I triangle. After an exhaustive test of all

nodes, the simplest way to build the triangle is to switch the status

of the isolated node and process again the configuration (3 nodes,

case 8).

29

– Case 11 and 14. This last case leads to two type II triangles which

can be easily identified by nested loops on nodes.

• Configurations with 5 nodes. These configurations are composed of cases

15 to 17.

– Case 17. Four nodes are on a cube face and the remainder node is

on the opposite face. It can be checked by the following test:

Cx = 1 or 4, x = i, j or k.

The triangle model is composed of two type II triangles which can

be easily identified by nested loops on nodes.

– Case 15. One singular node has only negative vertices as neighboors.

This case leads to one type III triangle. After an exhaustive test of all

nodes, the simplest way to build the triangle is to switch the status

of the singular node and process again the configuration (3 nodes,

case 9).

– Case 16. This case leads to three triangles (two type II and one

type III). The first step consists in identifying the triangle of type III

with nested loops on nodes. Then the simplest way to build other

triangles is to find the negative vertex which has nodes as neighbors,

switch its status and process again the configuration (6 nodes, case

20).

• Configurations with 6 nodes. These configurations are composed of cases

18 to 20.

– Cases 18 and 19. Two negative vertices have only nodes as neigh-

bors. This case leads to two type III triangles. An exhaustive test of

all vertices allows to identify them and to build triangles formed by

their neighbors.

30

– Case 20. This case leads to two type II triangles which are formed

by correctly ordered interface nodes.

• Configuration with 7 nodes. This configuration (21) is the reverse of case

1 (Fig. 2). This case leads to one triangle (type III). The simplest way

to build it is to find the only negative vertex and form a triangle with its

three neighbors which are interface nodes.

int make_SMC() {

nnodes = compute_number_nodes();

switch (nnodes) {

case 0: /* Configuration 0 */

case 1: /* Configuration 1 */

case 2: /* Configurations 2,3 and 4 */

case 8: /* Configuration 22 */

return 0; /* No triangle */

case 3 :

compute_sums(C_i,C_j,C_k);

if (!(C_i%3) || !(C_k%3) || !(C_k%3)) {

/* Configuration 5 : One type I triangle */

build_triangle(nodes);

return 1;

}

else {

/* Configurations 6 and 7 */

return 0;

}

break;

case 4:

compute_sums(C_i,C_j,C_k);

if (!(C_i%4) || !(C_k%4) || !(C_k%4)) {

/* Configuration 8 : Two type I triangles on a face */

build_triangles(nodes);

return 2;

}

if ((C_i == 2 && C_j == 2 && C_k == 2)) {

/* Configurations 10 and 13 : No triangles */

return 0;

}

if (C_i !=2 && C_j !=2 && C_k !=2) {

/* Configuration 9 : One type III triangle */

find_interface_nodes(nodes,interface_nodes);

31

build_triangle(interface_nodes);

return 1;

}

C_t = (C_i%4 + C_j%4 + C_k%4);

if (!(C_t%2)) {

/* Configurations 11 and 14 : Two type II triangles */

build_triangles(nodes);/* by nested loops */

return 2;

}

else {

/* Configuration 12 : One type I triangle */

find_isolated_nodes(nodes,isolated_nodes);

switch_status(isolated_node[0]);

/* Now we are in Configuration 5 */

build_triangle(nodes);

return 1;

}

break;

case 5:

compute_sums(C_i,C_j,C_k);

if (!((C_i - 1)%3) || !((C_j - 1)%3) || !((C_k - 1)%3)) {

/* Configuration 17 : Two type II triangles */

find_interface_nodes(nodes,interface_nodes);

build_triangles(interface_nodes);/* by nested loops */

return 2;

}

if (find_isolated_nodes(nodes,isolated_nodes)) {

/* Configuration 15 : one type III triangle */

switch_status(isolated_node[0]);

/* Now we are in Configuration 9 */

build_triangle(nodes);

return 1;

}

else {

/* Configuration 16 : 2 type II and one type III triangles */

With nested loops, build all triangles, compute N_n_squared for each of them

if (N_n_squared == 3) {/* type III identified */

store_triangle();

}

/* Construction of the remaining type II triangles */

/* Find the negative vertex with 3 positive neighbors */

for (ivertex=0;ivertex<8;ivertex++) {

if (vertex[ivertex]==NEGATIVE) {

find_positive_neighbors(ivertex,number_neighbors,neighbors);

32

if (number_neighbors) {

switch_status(ivertex);

/* Now we are in Configuration 20 */

build_triangles(nodes);

add_stored_triangle();

return 3;

}

}

}

}

break;

case 6 :

compute_sums(C_i,C_j,C_k);

C_t = C_i%6 + C_j%6 + C_k%6;

if ((C_t %2) && !(C_i%6 == C_j%6 && C_k%6 == C_i%6)) {

/* Configuration 20 : 2 type II triangles on a plane */

find_interface_nodes(nodes,interface_nodes);

build_triangles(interface_nodes);

return 2;

}

else {

/* Configurations 18 and 19 : two type III triangles */

for (ivertex=0;ivertex<8;ivertex++) {

if (vertex[ivertex]==NEGATIVE) {

find_positive_neighbors(ivertex,number_neighbors,neighbors);

if (number_neighbors == 3) {

build_triangles(neighbors);

}

}

}

return 2;

}

break;

case 7 :

/* Configuration 21 : one type III triangle */

for (ivertex=0;ivertex<8;ivertex++) {

if (vertex[ivertex]==NEGATIVE) {

find_positive_neighbors(ivertex,number_neighbors,neighbors);

if (number_neighbors == 3) {

build_triangle(neighbors);

}

}

}

return 1;

break;

} /* End switch (nnodes) */

33

34

