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Abstract In a previous work we studied the effects of (I) the J2 and C22 terms

of the lunar potential and (II) the rotation of the primary on the critical inclination

orbits of artificial satellites. Here, we show that, when 3rd-degree gravity harmonics are

taken into account, the long-term orbital behavior and stability are strongly affected,

especially for a non-rotating central body, where chaotic or collision orbits dominate

the phase space. In the rotating case these phenomena are strongly weakened and

the motion is mostly regular. When the averaged effect of the Earth’s perturbation

is added, chaotic regions appear again for some inclination ranges. These are more

important for higher values of semi-major axes. We compute the main families of

periodic orbits (POs), which are shown to emanate from the ‘frozen eccentricity’ and

‘critical inclination’ solutions of the axisymmetric problem (‘J2 + J3’). Although the

geometrical properties of the orbits are not preserved, we find that the variations in

e, I and g can be quite small, so that they can be of practical importance to mission

planning.

Keywords Lunar artificial satellites · 3rd-degree gravity coefficients · 3rd-body effect

1 Introduction

During the past decades there has been extensive study of satellite orbits around an

oblate primary. The consideration of the J2 term of the spherical harmonic expansion

of the potential leads to a critical value of the inclination, equal to 63o.43, for which

the orbit does not precess secularly (Garfinkel 1973; Hughes 1981; Coffey, Deprit and

Miller 1986; Jupp 1988). For the case of the Earth, Cutting et al. (1978) examined

the conditions under which the long-periodic argument of pericentre and eccentricity

remain both constant with the additional effect of the J3 term (frozen orbits). Coffey

et al. (1994) searched for frozen orbits close to an Earth-like planet, including up to
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6th-degree zonal coefficients, while Knežević and Milani (1998) took into consideration

all the available zonal coefficients for the case of a polar lunar orbiter. The tesseral and

sectorial coefficients were, in all cases, neglected, as their values were considered too

small to affect the long term orbital behavior or the critical inclination value.

The situation for the Moon is different than for the Earth, as the C22 coefficient is

only nine times smaller than J2. This problem was first examined by De Saedeleer

and Henrard (2006), who showed that the value of the critical inclination depends on

the initial phase of the ascending node. In their derivation the rotation of the Moon

and the time variation of the averaged inclination were neglected, most likely both

considered to be insignificant on the assumed time scale. In a previous work (Tzirti

et al. 2009) we showed that, under the combined effect of J2 and C22 harmonics, the

averaged inclination does not remain constant but performs long periodic oscillations.

The time evolution of the inclination causes variations in the argument of pericentre, of

similar amplitude. Under those circumstances, the term ‘critical inclination’ becomes

meaningless. Instead, we used the term ‘quasi-critical’ for the solutions in which the

argument of pericentre librates. On the other hand we showed that the strong depen-

dence of the ‘critical inclination’ on the longitude of the ascending node, found by De

Saedeleer and Henrard (2006), is considerably weakened when the rotation of the Moon

is taken into account.

Besides C22, even the higher-degree harmonics are important for the case of Moon. In

this work we take into account perturbations up to 3rd-degree. So, we include the ‘J3’

effect and the non-axisymmetric part as well. The averaged system has now two degrees

of freedom and the long-term stability of the orbits is modified. As we show below, for

a non-rotating Moon, extended regions of chaotic motion or regions of collision orbits

(due to the large amplitude oscillations of the eccentricity) occupy a large portion

of phase space. However, the rotation of the Moon smooths out these phenomena.

The motion appears to be mostly regular for all semi-major axes and orientations

studied. We compute the main families of stable periodic orbits, which are shown to

emanate from the POs of the ‘J2 + J3’ axisymmetric case. There are two families, one

corresponding to the low-e ‘frozen’ orbits (∀I) and the other to the large-e ‘critical

inclination’ solution (at I ≈ 63o.5).

For distances greater than 3R (where R is the mean equatorial radius of the Moon),

it is necessary to consider the effect of the Earth (as e.g. in De Saedeleer 2006b), which

changes drastically the orbital behavior, especially at high inclinations. We find that

in some regions of phase space the motion seems to be chaotic or to lead to collision

with the surface of the Moon. For relatively large semi-major axis values, the effect

of the Earth becomes dominant, while for orbits close to the Moon, the 3rd-degree

gravitational harmonics seem to play the decisive role. In both cases we examine the

distribution of the main families of POs (in the averaged problem).

2 Hamiltonian of the problem and equations of motion

2.1 Gravity harmonics of the Moon

We consider an artificial satellite in orbit around the Moon. We use a rotating frame

whose origin is at the center of the Moon, the x axis passes through the longest lunar
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Fig. 1 Orientation of the orbit in space

meridian and the x − y plane coincides with the lunar equatorial plane. This frame

rotates at the rate of the Moon’s mean synchronous rotation, nM (see Fig. 1). The

potential, written in selenographic coordinates, has the general form (see e.g. Vallado

2001; Sidi 2002; Bertotti et al. 2003)

V = −µ

r

∞
∑

n=0

(

R

r

)n n
∑

m=0

Pnm(sin φ) [Cnm cos mλ + Snm sin mλ] (1)

where µ = GM, R is the mean equatorial radius of the Moon, (λ, φ) are the seleno-

graphic longitude and latitude, respectively, r the selenocentric distance of the satellite,

Cnm and Snm the non-normalized gravity coefficients and Pnm the Legendre polynomi-

als of degree n and order m. For m = 0 we get the zonal harmonic coefficients, for which

we will use the notation Jn = −Cn0. The numerical values used for the constants are G
= 6.6739 × 10−11 m3kg−1s−2, M = 7.349 × 1022 kg and R = 1737530 m. To simplify

the calculations, we use dimensionless units, by taking µ = 1 and ares1−1
= 1, where

ares1−1
(= 88459747.12676102 km) represents the semi-major axis value for which the

period T of the satellite is in 1 − 1 resonance with the rotational period of the Moon

in the unperturbed problem. In this system of units T = 2π. The numerical results

presented in this paper follow the above unit conventions.

In this paper we consider the effect of terms up to 3rd-degree, omitting C21, S21 and

S22, whose values are at least three orders of magnitude smaller than C22 and have

considerable error bars (see Table 1 or De Saedeleer 2006a - Tab. 1.5. Note, however,

that the values come from different sources: Bills 1980 for 2nd-degree and Konopliv

1998 for 3rd-degree). The inclusion of these terms would complicate the equations,

while it would give negligible improvement to the results. It is already obvious that the
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Table 1 Gravitational parameters values and uncertainties (De Saedeleer 2006a)

parameter (value ± uncertainty) x 10−6

J2 202.43 ±1.14
C21 −0.0035 ±0.0058
C22 22.26 ±0.13
S21 −0.00098 ±0.0045
S22 0.0108 ±0.0020
J3 8.476 ±0.017
C31 28.437 ±0.0081
C32 4.846 ±0.002
C33 1.7132 ±0.0006
S31 5.9022 ±0.0048
S32 1.6709 ±0.0021
S33 −0.249 ±0.0006

leading 3rd-degree terms are J3 and C31. In the following, we will use the parameter

values given in Table 1.

The Hamiltonian of the problem has the following form:

H = H0 + HJ2
+ HC22

+ HJ3
+

3
∑

j=1

HC3j
+

3
∑

j=1

HS3j
+ HnM (2)

where H0 = u2/2 − µ/r is the Keplerian part, HJ 3
, HC3j and HS3j correspond to

the 3rd-degree gravity harmonics and HnM = −nMpλ (pλ is the momentum conjugate

to λ) describes the rotation of the Moon. In selenographic coordinates, H will contain

powers of the distance r, powers of sin φ, coming from the Legendre polynomials Pnm,

and cos mλ, sin mλ, which are also easily expressed as powers of cos λ and sin λ. The

angles φ, λ and the distance r can be written as functions of the semi-major axis, a,

the eccentricity, e, the inclination, I, of the orbital plane relative to the equatorial one,

the longitude of the ascending node in the rotating system, i.e. h = Ω − nM t, the

argument of pericentre, g, and the true anomaly, f , using the relations (7.10) from De

Saedeleer (2006a):

sin φ = sY (3)

X = cos φ cos (λ − h) (4)

cos φ = cY sin (λ − h) + X cos (λ − h) (5)

where s = sin I, c = cos I, Y = sin (f + g), X = cos (f + g).

After performing the trigonometric expansions in (4) and (5), we can solve the first

of them for sin λ and replace it in the second one, which can now be solved for cos λ.

Using the relations X2 = 1 − Y 2, s2 = 1 − c2 and cos φ =
√

1 − s2Y 2 where it is

essential, we can derive the simplified expressions for cos λ and sin λ as functions of the

orbital elements
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Table 2 3rd degree terms that appear in the Hamiltonian. K = 3µeR3/

[

16a4
(

1 − e2
)5/2

]

,

c = cos I, s = sin I

parameter K±

3j K′±

3j

C31 K(1 ± 11c − 5c2 ∓ 15c3) 0
C32 0 10K(−s ± 2cs + 3c2s)
C33 30K(1 ± c − c2 ∓ c3) 0
S31 0 ±K(1 ± 11c − 5c2 ∓ 15c3)
S32 ∓10K(−s ± 2cs + 3c2s) 0
S33 0 ±30K(1 ± c − c2 ∓ c3)

cos λ =
X cos h − cY sin h√

1 − s2Y 2
(6)

sin λ =
X sin h + cY cos h√

1 − s2Y 2
(7)

Substituting cos λ and sin λ in H, the latter becomes a function of [a, e, I, f, h, g].

Following Roy (1982) we can derive the averaged Hamiltonian to first order in (Jn,

Cnm, Snm), by integrating H over the mean anomaly, using standard trigonometric

formulas and applying the following change of variables:

dM =
r2

a2 (1 − e2)
1/2

df (8)

The steps described above can be applied to obtain the averaged Hamiltonian for up

to every term of degree n and order m in the perturbing potential. In our case, the

averaged terms of (2) are given below:

H0 = − µ

2a
, HnM = −nM

√

µa(1 − e2)c (9)

HJ2
=

µJ2R2
(

1 − 3c2
)

4a3 (1 − e2)
3/2

, HC22
= − 3µC22R2s2

2a3 (1 − e2)
3/2

cos 2h (10)

HJ3
= 2J3K

(

−4 + 5s2
)

s sin g (11)

HC3j
= C3j

[

K+

3j cos (g + jh) + K−
3j cos (g − jh)+

K′+
3j sin (g + jh) + K′−

3j sin (g − jh)
]

(12)

HS3j
= S3j

[

K+

3j cos (g + jh) + K−
3j cos (g − jh)+

K′+
3j sin (g + jh) + K′−

3j sin (g − jh)
]

(13)

where K±
3j and K′±

3j are given in Table 2.
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Before proceeding to the inclusion of a 3rd-body perturbation and analyzing the meth-

ods of work, it would be of interest to have a look at the solutions of the axisymmetric

problem (the averaged Hamiltonian contains only the terms J2 and J3). In that way,

we will be able to examine how the asymmetry introduced by the additional sectorial

and tesseral terms affects the phase space and POs. Following Vallado (2001) ġ and ė

will be:

ġ = −3nMJ2(1 − 5c2)

4(1 − e2)2

(

R

a

)2

N(e, I, g), (14)

where

N(e, I, g) = 1 +
J3

2J2

(

R

a

)(

1

1 − e2

)

(

s2 − e2c2

s

)

sin g

e
(15)

and

ė =
3J3

8

nM

(1 − e2)2

(

R

a

)3

s
(

1 − 5c2
)

cos g (16)

One can reach the same results using Eqs. (21) in the next page. A periodic solution

(ġ = 0, ė = 0) is obtained in two cases:

(a) for I = 63◦.43 = const. (‘critical inclination’ orbits), so that Eqs. (14) and (16)

become both equal to zero. This solution occurs for every value of e0 and g0 and it

already exists in the J2 problem

(b) for g = ±π/2, which satisfies ė = 0 and appropriate values of e0, I0, so that

N(e, I, ±π/2) = 0 or equally ġ = 0 (‘frozen eccentricity’ orbits). For I = 0 or e = 0

a singularity appears in Eq. (15), which does not allow us to give initial conditions

exactly equal to these values.

Frozen satellite orbits have been also numerically computed by Lara et al. (1995),

who included in their model zonal coefficients up to order 9, while Abad et al. (2009)

developed an analytic model for locating frozen orbits keeping zonal harmonics J2 and

J7. Other work in the same direction is that of Elipe and Lara (1997), in which, starting

from results on frozen orbits in the zonal problem, they examine their continuation

under the inclusion of the C22 term. Moreover, Lara et al. (2009) computed frozen

orbits in the zonal problem and they compared them to results from analytic solutions.

We now turn to the computation of the averaged perturbation exerted by the Earth.

2.2 The effect of the Earth as a 3rd-body perturbation

As we go further away from the surface of the Moon, the effect of the Earth, as a 3rd-

body perturbation, cannot be neglected. To include the interaction with the Earth, we

work in a rotating frame with the Moon at its origin (Fig. 2). The perturbing potential

arising from Earth has the form (see e.g. Murray and Dermott 1999)

VEarth = − µ′

|r − r′| + µ′ r · r′

r′3
(17)
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Fig. 2 The position vectors of the satellite and the Earth with respect to the Moon

where µ′ = GMEarth (MEarth = 5.9736 x 1024 kg) and r, r′ are the position vectors

of the satellite and the Earth relative to the Moon. VEarth can be expressed as a series

of Legendre Polynomials Pk

VEarth = −µ′

d

∞
∑

k=2

(

r

d

)k

Pk(cos φ) (18)

from which we will only keep the k = 2 term. We assume circular motion of the Earth

around the Moon at the mean distance d =
〈

r′
〉

= a0

(

1 + e2
0/2

)

, where a0 = 384, 400

km and e0 = 0.0549, and that the orbital plane is the Moon’s equatorial plane. In this

way the selenographic latitude, φ, is written as a function of the angles f, g, h by using

the first term (in our case the other two terms are considered equal to zero because of

the previous assumptions) of Eq. (8.10) from De Saedeleer (2006a).

cos φ = X cos h − cY sin h (19)

After expanding the trigonometric sums in X (= cos (f + g)) and Y (= sin (f + g)),

using standard formulas for expressing cos f , sin f and r as functions of the eccentric

anomaly (E) and changing consistently the variable from M to E, we obtain the first

order averaged Hamiltonian by integrating over E. The choice of working with E

simplifies the calculations. The final result is

HEarth =
µ′a2

16d3

{

(

1 − 3c2
) (

2 + 3e2
)

− 3s2
[

5e2 cos (2g) +
(

2 + 3e2
)

cos (2h)
]

−15e2

2

[

(−1 + c)2 cos [2 (g − h)] − (1 + c)2 cos [2 (g + h)]
]

}

(20)

and it formally agrees with that of De Saedeleer (2006b).

In order to find the equations of motion, either with or without the inclusion of

Earth, we use the well-known equations

ġ = ∂H̄/∂G, Ġ = −∂H̄/∂g (21)
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ḣ = ∂H̄/∂H, Ḣ = −∂H̄/∂h (22)

where [L, G, H] are the Delaunay actions.

L =
√

µa, G =
√

µa (1 − e2), H =
√

µa (1 − e2) cos I (23)

In the following, we focus our study on three models: the ‘3G’ model, which con-

tains only up to 3rd-degree gravity harmonics, the ‘3G+R’ model, which contains the

additional effect of the rotation of the Moon and, finally, the more complete ‘3G+R+E’

model that also introduces the effect of the Earth as a 3rd- body perturbation. In all

models, the dynamical system has two degrees of freedom. To study the global behavior

of orbits, we will use Poincaré maps, as well as Fast Lyapunov Indicator (FLI) maps

(Froeschlé et al 1997). Finally, we will compute the main families of POs and analyze

their geometrical and dynamical properties.

3 Poincaré sections and FLI maps

The Poincaré maps presented here are taken on the G − g plane, defined from the

section h = π and ḣ < 0. Note that G is dimensionless in the system of units described

above. The choice h = π is just indicative. A different choice of h for the section plane

(i.e. h = 0) would give similar results to the h = π. The section is defined for ḣ < 0,

because h decreases as time increases. The choice of the opposite sign would give no

points on the section. For given initial conditions (a, g0, G0, h0) and ‘energy’ values, we

use a Newton-Raphson method to determine H0. The equations of motion are solved

using a 4th-order Runge-Kutta scheme with step equal to T/10, where T is the period

of the satellite in the unperturbed problem (the order of magnitude of T is several

hours for the semi-major axis values considered here. For example, T = 2.23 hours

for a = 2000 km and T = 6.3 hours for a = 4000 km). To achieve better accuracy

on the crossing point of the section surface, we first find a point immediately after

the crossing, we change the independent variable to h (the equations of motion now

are t′(h) = dt/dh = 1/ḣ, g′(h) = ġ/ḣ, H ′(h) = Ḣ/ḣ, G′(h) = Ġ/ḣ) and integrate

backwards until h = π with accuracy 10−12. As the energy level and h are constant on

each section, each curve on the map corresponds to a different inclination range.

The computation of FLI allows us to discriminate ordered and chaotic motion or even

resonant and non resonant regular orbits on a relatively short time interval. Here we

use the revisited definition given in Lega and Froéschle (2001). FLI maps are not useful

for integrable systems, since the motion is regular in the whole phase space. For given

initial a, g0 and h0, we chose a 50 × 90 grid in (e0, I0) in the range 0 < e < ec and

0 < I < 180◦, where ec is the collision eccentricity. For each set of initial conditions,

FLI is equal to the logarithm of the maximum value that the norm of the tangent

vector reaches up to time t. As the evolution of the system is slowed when we increase

the semi-major axis value, we selected to integrate for t = 1500 lunar months. This

time scale is quite large and it exceeds the typical duration of a lunar mission, but it

is essential for semi-major axis values until a = 12R, for which the characteristics of

the orbits (for example chaotic behavior) are exhibited after some hundreds of lunar

months. Regular orbits close to resonance (FLI ≤ 5) are represented by black color

on the FLI maps, while the white colored regions indicate chaotic or collision regions.

Below we discuss the results for each model separately.
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‘3G’ model: As it was shown in Tzirti et al. (2009), under the combined effect of J2 and

C22 terms of the lunar potential the orbits remain regular. This is because the system

is effectively reduced to one degree of freedom, since in this case G is an integral of

motion. The inclusion of the 3rd-degree terms, however, seems to change significantly

the secular orbital behavior. Poincaré sections and FLI maps contain extended chaotic

regions, encompassing regions where regular orbits have secular oscillation amplitude

in e large enough to lead to collision on the surface of the Moon (collision regions - see

Figs. 3, 4a). The collision limits are indicated on the Poincaré sections by horizontal,

solid lines. The semi-major axis values used in this model are a = (2 × 103, 3 × 103,

4×103) km. For a = 2×103 km, chaotic and collision regions dominate the phase space

to such an extent, that regular regions are hardly detectable (that is why this is not

shown). It should be noted that points in Fig. 3b, that seem to form an unusual series

crossing the other lines, belong to different curves. The 3rd-degree terms introduce an

asymmetry relative to the I = 90◦ plane (Fig. 4a). This practically means that two

orbits with initial inclinations I and 180◦ − I do not exhibit the same behavior (see

Fig. 4a).

‘3G+R’ model: In this case the motion seems to be mostly regular for all semi-major

axes studied, as the effect of the lunar rotation smooths out the chaotic behavior.

Terms depending on h are now dominated by rotation, so the asymmetry with respect

to I = 90◦ is strongly weakened. Poincaré maps show the existence of stable POs at

small eccentricities (< 0.01) for any value of inclination (Fig. 5). These correspond to

the ‘frozen-e’ solution of the axisymmetric problem. For inclinations close to 63◦.5 or

116◦.5, another family of eccentric POs seems to bifurcate from the ‘critical inclination’

solution of the ‘J2 + J3’ problem.

‘3G+R+E’ model: We studied orbits with semi-major axes in the range R + 100 km

≤ a ≤ 20000 km under the combined effects of 3rd-degree gravity harmonics and the

perturbation of Earth. The characteristics of the motion are different close to and far

from the surface of the Moon, where the lunar gravity harmonics or the 3rd-body effects

are dominant, respectively. In Fig. 6 we present the Poincaré sections for a = 3000 km

and a = 10000 km, for three different inclination ranges (again it is chosen ho = π for

the surfaces of section. This value is just indicative. The same analysis performed for

other values of ho gives similar results). For a = 3000 km and I < 58◦, the motion

appears to be regular and there are two main islands where motion does not lead to

collision, centered around g0 ≈ ±π/2 (Fig. 6a). For 58◦ < I < 78◦, the orbits are

either chaotic or lead to collision, due to regular secular oscillations (Fig. 6c). The

main islands do not anymore correspond to orbits with acceptable eccentricity values,

so there are no POs corresponding to ‘collision-free’ motion (Fig. 4b). For inclinations

close to 90◦ (near-polar orbits), the phase space mainly consists of regular orbits and

two main islands of ‘collision-free’ motion appear again, but now at g0 ≈ 0, π (Fig. 6e).

For a > 3000 km the structure of phase space is almost the same as that for a < 3000

km only for I < 60◦ (Fig. 6b). As the inclination increases, the main islands disappear

and the phase space is dominated by chaotic regions that become more extensive as

the inclination approaches 90◦ (Figs. 6d, 6f).
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Fig. 3 Poincaré sections of the ‘3G’ model. The horizontal, solid lines indicate the border
under which the satellite collides with the surface of the Moon
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Fig. 4 FLI maps. The bold, solid line in diagram (a) represents the initial conditions of the
orbits in Fig. 3a

a. Far from 63o.5
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c. Zoom in the region of large G 

Fig. 5 Poincaré sections of the ‘3G+R’ model for a = 3000 km, far from (a) and close to
I = 63◦.5 (b). Diagram (c) zooms in the region of large values of G (small values of e), where
the elliptic periodic orbits appear
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Fig. 6 Poincaré sections of the ‘3G+R+E’ model for a = 3000 km (left) and a = 10000 km
(right) for three different inclination ranges

4 Families of stable POs

The distribution of POs in phase space is essential for understanding the dynamics

of a nearly integrable system, as they form the ‘backbone’ of phase space. From a

practical point of view, POs are essential for efficient design of lunar orbiter missions,

since, as a rule, minimal spacecraft control is required in the vicinity of that kind of

orbits (see Knežević and Milani 1998).



13

In order to determine the initial conditions of the POs, we use differential corrections

(Deprit and Henrard 1967). For a PO, we have that g(t, T ) = g(t), G(t + T ) = G(t)

and h(t + T ) = h(t), where t is the time, T is the period of the orbit and g, h ∈ [0, 2π].

Starting from initial conditions (g0, G0), h = hSection, H = f(g0, G0, h0, H), we find

the next section point in time t∗ with coordinates (g(t∗), G(t∗)). This method is based

on the idea of consecutive corrections of the initial conditions, in order to ensure that

at time t∗ the orbit returns at the same point on the section. This process is repeated,

until succeeding the setting accuracy. In our calculations tolerance was set equal to

10−12. The method converges if we start close enough to the PO (i.e. in the region of

an island).

We calculated the main, stable POs for a variety of semi-major axis values, with em-

phasis on the ‘3G+R’ and ‘3G+R+E’ models, which are more realistic. The description

and the diagrams that follow, refer to a = 3000 km and h0 = π.

‘3G’ model: Stable POs appear in regions of regular motion and are not symmetrically

distributed with respect to I = 90◦ (see Fig. 7). The eccentricity of these POs is

quite large, almost for all inclinations. Since the model has 2-degrees of freedom, the

quantities e, g and I of POs are not expected to be constant. Instead they perform

librations with amplitudes ∆e, ∆g and ∆I (defined here as the difference between the

largest and the smallest value) 0.08 < ∆e < 0.28 and 5◦ < ∆I < 35◦, while g of the

POs is circulating for this model almost for all inclinations. The libration amplitudes

decrease as the semi-major axis of the orbit increases. The distribution of POs is

‘broken’ close to I = 60◦, 90◦ and 125◦, where the ratio fg/fh (fg and fh represent

the frequencies of the angles g and h, respectively) changes resonance.

‘3G+R’ model: The eccentricity of the POs remains close to zero for all inclinations,

except for I ≈ 63◦.5 and 116◦.5, where two branches of POs emanate from the main

families of the axisymmetric model (Fig. 7). By varying the energy, one of them moves

to lower eccentricities and the other to higher ones, both keeping I almost constant.

The nearly-circular POs correspond to the island appearing at large G (small e) in

the Poincaré sections (see Fig. 5). The high eccentricity POs correspond to the island

that appears at I ≈ 63◦.5, i.e. correspond to the ‘critical’ inclination orbits of the

J2 problem. The effect of the rotation is to reduce the libration amplitudes, so that

∆e < 0.003, ∆I < 0◦.4. Also, ∆g is smaller than 20◦ almost for all inclinations

(libration), but it increases as I tends to 0◦ or 180◦, where g starts to perform rotations

(see Fig. 8). We studied the dependence of the POs on a for R + 100 km ≤ a ≤ 4000

km with ∆a = 100 km, or even smaller in some intervals. Some of these results are

presented on an e − I diagram (Fig. 11a). The results for all the cases studied are not

included for better readability of the diagram.

‘3G+R+E’ model: In this case, the most complete model in our study, there appear

two ‘gaps’ with no POs (see Fig. 7 and 4b). This is because near these gaps the

eccentricity of a PO exceeds the collision value, ec (see Fig. 6d) and thus we do not

mark it in the diagram. In the other regions, the eccentricity remains very close to

zero (e < 0.001). As far as libration amplitudes are concerned, we find ∆g < 10◦,

∆e < 0.01 and ∆I < 0◦.5 (Fig. 8), slightly increasing for larger values of a. It is

worth mentioning that for a = R + 100 km, ∆e is such that the minimum distance
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Fig. 7 e − I diagram of the main, stable POs for the three models studied (a = 3000 km)

between the satellite and the surface of the Moon for polar orbits equals to 50 km,

(I ≈ 90◦). Again, we find the POs for different values of a, but now we include the

cases a = 5000, 10000, 15000, 20000 km. Some of these results are presented in Fig. 11b,

while others are not included for better readability of the diagram. Nevertheless, cases

for a > 5000 km have similar behavior as those for a = 5000 km. For small values of

a (for example a = R + 500 km), the ‘gap’ of POs around I ≈ 63◦.5 is narrow and

it widens as a increases, an effect attributed to perturbations by Earth. Moreover, for

a ≤ 2900 km we find polar POs at small eccentricities, while for larger semi-major

axes the eccentricity of the POs around I = 90◦ has higher values. The time evolution

of some POs for a = 3, 000 km and a = R + 100 km is presented in Figs. 9. and 10,

respectively (the orbits on the right are under the additional effect of the Earth, while

these on the left are not). It is quite clear that for a values around 3, 000 km the effect

of Earth modifies the shape of the orbits, something that is not true for low semi-major

axis values. In all cases, the libration amplitude of e is smaller than 0.02.

As mentioned earlier in this paper, Abad et al. (2009) have done similar work, for

different semi-major axis values, taking into account coefficients J2 and J7. The prob-

lem they studied is of 1-degree of freedom, so they searched for frozen orbits (i.e. e

and g remain constant with time). In our case there is an additional degree of freedom

because of the tesseral and sectorial coefficients, so we study POs instead of frozen

orbits, the orbital elements of which perform oscillations.
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models for a = 3000 km
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Fig. 9 Time evolution of some POs, for a = 3000 km and h0 = π, for the ‘3G+R’ (left) and
the ‘3G+R+E’ models.

5 Conclusions

We have shown that when 3rd-degree terms are included in the lunar potential, the sec-

ular behavior of the orbits changes significantly, as compared with the ‘J2+C22(+nM )’

models, for which the motion, as a rule is regular. When the rotation of the Moon is not

taken into account, the phase space contains extensive chaotic or collision regions. The

inclusion of the lunar rotation weakens these phenomena, so that the motion appears

to be mostly regular. When the effect of Earth is added, chaotic or collision regions

appear again in phase space. There is an obviously different behavior between a < 3000

km, where the 3rd-degree lunar gravity terms are dominant, and a > 3000 km, where

the effect of Earth is more important. Note that we have selected the value 3000 km

after extensive numerical computations, as an easy to remember approximate value.

The behavior of the orbits changes close to that semi-major axis value and not exactly

at that value.

The main families of POs emanate from the families of POs of the axisymmetric

problem (‘J2 + J3’). These are the equivalent of nearly-circular ‘frozen-eccentricity’

orbits (∀I) and ‘critical inclination’ orbits (I ≈ 63◦.5 and 116◦.5). In the ‘3G’ model,

POs usually appear at large eccentricities, while in the ‘3G+R’ model there exist

elliptic POs for every I. For I close to 63◦.5 new POs appear for higher eccentricities.
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Fig. 10 Time evolution of some POs, for a = R + 100 km and h0 = π, for the ‘3G+R’ (left)
and the ‘3G+R+E’ models.

When Earth is included, there are (main, stable) POs for every inclination, except for

a gap of chaotic/collision orbits. G and I are no longer integrals of motion, but their

variations (∆I, ∆e, ∆g) are small, when nM 6= 0. These POs can be used as the basis

for an efficient design of artificial satellite orbits, requiring minimal control, as already

discussed in Knežević and Milani (1998).

In the future, we intend to extend this work to the numerical computation of POs

in the full gravitational potential of the Moon. To this end, it would be desirable to

have a closed form relation (in e and I) for the 1st-order averaged Hamiltonian (De

Saedeleer has done this for the zonal problem, 2005). As the computation of the POs

will become quite cumbersome, it would be desirable to have an analytic (perturbative)

method that would be able to provide an accurate determination of the POs location.

This work is under way and we hope to report on these issues in a forthcoming paper.
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19. Lega, E., Froeschlé, C., On the relationship between fast lyapunov indicator and periodic
orbits for symplectic mappings, Celest. Mech. Dyn. Astr., 81, 129-147 (2001)

20. Liu, L., Innanen, K.A., Problems of critical inclination and commensurability in the motion
of artificial satellites, Chin. Astron. Astrophys., 10, 245-251 (1986)

21. Murray, C., Dermott, S., Solar System Dynamics. Cambridge University Press, United
Kingdom (1999)

22. Roy, A.E., Orbital Motion, 283-286. Adam Hilger LTD, Bristol (1982)
23. Sidi, M.J., Spacecraft Dynamics and Control, 34-35. Cambridge University Press, USA

(2002)
24. Tzirti, S., Tsiganis, K., Varvoglis, H., Quasi-critical orbits for artificial lunar satellites,

Celest. Mech. Dyn. Astr., 104, 227-239 (2009)
25. Vallado, D.A., Fundamentals of Astrodynamics and Applications. Kluwer Academic Pub-

lishers, Dordrecht/Boston/London (2001)


