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PERTURBATIONS OF DIAGONAL MATRICES BY BAND RANDOM

MATRICES

FLORENT BENAYCH-GEORGES AND NATHANAËL ENRIQUEZ

Abstract. We exhibit an explicit formula for the spectral density of a (large) random matrix
which is a diagonal matrix whose spectral density converges, perturbated by the addition of a
symmetric matrix with Gaussian entries and a given (small) limiting variance profile.

1. Perturbation of the spectral density of a large diagonal matrix

In this paper, we consider the spectral measure of a random matrix Dε
n defined by Dε

n =
Dn +

√

ε
n
Xn, for Dn a deterministic diagonal matrix whose spectral measure converges and Xn

an Hermitian or real symmetric matrix whose entries are Gaussian independent variables, with
a limiting variance profile (such matrices are called band matrices). We give a first order Taylor
expansion, as ε → 0, of the limit spectral density, as n → ∞, of Dε

n.

The proof is elementary and based on a formula given in [12] for the Cauchy transform of the
limit spectral distribution of Dε

n as n → ∞.

For each n, we consider an Hermitian or real symmetric random matrix Xn = [xn
i,j ]

n
i,j=1 and

a real diagonal matrix Dn = diag(an(1), . . . , an(n)). We suppose that:

(a) the entries xn
i,j of Xn are independent (up to symmetry), centered, Gaussian with vari-

ance denoted by σ2
n(i, j),

(b) for a certain bounded function σ defined on [0, 1] × [0, 1] and a certain bounded real
function f defined on [0, 1], we have, in the L∞ topology,

σ2
n(⌊nx⌋, ⌊ny⌋) −→

n→∞
σ2(x, y) and an(⌊nx⌋) −→

n→∞
f(x),

(c) the set of discontinuities of the function σ is closed and intersects a finite number of
times any vertical line of the square [0, 1]2.

For ε ≥ 0, let us define, for all n,

Dε
n = Dn +

√

ε

n
Xn.
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It is known, from Shlyakhtenko in [12, Th. 4.3] (see also [2], which also provides a fluctuation
result), that as n tends to infinity, the spectral distribution of Dε

n tends to a limit µε with
Cauchy transform

Cε(z) =

∫ 1

x=0
Cε(x, z)dx,

where Cε(x, · ) is defined by the fact that it is analytic, maps the upper half-plane C
+ into the

lower one C
−, and satisfies the relation

(1) Cε(x, z) =
1

z − f(x) − ε
∫ 1
y=0 σ2(x, y)Cε(y, z)dy

.

Our goal here is to understand µε −µ for small values of ε. Let us introduce the set T of test
functions we shall use here. We define

T =

{

t 7−→ 1

z − t
; z ∈ C

+

}

.

Let us now define the Hilbert transform, denoted by H[u], of a function u:

H[u](s) := p. v.

∫

t∈R

u(t)

s − t
dt =

∫

y∈R

u(s − y) − u(s)

y
dy.

Before stating our main result, let us make some assumptions on the functions σ and f :

(d) the push-forward µ of the uniform measure on [0, 1] by the function f has a density ρ

with respect to the Lebesgue measure on R,

(e) there exists a symmetric function τ( · , · ) such that for all x, y, σ2(x, y) = τ(f(x), f(y)),

(f) there exist η0 > 0, α > 0 and C < ∞ such that for almost all s ∈ R, for all t ∈
[s − η0, s + η0], |τ(s, t)ρ(t) − τ(s, s)ρ(s)| ≤ C|t − s|α.

Note that by hypothesis (f) and by the boundedness of the function f , the function

s 7−→ ρ(s)H[τ(s, · )ρ( · )](s)
is well defined and compactly supported.

Theorem 1. Under the hypotheses (a) to (f), as ε → 0, for all g ∈ T ,
∫

g(s)dµε(s) =

∫

g(s)dµ(s) − ε

∫

g′(s)F (s)ds + o(ε),

with F (s) := −ρ(s)H[τ(s, · )ρ( · )](s).
As a consequence, if the function F ( · ) has bounded variations, then

µε = µ + εdF + o(ε).

Remark 1. Roughly speaking, this theorem states that

lim
ε→0

lim
n→∞

spectral law(Dε
n) − spectral law(Dn)

ε
= dF.

It would be interesting to let ε and n tend to 0 and ∞ together, and to find out the adequate rate
of convergence to get a deterministic limit or non degenerated fluctuations. We are working on
this question.
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Remark 2. This result provides an analogue, for our random matrix model, of the following
formula about real random variables (valid when Y is centered and independent of X):

densityX+
√

εY (s) = densityX(s) + ε
E[Y 2]

2
density′′

X(s) + o(ε).

Remark 3. In the case where Xn is a GUE or GOE matrix, the limiting spectral distribution of
Dε

n as n → ∞ is the free convolution of the limiting spectral distribution of Dn with a semi-circle
distribution. Several papers are devoted to the study of qualitative properties (like regularity) of
the free convolution (see [8, 7, 4, 3, 6]). Besides, it has recently been proved that type-B free
probability theory allows to give Taylor expansions, for small values of t, of the moments of
µt ⊞ νt for two time-depending probability measures µt and νt (see [5, 10, 9]). Our work differs
from the ones mentioned above by the fact that we allow to perturb Dn by any band matrix,
but also by the fact that it is focused on the density and not on the moments, giving an explicit
formula rather than qualitative properties.

Proof. For all z ∈ C
+, we have

(2) |Cε(x, z)| ≤ 1

ℑz
.

Indeed, for all y, z such that z ∈ C
+, Cε(y, z) ∈ C

−. As a consequence, the imaginary part of
the denominator of the right hand term of (1) is larger than ℑ(z).

Hence by (1) and (2), as ε → 0, Cε(x, z) −→ 1
z−f(x) uniformly in x.

From what precedes,

Cε(x, z) − 1

z − f(x)
=

ε
∫ 1
y=0 σ2(x, y)Cε(y, z)dy

(z − f(x) − ε
∫ 1
y=0 σ2(x, y)Cε(y, z)dy)(z − f(x))

= ε
1

(z − f(x))2

∫ 1

y=0
σ2(x, y)Cε(y, z)dy + o(ε)

= ε
1

(z − f(x))2

∫ 1

y=0

σ2(x, y)

z − f(y)
dy + o(ε)

where each o(ε) is uniform in x ∈ [0, 1].

But for all a 6= b, 1
(z−a)2(z−b)

= 1
(a−b)2

(

1
z−b

− 1
z−a

− b−a
(z−a)2

)

, hence since the Lebesgue measure

of the set {y ∈ [0, 1] ; f(y) = f(x)} is null, we have

1

(z − f(x))2

∫ 1

y=0

σ2(x, y)

z − f(y)
dy =

∫ 1

y=0

σ2(x, y)

(f(x) − f(y))2

(

1

z − f(y)
− 1

z − f(x)
− f(y) − f(x)

(z − f(x))2

)

dy.

As a consequence, it follows by an integration in x ∈ [0, 1] that

Cε(z) − C(z) = ε

∫ 1

x=0

∫ 1

y=0

σ2(x, y)

(f(x) − f(y))2

(

1

z − f(y)
− 1

z − f(x)
− f(y) − f(x)

(z − f(x))2

)

dydx + o(ε),

where C(·) is the Cauchy transform of µ.

Let us now recall that the push-forward of the uniform law on [0, 1] by f is the measure
ρ(x)dx and that σ2(x, y) can be rewritten σ2(x, y) = τ(f(x), f(y)). Hence

Cε(z) − C(z) = ε

∫

s∈R

∫

t∈R

{ 1

z − t
− 1

z − s
− 1

(z − s)2
(t − s)} τ(s, t)

(s − t)2
ρ(s)ρ(t)dtds + o(ε).
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This allows us to write that for any test function g ∈ T ,

lim
ε→0

µε(g) − µ(g)

ε
= Λ(g),

where

Λ(g) =

∫

(s,t)∈R2

{g(t) − g(s) − g′(s)(t − s)} τ(s, t)

(t − s)2
ρ(s)ρ(t)dtds.

Note that by the Taylor-Lagrange formula, for all s, t,
∣

∣

∣

∣

{g(t) − g(s) − g′(s)(t − s)} τ(s, t)

(t − s)2
ρ(s)ρ(t)

∣

∣

∣

∣

≤ ρ(s)ρ(t) × ‖τ( · , · )‖L∞‖g′′‖L∞

2
,

so that, since ρ is a density, by dominated convergence,

Λ(g) = lim
η→0

∫

(s,t)∈R
2

|s−t|>η

{g(t) − g(s) − g′(s)(t − s)} τ(s, t)

(t − s)2
ρ(s)ρ(t)dsdt.

But by symmetry, for all η > 0,
∫

(s,t)∈R
2

|s−t|>η

{g(t) − g(s)} τ(s, t)

(t − s)2
ρ(s)ρ(t)dsdt = 0.

As a consequence, Λ(g) = limη→0 Λη(g), with

Λη(g) :=

∫

(s,t)∈R
2

|s−t|>η

g′(s)
τ(s, t)

s − t
ρ(s)ρ(t)dsdt.

Let us prove that almost all s ∈ R, limη→0

∫

t∈R

|s−t|>η

τ(s,t)ρ(s)ρ(t)
s−t

dt exists and that

Λ(g) =

∫

s∈R

g′(s)

(

lim
η→0

∫

t∈R

|s−t|>η

τ(s, t)ρ(s)ρ(t)

s − t
dt

)

ds.

For η > 0 and s ∈ R, set

θη(s) :=

∫

t∈R

|s−t|>η

τ(s, t)ρ(s)ρ(t)

s − t
dt.

Set also M := ‖f‖L∞ . Then the support of the function ρ is contained in [−M,M ], and so does
the support of the function θη, for any η > 0. For almost all s ∈ [−M,M ], limη→0 θη(s) exists
by the formula

θη(s) =

∫

t∈[s−2M,s−η]∪[s+η,s+2M ]

τ(s, t)ρ(s)ρ(t) − τ(s, s)ρ(s)ρ(s)

s − t
dt

and by Hypothesis (f). Moreover, for η0 as in Hypothesis (f),

|θη(s)| ≤ 2Cρ(s)

∫ s+η0

t=s+η

(s − t)α−1dt +

∫

t∈[s−2M,s−η0]∪[s+η0,s+2M ]

τ(s, t)ρ(s)ρ(t)

s − t
dt

≤ 2Cρ(s)

α
(η0)

α +
1

η0

∫

t∈R

τ(s, t)ρ(s)ρ(t)dsdt

≤ 2Cρ(s)

α
(η0)

α +
‖τ( · , · )‖L∞

η0
ρ(s).
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Hence by dominated convergence,
∫

s∈R
g′(s) limη→0 θη(s)ds = limη→0

∫

s∈R
g′(s)θη(s)ds, i.e.

Λ(g) =

∫

s∈R

g′(s)

(

lim
η→0

∫

t∈R

|s−t|>η

τ(s, t)ρ(s)ρ(t)

s − t
dt

)

ds.

�

2. Examples

2.1. Perturbation of a uniform distribution by a standard band matrix. Let us consider
the case where f(x) = x (so that µ is the uniform distribution on [0, 1]) and σ2(x, y) = ✶|y−x|≤ℓ,

where ℓ is a fixed parameter in [0, 1] (the width of the band). In this case, τ( · , · ) = σ2( · , · )
and

F (s) = ✶(0,1)(s) log

(

ℓ ∧ (1 − s)

ℓ ∧ s

)

.

For small values of ε and large values of n, the density ρε of the eigenvalue distribution µε of
Dε

n is approximately

ρε(s) = ρ(s) + ε
∂

∂s
F (s) + o(ε) = ✶(0,1)(s) − ε

(

✶(0,ℓ)(s)

s
+
✶(1−ℓ,1)(s)

1 − s

)

+ o(ε),

which means that the additive perturbation
√

ε
n
Xn alters the spectrum of Dn essentially by

decreasing the amount of extreme eigenvalues. This phenomenon is illustrated by Figure 1 (where
we ploted the cumulative distribution functions rather than the densities for visual reasons).
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(a) Case where n = 4.103, ε = 10−2, with
width ℓ = 0.2
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15

SIMULATION
THEORY

(b) Case where n = 4.103, ε = 10−2, with
width ℓ = 0.9

Figure 1. Perturbation of a uniform distribution by a standard band

matrix: plot of the functions F ( · ) and
FDε

n
( · )−FDn

( · )
ε

(with FDε
n
( · ) and FDn

( · )
the cumulative eigenvalue distribution functions of Dε

n and Dn) for different val-
ues of ℓ.

2.2. Perturbation of the triangular pulse distribution by a GOE matrix. Let us con-
sider the case where ρ(x) = (1 − |x|)✶[−1,1](x) and σ2 ≡ 1 (what follows can be adapted to the

case σ2(x, y) = ✶|y−x|≤ℓ, but the formulas are a bit heavy). In this case, thanks to the formula
(9.6) of H[ρ( · )] given p. 509 of [11], we get

F (s) = (1 − |s|)✶[−1,1](s) {(1 − s) log(1 − s) − (1 + s) log(1 + s) + 2s log |s|} .
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For small values of ε and large values of n, the density ρε of the eigenvalue distribution µε of
Dε

n is approximately

ρε(s) = ρ(s) + ε
∂

∂s
F (s) + o(ε),

which implies that the additive perturbation
√

ε
n
Xn alters the spectrum of Dn by increasing the

amount of eigenvalues in [−1,−0.5] ∪ [0.5, 1] and decreasing the amount of eigenvalues around
zero. This phenomenon is illustrated by Figure 2.

(1.5 (1.0 (0.5 0.0 0.5 1.0 1.5

(1.0

(0.8
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(0.4

(0.2

0.0
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SIMULATION
THEORY
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1.0

SPECTRUM HIST
RHO

Figure 2. Perturbation of the triangular pulse distribution by a GOE

matrix: Left: plot of the functions F ( · ) and
FDε

n
( · )−FDn

( · )
ε

(with FDε
n
( · ) and

FDn
( · ) the cumulative eigenvalue distribution functions of Dε

n and Dn). Right:
plot of the eigenvalues histogram of Dε

n and of the spectral density ρ of Dn.
On the right figure, the (infinitesimal) increase of eigenvalues with respect to
ρ on [−1,−0.5] ∪ [0.5, 1] and the (infinitesimal) decrease around zero can be
observed, in agreement with the fact that, as the left figure shows, F ′ ≫ 0 on
(approximately) [−1,−0.5] ∪ [0.5, 1] and F ′ ≪ 0 around zero. Both figures were
made with the same simulation (n = 6.103 and ε = 10−2).

2.3. Free convolution with a semi-circular distribution and complex Burger’s equa-

tion. Let us consider the case where σ2 ≡ 1, which happens for example if the matrix Xn is
taken in the Gaussian Orthogonal Ensemble. In this case, by the theory of free probability
developped by Dan Voiculescu (see e.g. [13] or [1, Cor 5.4.11 (ii)]), for all t ≥ 0,

µt = µ ⊞ λt,

where λt is the semi-circular distribution with variance t, i.e. the distribution with support
[−2

√
t, 2

√
t] and density 1

2πt

√
4t − x2. In this case, we know by the work of Biane [8, Cor. 2]

that for all t > 0, µt admits a density ρt. By the implicit function theorem, and the formula
given in [8, Cor. 2], one easily sees that the function (s, t) 7−→ ρt(s) is regular. Then, by
Theorem 1 and the fact that the linear span of T is dense in the set of continuous functions on
the real line with null limit at infinity, one easily recovers the following PDE, which is a kind
of projection on the real axis of the imaginary part of complex Burger’s equation given in [8,
Intro.]

(3)

{

∂
∂t

ρt(s) + ∂
∂s
{ρt(s)H[ρt( · )](s)} = 0,

ρ0(s) = ρ(s).

For example, if µ = λc for a certain c > 0, then by the semi-group property of the semi-circle
distribution [1, Ex. 5.3.26], for all t ≥ 0, µt = λc+t and ρt(s) = 1

2π(c+t)

√

4(c + t) − s2. One can
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then verify (3), using the formula (9.21) of H[ρt( · )] given p. 511 of [11].

Acknowledgements. It is a pleasure to thank Guy David for his useful advices about the
Hilbert transform.
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