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Abstract

In this paper we study a class of M−estimators in a regression model under

bivariate random censoring and provide a set of su�cient conditions that ensure

asymptotic n1/2−convergence. The cornerstone of our approach is a new estimator

of the joint distribution function of the censored lifetimes. A copula approach is used

to modelize the dependence structure between the bivariate censoring times. The

resulting estimators present the advantage of being easily computable. A simulation

study enlighten the �nite sample behaviour of this technique.
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1 Introduction

M-estimators arise in many situations in classical regression analysis, like for instance

least square estimator for mean-regression or (pseudo-) maximum likelihood estimators.

In this paper, we focus on extending the de�nition of a general class of M-estimators to

the framework of a regression model where response and covariate both are randomly

right-censored. The aim is to adapt procedures used in the uncensored case so that they

stay consistent in this new setting, and to derive their asymptotic normality under mild

conditions. Until now, this question has been essentially considered in the particular case

where only the response is censored, where two main approaches have been considered.

The synthetic data approach (see Koul et al., 1981; Delecroix et al., 2008) consists of

de�ning new variables estimated from the data. The second approach consists of modify-

ing classical procedures by introducing some weights on the observations to compensate

censoring. These weights are related to a nonparametric estimator of the distribution of

the variables involved in the regression model (see e.g. Stute, 1993). In the present paper,

we extend this technique to the case where censoring does not only strike the response,

but also the covariate. Therefore, de�ning the weights that are adapted to our problem

relies on a new estimator of the joint distribution of bivariate censored lifetimes.

The estimator of the bivariate survival distribution that we introduce is di�erent from

the ones traditionally used. The main reason is that our estimator is mainly designed

for a regression analysis purpose. The di�erence between this present estimator and the

existing ones stands in the fact that we do not only focus on the estimation of distribution

function of the failure times. Indeed, in view of theM -estimators that we consider, we are

interested in the more general problem of estimating quantities such as E[φθ(Y
(1), Y (2))],

where (Y (1), Y (2)) denotes the censored failure times, and φθ is some function, with θ

belonging to a parametric set. Therefore we focus on the estimation of the distribution of

(Y (1), Y (2)) and not only on the distribution function. Indeed, estimating F (y(1), y(2)) =

P(Y (1) ≤ y(1), Y (2) ≤ y(2)) only corresponds to a special case, taking φy(1),y(2)(Y
(1), Y (2)) =

1Y (1)≤y(1),Y (2)≤y(2) . Moreover, previously existing estimators of F do not correspond to a

positive distribution, making them inoperative for our purpose of estimating expectations

of a family of functions φθ. By construction, our new estimator is not a�ected by this

drawback.

Aiming to estimate only the function F, Campbell and Földes (1982) provided an

estimator which is usually not a proper survival function due to nonmonotonicity. More-

over the estimator is not equivariant under reversal of coordinates because it depends on
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a choice of the decomposition of the bivariate survival probability. Hanley and Parnes

(1983) studied a nonparametric maximum likelihood estimation (NPMLE) using Efron's

self-consistency algorithm and the EM algorithm. However, this estimator may be incon-

sistent for continuous data (Tsai et al., 1986) and is not unique for samples taken from

absolutely continuous distributions. Tsai et al. (1986) suggested an estimation method

based on conditional survival function using Beran's estimator (Beran, 1981). The es-

timator is consistent but its almost sure consistency is slow. Moreover, this estimator

is not automatically symmetric in the sense that is not equivariant under reversal of

coordinates. On the other hand, the multivariate product limit estimator proposed by

Dabrowska (1988) is based on a rewriting of the multivariate distribution function which

does not introduce dissymetry between the two coordinates. Nevertheless, the resulting

estimator of Dabrowska assigns negative mass to some points in the plane (Pruitt, 1991b).

See also Prentice and Cai (1992) for a related estimator based on Peano series, and Gill

et al. (1993) for some improvements of this results by application of functional delta

method. Another approach consists of the use of nonparametric smoothing techniques

to get a bivariate survival curve estimator (Pruitt, 1991a). A product limit estimator is

used to impute values for singly censored observations and then the generalized maximum

likelihood ideas are applied to complete the estimator. The main problem arising from

the implicit de�nition of the estimator. Moreover, its practical performance has been

shown to be less satisfactory than expected (van der Laan, 1996). Another approach

based on NPMLE is proposed by van der Laan (1996). However, the NPMLE does not

directly work in the particular framework of bivariate censoring, because of di�culties

to assign the masses of the censoring in an appropriate way. Therefore, the technique

of van der Laan (1996) requires to slightly modify the data, introducing an interval cen-

soring methodology. The estimator is asymptotically e�cient for these modi�ed data.

However, the convergence rate depends on some parameter involved in the modi�cation

of the data, and does not achieve the expected n−1/2 rate. The same problem of low

convergence rate appears in Akritas and Van Keilegom (2003). In opposition to the other

existing techniques, the estimators proposed by Akritas and Van Keilegom (2003) present

the advantage of being regular distribution functions. Nevertheless, they require the cen-

soring to be an absolutely continuous random vector, and their extension to multivariate

censoring seems di�cult.

Compared to existing approaches, our new estimator of the distribution function, de-

signed in view of applying it to a regression framework de�nes a true probability distribu-
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tion, achieves n1/2−consistency, and can be easily extended to a multivariate framework.

Based on this new tool, we provide a general uniform central limit theorem, which can

be seen as two-dimensional extensions of the results of Stute (1996) and Akritas and

Van Keilegom (2001) in the univariate censoring case. As a by-product of this Theo-

rem, we obtain the uniform consistency of an estimator of the multivariate distribution

function on the whole space, under suitable conditions. We point out that, for the other

existing approaches, uniform consistency has only been proved until now on a compact

set strictly included in the support of the distribution of (Y (1), Y (2)). Our procedure works

under a reasonable identi�ability assumption which relies on a copula modelization of the

dependence between the multivariate censoring times.

The rest of the paper is organized as follows. The section 2 introduce our estimator

of the bivariate distribution. In section 3, we provide a general result on asymptotic

i.i.d. representations related to this new estimator. Our Theorem 3.3 is the key result of

this section, since it permits to obtain an extension to bivariate censoring of an uniform

version of the Central Limit Theorem. Theorem 3.3 is then used in section 4 to derive

general results onM−estimators in a regression framework. These results are then applied

to least-square estimation and generalized linear modeling. Section 5 is devoted to some

simulation study of the �nite sample size behaviour of the procedure. Technical arguments

are postponed to section 7.

2 Estimation

2.1 Observations and formulation of the problem

Let us �rst introduce some general notations and de�ne the bivariate censoring model

that we will consider throughout this paper. In our framework, we are interested in

infering on the unknown distribution µ of a random vector T = (T (1), T (2)), whose two

components are randomly right-censored. This means that, instead of observing i.i.d.

copies of the random vector T, observations are made of i.i.d. copies of Y = (Y (1), Y (2)) =

(inf(T (1), C(1)), inf(T (2), C(2))), and ∆ = (∆(1),∆(2)) = (1T (1)≤C(1) ,1T (2)≤C(2)), where C =

(C(1), C(2)) is the censoring random vector. To avoid dissymmetry problems caused by

the presence of ties, we will assume throughout this paper that

P(T (i) = C(i)) = 0, for i = 1, 2. (2.1)
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One of the technical advantages of this assumption stands in the fact that it will avoid us

to deal with denominators too close to zero (in the tail of the considered distributions)

which appear naturally in the statistical study of censored lifetimes.

An M -estimator is de�ned as

θ̂ = arg min
θ∈Θ

Mn(θ), (2.2)

where Θ ⊂ Rk. In uncensored regression analysis, the traditional least square estimator

used for mean-regression is obtained for Mn(θ) =
∑n

j=1(Y
(1)
j − r(θ, Y (2)

j ))2, where r is a

known function. More generally, estimators in the GLM model (see e.g. McCullagh and

Nelder, 1983) can also be expressed as M−estimators. In the following, we will consider

M -estimators de�ned by a functional Mn of the following type,

Mn(θ) =

∫
φθ(y

(1), y(2))dµ̂(y(1), y(2)) =

∫
φθ(y)dµ̂(y),

where µ̂ will denote a new estimator of the distribution of T under bivariate random

censoring. Indeed, in absence of censoring, a classical way to proceed is to use the empirical

distribution as a measure µ̂. In our framework, this estimator is unavailable because the

lifetimes are not fully observed. Therefore, it is crucial to de�ne a proper µ̂. In the

following, the target of Mn(θ) will be denoted as M(θ), that is

M(θ) =

∫
φθ(y

(1), y(2))dµ(y(1), y(2)).

The convergence of estimators of the type (2.2) will be obtained by studying the conver-

gence of Mn towards M. Therefore, in view of the de�nition of Mn, it becomes crucial to

derive asymptotic properties of intergrals with respect to µ̂.

2.2 Estimating the distribution µ

2.2.1 General method to de�ne convergent estimators of µ

In absence of censoring, a simple way to estimate the distribution of the data is to con-

sider the empirical distribution, which simply puts the weight n−1 at each point Tj ∈ R2.

Under our framework, the issue is to de�ne an appropriate weight which compensates

the presence of censoring. Under univariate random censoring, Kaplan-Meier approach

consists of de�ning a probability measure which puts mass only at the uncensored obser-

vations, and allows more weight to large observations in order to compensate the lack of
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observations in the tail of the distribution (Satten and Datta, 2001). Based on the same

idea, the estimator we propose is of the following form,

µ̂ =
n∑
j=1

∆
(1)
i ∆

(2)
i Wj(Y1,∆1, ..., Yn,∆n)δ{Y (1)

j ,Y
(2)
j }

, (2.3)

where δ{a,b} denotes the Dirac mass at point (a, b). This means that we only put mass at

the observations where the two components of Y are uncensored, while the weight Wj is

here to take account for bivariate censoring. De�ning the weight function Wj depends on

the identi�ability conditions we put on the model. More precisely, we consider weights of

the following form,

Wj(Y1,∆1, ..., Yn,∆n) =
1

n
f̂(Yj),

where f̂ is some consistent estimator (computed from the whole data set) of some appro-

priate function f that satis�es the following equation,

E
[
∆(1)∆(2)f(Y )φ(Y (1), Y (2))

]
= E[φ(T (1), T (2))], (2.4)

for any measurable function φ with �nite expectation. A simple calculation shows that

f(y) = E[∆(1)∆(2)|T = y]−1. This function can not be computed in practice, since it

depends on the law of the unobserved variables T. However it can be estimated in vari-

ous situations, provided that one adds some identi�ability assumptions that specify the

dependence structure between T and C.

2.2.2 Application under a simple identi�ability assumption

In this section, we develop the approach of section 2.2.1 in a speci�c framework. A simple

and classical assumption used for bivariate censoring inference consists of considering that

T and C are independent (see e.g. Dabrowska, 1988). It can be compared to the case

of the univariate censoring, where this assumption of independence is needed to obtain

convergence of the Kaplan-Meier estimator (Kaplan and Meier, 1958; Stute and Wang,

1993). Under this assumption, the function f introduced in the previous subsection is

f(y) = P(y(1) ≤ C(1), y(2) ≤ C(2))−1.

To rewrite this function in a more simple way, we add some assumption on the dependence

structure between C(1) and C(2). De�ne, for i = 1, 2, Gi(x) = P(x ≤ C(i)), Fi(x) = P(x ≤
T (i)), and Hi(x) = P(x ≤ Y (i)). We now set the identi�ability assumption that we will

use throughout this paper.

6



Identi�ability Assumption 1 Assume that T and C are independent, and that there

exists some known copula function C such that

P(y(1) ≤ C(1), y(2) ≤ C(2)) = C(G1(y(1)), G2(y(2))).

As a simple practical example, we have the particular case where C(x1, x2) = x1x2,

which corresponds to the case where C(1) and C(2) are independent.

Identi�ability Assumption 1 has been initially introduced by Wang and Wells (1997).

Compared to our approach, Wang and Wells noticed that, under this simple assumption,

P(T (1) ≥ y(1), T (2) ≥ y(2)) = H(y(1), y(2))C(G1(y(1)), G2(y(2)))−1, where H(y(1), y(2)) =

P(Y (1) ≥ y(1), Y (2) ≥ y(2)). Replacing H by the empirical distribution function of the

observed random vector Y, and Gi by its Kaplan-Meier estimator for i = 1, 2, Wang and

wells (1997) deduces an estimator of F, which is relatively simple but does not happen to

be the distribution function of a probability measure, and is therefore not suited to our

framework.

Under Identi�ability Assumption 1, computation of f only requires the knowledge of

the survival functions Gi for i = 1, 2. An important feature of this framework, is that

functions Gi are easy to estimate, since they are survival functions of a single random

variable C(i). Moreover, from (2.1), and reversing the roles of T (i) and C(i), C(i) can be

seen as a censored variable in a univariate censoring model. Hence, Gi can be estimated

using Kaplan-Meier estimator, that is for i = 1, 2

Ĝi(t
(i)) =

∏
Y

(i)
j ≤t(i)

(
1−

dĤ0,i(Y
(i)
j )

Ĥi(Y
(i)
j )

)
,

where Ĥ0,i(t) =
∑n

k=1[1 − ∆
(i)
k ]1

Y
(i)
k ≥t

, and Ĥi(t) =
∑n

k=1 1
Y

(i)
k ≥t

. Convergence of these

Kaplan-Meier estimators requires the independence of T (i) and C(i) which is included in

our assumption.

Finally, our estimator under Identi�ability Assumption 1 becomes

µ̂ =
1

n

n∑
j=1

∆
(1)
j ∆

(2)
j

C(Ĝ1(Y
(1)
j ), Ĝ2(Y

(2)
j ))

δ{Y (1)
j ,Y

(2)
j }

, (2.5)

and for all function φ ∈ F ,

µ̂(φ) =

∫
φ(y)dµ̂(y) =

1

n

n∑
j=1

∆
(1)
j ∆

(2)
j φ(Y

(1)
j , Y

(2)
j )

C(Ĝ1(Y
(1)
j ), Ĝ2(Y

(2)
j ))

.
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One can notice that the estimator µ̂ can be seen as a generalization of Kaplan-Meier

estimator, extended to bivariate censoring. Indeed, if one assume that only the �rst

component of T is censored, computation of µ̂ corresponds to the same estimator of the

joint distribution function proposed by Stute (1993) (with the uncensored variable acting

as the covariate in Stute (1993)). This can be seen by observing that the jump of Kaplan-

Meier estimator of the distribution function of T (1) at observation j is ∆
(1)
j Ĝ1(Tj)

−1n−1

(Satten and Datta, 2001). Let us also mention that the generalization of this estimator to

the case of multivariate censoring (in dimension d > 2) is straightforward, this time using

a d−dimensional copula function. The theoretical results that we prove below extend

easily to this case.

3 Main results

3.1 A general result to obtain i.i.d. representations

In this section we consider an estimator of the distribution of (T (1), T (2)) of the following

form,

µ̂ =
1

n

n∑
j=1

∆
(1)
j ∆

(2)
j f̂(Yj)δ{Y (1)

j ,Y
(2)
j }

, (3.1)

where δ(x1,x2) denotes the Dirac mass at point (x1, x2). Here, f̂ is a random function

computed from the whole sample. We give here general conditions for the measure µ̂ to

be a n1/2−consistent estimator of µ.

The Assumption 1 below is composed of two parts. First, it states the existence of the

function f corresponding to equation (2.4). As pointed out previously, exact knowledge of

the function f is generally impossible, except if we specify the law of the censoring. Hence

it is relevant to consider µ̂ de�ned by (3.1). The second part of Assumption 1 states that

the random function f̂ used in the computation of µ̂ converges uniformly towards f.

Assumption 1 There exists some function f such as

E
[
∆(1)∆(2)f(Y )φ(Y (1), Y (2))

]
= E

[
φ(T (1), T (2))

]
, (3.2)

for all measurable nonnegative function φ. Moreover,

sup
y∈Yτ
|f̂(y)− f(y)| = oP (1),

where Yτ = {y(1) ≤ τ (1), y(2) ≤ τ (2)} for τ (i) < inf{y : P(Y (i) > y) = 0}, i = 1, 2.
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Assumption 2 below furnishes more conditions on the convergence of f̂ . One of the

main di�culties in studying quantities such as µ̂(φ) stands in the fact that the terms in

(3.1) are non-i.i.d. since f̂ is computed from the whole sample. The following Assumption

2 assumes that there exists some asymptotic i.i.d. representation of f̂ .

Assumption 2 The following representation holds for function f̂ ,

f̂(y)− f(y) =
1

n

n∑
j=1

η(Yj,∆j; y) +R(y),

with supy∈Yτ |R(y)| = oP (n−1/2) and E[η(Yj,∆j; y)] = 0, with η being uniformly bounded

on Yτ . Moreover, let

f ∗(y) =
1

n

n∑
j=1

η(Yj,∆j; y),

and assume that there exists a Donsker class of functions G such as f ∗ ∈ G for all n with

probability tending to one.

The interest of considering Donsker classes (see van der Vaart and Wellner, 1996, for

a complete de�nition) is that these classes of functions satisfy an uniform Central Limit

Theorem property. As we will see in the following, some natural and classical Donsker

classes appear in the derivations of our main results, making the use of their asymptotic

properties a valuable tool.

With at hand the function f, it becomes natural to compare µ̂ with the following

measure,

µ̃ =
1

n

n∑
j=1

∆
(1)
j ∆

(2)
j f(Yi)δ{Y (1)

j ,Y
(2)
j }

.

Clearly, for any function φ, µ̃(φ) tends to µ(φ) from Assumption 1 and the classical strong

law of large numbers that applies to this sum of i.i.d. quantities. The next result is a

general Theorem that permits to derive asymptotic i.i.d. representations for estimators

such as (3.1). This general result is an important tool in our approach, since it will allow

us to obtain representations for the estimator (2.5) by simply checking the two simple

Assumptions 1 to 2.

Theorem 3.1 Let F be a Donsker class of functions with bounded envelope Φ satisfying

Φ(y(1), y(2)) ≡ 0 if y(1) > τ (1) or y(2) > τ (2) for τ (i) < inf{y : P(Y (i) > y) = 0}, i = 1, 2.

Then, under Assumptions 1 to 2,

µ̂(φ)− µ̃(φ) =
1

n

n∑
j=1

∫
η(Yj,∆j, t)φ(t)f(t)−1dµ(t) +Rn(φ),
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with supφ∈F |Rn(φ)| = oP (n−1/2).

It is easy to deduce from Theorem 3.1 a weak convergence result (at rate n1/2) of µ̂(φ)

by simply applying the Central Limit Theorem to the main centered i.i.d. term.

Proof. By de�nition,

µ̂(φ)− µ̃(φ) =
1

n

n∑
j=1

∆
(1)
j ∆

(2)
j [f̂(Yj)− f(Yj)]φ(Yj) =

1

n

n∑
j=1

∆
(1)
j ∆

(2)
j f ∗(Yj)φ(Yj) +R1n(φ),

where we used the decomposition in Assumption 2, and where

R1n(φ) =
1

n

n∑
j=1

R(Yj)φ(Yj).

The remainder term in negligible, since

sup
φ∈F
|R1n(φ)| ≤ sup

y∈Yτ
|R(y)|

(
1

n

n∑
j=1

Φ(Yj)

)
= oP (n−1/2).

Since supy∈Yτ |f ∗(y)| = oP (1) (this is a consequence of Assumption 1 and 2), and since

f ∗F ⊂ GF is a Donsker class (see Example 2.10.9 in van der Vaart and Wellner, 1996),

we can use the asymptotic equicontinuity property of Donsker classes (see e.g. van der

Vaart and Wellner, 1996) and Assumption 1 to obtain

µ̂(φ)− µ̃(φ) =
1

n

n∑
j=1

∫
η(Yj,∆j, t)φ(t)f(t)−1dµ(t) +Rn(φ),

where supφ∈F |Rn(φ)| = oP (n−1/2).

3.2 Application to our framework

In this section, we apply Theorem 3.1 to the estimator (2.5). We assume that Identi�a-

bility Assumption 1 holds. As a consequence, we recall that equation (3.2) in Assumption

1 holds for

f(y) = C(G1(y(1)), G2(y(2)))−1,

and the estimated version consists of replacing the marginal survival functions by their

Kaplan-Meier estimators, that is

f̂(y) = C(Ĝ1(y(1)), Ĝ2(y(2)))−1.
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The key argument consists of applying Theorem 3.1 to obtain our asymptotic repre-

sentation in Theorem 3.2 below. This Theorem only applies for classes of functions that

are zero outside some compact subset strictly included in the support of Y. The next step

consists of using tightness arguments to derive our Theorem 3.3, which is valid on the

whole support of Y up to some additional moment conditions.

The only additional assumption that is needed to obtained the result of Theorem 3.2

concerns the regularity of the copula function C.

Assumption 3 The function (x1, x2) → C(x1, x2) is twice continuously di�erentiable,

with uniformly bounded �rst order and second order derivatives, and C(x1, x2) 6= 0 for

x1 6= 0 and x2 6= 0. Moreover, we will denote ∂1C(x1, x2) (resp. ∂2C2(x1, x2)) the partial

derivative of C with respect to x1 (resp. x2).

With at hand this Assumption, it is easy to check the uniform convergence of f̂ in

Assumption 1. Indeed,

|f̂(y)−1 − f(y)−1| ≤ ‖DC‖∞
(

sup
y∈Yτ
|Ĝ1(y(1))−G1(y(1))|+ sup

y∈Yτ
|Ĝ2(y(2))−G2(y(2))|

)
,

(3.3)

where DC denotes the di�erential of function C which is assumed to be bounded. More-

over, the two supremum in (3.3) tend to zero from the uniform consistency of Kaplan-

Meier estimator (Stute and Wang, 1993). Then, it is straightforward to deduce that

supy∈Yτ |f̂(y) − f(y)| = oP (1) since f̂(y)−1 and f(y)−1 are almost surely bounded away

from zero for y ∈ Yτ .
A most delicate task is to obtain a suitable representation as in Assumption 2. This

is done �rst by using the di�erentiability assumptions on C. Indeed, since, for i = 1, 2,

supy∈Yτ |Ĝi(y
(i)) − Gi(y

(i))| = OP (n−1/2) (see Gill, 1983), and using Assumption 3, we

deduce that

f̂(y)− f(y) = −
∑
i=1,2

∂iC(G1(y(1)), G(y
(2)))

C(G1(y(1)), G2(y(2)))2
[Ĝi(y

(i))−Gi(y
(i))] +R(y),

where supy∈Yτ |R(y)| = oP (n−1/2), and ∂i denotes the partial derivative with respect to

the i−th component. Next, one can use the asymptotic representation of Kaplan-Meier
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estimator, provided by Stute (1996) or Gijbels and Veraverbeke (1991), that is

Ĝi(y)−Gi(y) =
1

n

n∑
j=1

{
(1−∆

(i)
j )Gi(Y

(i)
j ∨ y)

Hi(Y
(i)
j )

−
∫ 1

Y
(i)
j ≥u

Gi(u ∨ y)dFi(u)

Hi(u)Fi(u)

}

+

∆
(i)
j 1

Y
(i)
j >y

Fi(Y
(i)
j )

−Gi(y)

+Ri(y), (3.4)

with supy∈Yτ |Ri(y)| = oP (n−1/2). By straightforward algebra, one can see that the ex-

pecation of each of the brackets is zero. Then, the representation of Assumption 2 holds

for

η(Yj,∆j; y) = −
∑
i=1,2

∂iC(G1(y(1)), G2(y(2)))

C(G1(y(1)), G2(y(2)))2

∆
(i)
j 1

Y
(i)
j >y

Fi(Y
(i)
j )

−Gi(y)


+

{
(1−∆

(i)
j )Gi(Y

(i)
j ∨ y)

Hi(Y
(i)
j )

−
∫ 1

Y
(i)
j ≥u

Gi(u ∨ y)dFi(u)

Hi(u)Fi(u)

}]
. (3.5)

By Lemma 7.3, this function η satis�es the additional requirements present in Assumption

2.

We now state can our representation theorem for the estimator (2.5), applying Theo-

rem 3.1.

Theorem 3.2 Let F be a Donsker class of functions with bounded envelope Φ satisfying

Φ(y(1), y(2)) ≡ 0 if y(1) > τ (1) or y(2) > τ (2) for τ (i) < inf{y : P(Y (i) > y) = 0}, i = 1, 2.

Then, for µ̂ de�ned by (2.5), under Identi�ability Assumption 1 and Assumption 3,

µ̂(φ)− µ̃(φ) =
1

n

n∑
j=1

∫
η(Yj,∆j, t)φ(t)C(G1(t(1)), G2(t(2)))dµ(t) +Rn(φ),

with supφ∈F |Rn(φ)| = oP (n−1/2), and where η is de�ned in (3.5).

In a regression framework, this result is not su�cient, since it only applies to function

which vanish at the vincinity of the tail of the distribution. Fortunately, it is possible to

extend the result of Theorem 3.2 to functions taking non-zero values in the whole support

of Y using similar tightness arguments as for the consistency of Kaplan-Meier estimator

on the whole line (Gill, 1983).

To obtain such kind of result, one has to add some assumptions on the tail of the

marginal distribution. We will also require to add some restrictions on the copula function

C.
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Assumption 4 Assume that

C(x1, x2) ≥ xα1
1 x

α2
2 .

Assumption 5 F is a Donsker class of locally bounded functions with positive locally

bounded envelope function Φ such as∫
Φ2(y)dµ(y)

C(G1(y(1)), G2(y(2)))
<∞, (3.6)

and, for some ε > 0 arbitrary small,∫
Φ(y)

[
G1−α1

1 (y(1))K1/2+ε
1 (y(1))

Gα2
2 (y(2))

+
G1−α2

2 (y(2))K1/2+ε
2 (y(2))

Gα1
1 (y(1))

]
dµ(y) <∞ (3.7)

where for i = 1, 2,

Ki(u) = −
∫ u

0

dGi(t)

Gi(t)2Fi(t)
.

Condition (3.6) corresponds to a �nite asymptotic variance. Condition (3.7) is a

technical assumption needed to obtain the tightness of the process. This assumption is

of the same �avour as the condition (1.6) in Stute (1995), which holds for a large class

of distributions of lifetimes and censoring. To illustrate this assumption, let us take the

same particular example similar to the one considered by Stute (1995). Assume that

Fi(u) ∼ cGi(u)βi .

for u in the tail of the distribution of T (1). Using some straightforward computations, one

can see that Ki(u) ≤ Fi(u)−1Gi(u)−1. Hence, condition (3.7) holds if∫
1

G2(y(2))α2

∫
Φ(y(1), y(2))dF1(y(1)|y(2))

F1(y(1))γ1
<∞,

where

γ1 =
β1/2 + ε(1 + β1) + α1 − 1/2

β1

,

and if a similar condition also holds if we reverse the roles of y(1) and y(2). This condition

seems reasonable for a large number of lifetimes distribution. For example, if the lifetimes

have sub-exponential tails, the condition will hold for any polynomial function Φ, provided

that γi < 1 for i = 1, 2.

We now state the main result of this section.

13



Theorem 3.3 Let F be a class of functions satisfying Assumption 5. Then, under Iden-

ti�ability Assumption 1 and under Assumptions 3 and 4,

µ̂(φ)− µ̃(φ) =
1

n

n∑
j=1

∫
η(Yj,∆j, t)φ(t)C(G1(t(1)), G2(t(2)))dµ(t) +Rn(φ),

with supφ∈F |Rn(φ)| = oP (n−1/2), and where η is de�ned in (3.5).

Proof. The proof can be obtained from Theorem 3.2 and by checking conditions of

Lemma 7.1. Indeed, we apply Lemma 7.1 for the process Pn(t, φ) = n1/2
∫
φ(y)1y∈Itd[µ̂−

µ̃](y). The weak convergence on compact subsets comes from Theorem 3.2. The �rst

condition in Lemma 7.1 can be easily deduced from the �rst moment condition in As-

sumption 5, which is the condition needed to obtain a �nite asymptotic variance. The

second condition comes from Lemma 7.2, taking Mn = n1/2Mn (which satis�es condition

3 in Lemma 7.1 using the result of Lemma 7.2), and

Γn(τ) =
1

n

n∑
j=1

δ
(1)
j δ

(2)
j Φ(Yj)1Yj∈Iτ

C(G1(Y
(1)
j ), G2(Y

(2)
j ))

[
G1−α1

1 (Y
(1)
j )K1/2+ε

1 (Y
(1)
j )

Gα2
2 (Y

(2)
j )

+
G1−α2

2 (Y
(2)
j )K1/2+ε

2 (Y
(2)
j )

Gα1
1 (Y

(1)
j )

]
.

Conditions 4 and 5 come from the law of large numbers and the second moment condition

in Assumption 5.

4 Applications

In the following, we will consider that Identi�abilty Assumption 1 and assumptions 3 and

4 hold.

4.1 A class of M-estimators

In this section, we provide a general result on M -estimation in view to apply it to various

regression frameworks. We consider an estimator

θ̂ = arg min
θ∈Θ

Mn(θ), (4.1)

where Θ ⊂ Rk, andMn is a functional based on the estimator µ̂ introduced in the previous

sections. More speci�cally, we consider Mn of the following form,

Mn(θ) =

∫
φθ(y)dµ̂(y),

14



where {φθ, θ ∈ Θ} is a parametric family of functions. Based on the results obtained for

the estimation of µ̂, and standard conditions on the envelope of this class of functions, we

provide a general result that ensures the asymptotic normality of θ̂.

We now state the main result of this section.

Proposition 4.1 Let {φθ : θ ∈ Θ}, {∇θφθ : θ ∈ Θ}, {∇2
θφθ : θ ∈ Θ}, and assume that

Assumption 5 hold for these three classes of functions.

Let θ̂ be an estimator of the type (4.1), and assume that θ0 = arg minθ∈ΘM(θ) is an

interior point of Θ, where

M(θ) =

∫
φθ(y)dµ(y),

and Θ is a compact subset of Rk.

Assume that, for any θ1, θ2 ∈ Θ, and any t,

|φθ1(t)− φθ2(y)| ≤ ψ(y)‖θ1 − θ2‖a, (4.2)

for some a > 0 and where ‖ · ‖ denotes a norm on Rk, and ψ satis�es the condition (3.6).

Moreover, assume that M is twice di�erentiable at point θ0 with Hessian matrix Γ of

full rank.

Then, under Assumptions 3, 4 and 5 ,

n1/2(θ̂−θ0) = −Γ−1

(
1

n1/2

∫
∇θφθ0(t)d(µ̃− µ)(t) +

1

n1/2

n∑
j=1

∫
η(Yj,∆j, t)∇θφθ0(t)

C(G1(t(1)), G2(t(2)))
dµ(t)

)
+op(1).

Proof. To prove consistency of θ̂, it su�ces to show that supθ |Mn(θ)−M(θ)| = oP (1).

This can be easily done by applying Theorem 3.3 to the class of functions {φθ : θ ∈ Θ}.
Indeed, we get

Mn(θ) =

∫
φθ(t)dµ̃(t) +

1

n

n∑
j=1

∫
η(Yj,∆j, t)φθ(t)

C(G1(t(1)), G2(t(2)))
dµ(t) +Rn(θ),

where supθ∈Θ |Rn(θ)| = oP (n−1/2). We have supθ∈Θ |
∫
φθ(t)d(µ̃ − µ)(t)| = oP (1). Indeed,

this integral can be written as

1

n

n∑
j=1

∆
(1)
j ∆

(2)
j φθ(Yj)

C(G1(Y
(1)
j ), G2(Y

(2)
j ))

− E

[
∆

(1)
j ∆

(2)
j φθ(Yj)

C(G1(Y
(1)
j ), G2(Y

(2)
j ))

]
.

This is a centered empirical sum of functions belonging to the same Donsker class (they are

of the form gF and condition (3.6) ensures the square integrability of their envelope), and
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therefore it converges uniformly towards zero. A similar property can easily be derived

for the second term in the i.i.d. expansion (which is already centered). This shows the

consistency of θ̂.

Next, asymptotic normality of θ̂ is obtained using di�erentiation of Mn on

oP (1)−neighborhoods of θ0. By de�nition of θ̂, and since Mn is di�erentiable with re-

spect to θ, we have ∇θMn(θ̂) = 0. Moreover, using a second order Taylor expansion for θ̂

in a neighborhood of θ0,

∇θMn(θ̂) = ∇θMn(θ0) + (θ̂ − θ0)T∇2
θMn(θ̃),

where θ̃ = θ0 + oP (1), by consistency of θ̂. Moreover, applying again Theorem 3.3, this

time to the class of function {∇2
θφθ : θ ∈ Θ}, we get supθ∈Θ |∇2

θMn(θ)−∇2
θM(θ)| = oP (1).

Hence, since ∇2
θM(θ) is invertible in the neighborhood of θ0, ∇2

θMn(θ̃) is invertible on a

set of probability tending to one. Then, we can write

θ̂ − θ0 = −(∇2
θM(θ0) + oP (1))−1∇θMn(θ0).

The result follows from the weak convergence of∇θMn(θ0), obtained by applying Theorem

3.3 to the function ∇θφθ0 .

As a by-product of Proposition 4.1, one can easily deduce asymptotic normality of θ̂,

by applying the Central Limit Theorem to the main term in the i.i.d. expansion. The

limit covariance matrix can then be estimated from the data by replacing each unknown

quantity in its expression by its empirical counterpart.

4.2 Examples

Example 1: Mean regression

In a mean-regression model, we assume that

T (2) = r(θ0, T
(1)) + ε, (4.3)

where E[ε|T (1)] = 0. Note that the results that we provide are also valid if we replace

T (2) by log T (2), which is sometimes useful to obtain variables with support on R instead

of R+, and therefore permits to consider symmetric unbounded distributions for ε. With

at hand our estimator µ̂, we can extend the de�nition of the least-square estimator of θ0.

This leads to an estimator of the form (4.1), with

φθ(t) = (t(2) − r(θ, t(1)))2. (4.4)
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Assumption 5 reduces to assumptions on the tail of the marginal distribution and on the

function r. In view of the discussion below Assumption 5, this Assumption will hold in the

particular case where the lifetime distributions are sub-exponential, and for a polynomial

function r.

Example 2: Generalized Linear Model

In a Generalized Linear Model (McCullagh and Nelder, 1983), one assumes that the

conditional distribution of T (2) given T (1) belongs to some exponential family, allowing

to perform maximum likelihood estimation. Therefore, one assumes that the conditional

distribution of T (2) given T (1) = t(1) admits a density with respect to a dominating measure

of the following form,

f θT (2)|T (1)=t(1)(t
(2)) = exp

(
[t(2)(θ01 + θ02t

(1))− b(θ01 + θ02t
(1))]a(κ)−1

)
,

where b is a known function, and a is a function depending on a dispersion parameter

κ. Under random censoring, one could either derive a new likelihood contrast which can

be numerically di�cult to handle, or use the new estimator that we propose, to replace

empirical sums used in the uncensored case by weighted sums. In this second approach,

the estimator of θ0 is of the form (4.1) with

φθ(t) = −
(
[t(2)(θ01 + θ02t

(1))− b(θ01 + θ02t
(1))]

)
.

Since there is a link between the canonical parameter of an exponential family and the

expectation, we get

g(E(T (2)|T (1))) = θ01 + θ02T
(1),

for some link function g.

5 Simulations

In the following we presente a small simulation study to evaluate the �nite sample behavior

of our estimator. To begin with, a mean regression analysis is performed. The following

model is considered

E(T2|T1 = t1) = a+ b× t1

with a = 1 and b = 3. We consider three di�erent ways for simulating survival and

censoring times.
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• Case 1: The distribution of the survival times T1 and T2 are normal variables such

as L(T1) ∼ N (0, σ2
1) and L(T2|T1 = t1) ∼ N (a+ b× t1, σ2

2). The censoring times C1

and C2 are supposed to be exponentially distributed (C1 ∼ E(λ1) and C2 ∼ E(λ2))

such as E(C1) = λ1 and E(C1) = λ2.

• Case 2: The distribution of the survival times T1 is exponential such as L(T1) ∼
E(λ). The survival times T2 satisfy L(T2|T1 = t1) ∼ W(k, a + b × t1) where W
denotes the weibull distribution. The parametrization of the weibull distribution is

such that its means is E(T2|T1 = t1) = (a + bt1)Γ(1 + 1
k
). The censoring times C1

and C2 are such that C1 ∼ E(λ1) and C2 ∼ E(λ2).

• Case 3: The survival times is such as L(T1) ∼ E(γ) and L(T2|T1 = t1) ∼ P(a+b×t1)

such as E(T2|T1 = t1) = a+bt1
a+bt1−1

where P denotes the Pareto distribution. The

censoring times are still exponentially distributed: C1 ∼ E(λ1) and C2 ∼ E(λ2).

We consider 1000 datasets each with n=50, 100, 300 and 500 observations for the

normal, Weibull and Pareto distributions. The results displayed in Table 1 are obtained

for σ2
1 = 1, σ2

2 = 0.5, λ = 0.5, k = 1.5 and γ = 1. The values of λ1 and λ2 are chosen to

reach 15% or 30% of censored observations for the variables T1 and T2. The estimations â

and b̂ obtained using equation (4.1) (with the function φθ de�ned in (4.4)) are compared to

the true value of a and b using root mean squared error (rmse). For comparison purpose,

the error obtained for uncensored observation are also given.

[Table 1]

The second application involves the following generalized linear model,

g(E(T2|T1 = t1)) = a+ b× t1

where g is a link function. In the simulations we �xed a = 1 and b = 3. The following

cases are considered.

• Case 1: The distribution of the survival times T1 and T2 are normal variables such as

L(T1) ∼ N (0, σ2
1) and L(T2|T1 = t1) ∼ N (a+b×t1, σ2

2). The censoring times C1 and

C2 are supposed to be exponentially distributed (C1 ∼ E(λ1) and C2 ∼ E(λ2)). We

consider the canonical link function g = Id. This case correspond to the gaussian

linear model.
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• Case 2: The distribution of the survival times are exponential such as L(T1) ∼ E(λ)

and L(T2|T1 = t1) ∼ E(a + b × t1). The censoring times C1 and C2 are such that

C1 ∼ E(λ1) and C2 ∼ E(λ2). The canonical link g(u) = u−1 is considered.

• Case 3: The survival times is such that L(T1) ∼ E(γ) and L(T2|T1 = t1) ∼
G(k, a+b×t1

k
) where G denotes the Gamma distribution. The parametrization of the

Gamma distribution is such that its means is E(T2|T1 = t1) = (a + bt1). The cen-

soring times are still exponentially distributed: C1 ∼ E(λ1) and C2 ∼ E(λ2). The

canonical link g(u) = u−1 is used.

In each case, 1000 datasets with n=50, 100, 300 and 500 observations are considered.

The values of λ1 and λ2 are chosen to reach 15% or 30% of censored observations for the

variables T1 and T2. The results obtained for σ2
1 = 1, σ2

2 = 0.5, λ = 0.5 and k = 2 are

given in Table 2. The rmse obtained with the proposed estimators of the form (4.1) can

be compared to the one obtained for uncensored observations.

[Table 2]

As expected, the rmse displayed in table 1 and table 2 decrease when the sample

size n and the percentage of censoring increase. The comparison of the error obtained

with di�erent distributions is not very useful as the results for a given distribution are

greatly depending on the chosen distribution parameters. Nevertheless, for a given dis-

tribution, the results obtained with di�erent censoring rates can be compared with the

ones obtained in absence of censoring. For this purpose, we can use the ratio between

the rmse under censoring and the rmse in absence of censoring. This ratio greatly de-

pends on the percentage of observations with two uncensored components. Indeed, by

construction, our estimator leads to better results when percentage of doubly censored

observations is small. We can note that this ratio increases with the sample size n. As

expected, the rmse in table 1 and table 2 for the normal distribution are similar since

the generalized linear model for a normal distribution and identity link is equivalent to

the gaussian linear model. Moreover, it appear that the rmse in table 1 and table 2 for

the normal distribution are around ten times smaller than rmse for other distributions.

We can also notice that the rmse obtained with 30% of censoring on T1 and 15% on T2

is always smaller than the rmse for 15% of censoring on T1 and 30% on T2 whereas the

percentage of doubly censored observations is the same in this two case. It seems that it

is worst to have censoring on the dependent variable than censoring on the covariate.
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6 Conclusion

In this paper we proposed a new estimator of the joint distribution of bivariate censored

lifetimes. Even if it not our main purpose (since we are focusing here on a regression

framework), this technique can be used to estimate the joint distribution function. This

estimator presents many advantages compared to previously existing approaches. First,

it truely corresponds to a probability distribution. Second, its simplicity of computation

make him a practical tool for bivariate censoring inference (or more generally multivariate

censoring, since it can be extended to this case without di�culties). We derived general

asymptotic representations of integrals with respect to this measure, that hold uniformly

over some classes of functions. Moreover, these representation are valid on the whole

distribution support (and not only on compact subsets strictly included in this support, as

it is generally the case in the literature), which extends the result of Stute (1995). This key

result allows us to provide asymptotic results for a large class ofM−estimators like the one

used in regression. These new M−estimation techniques for bivariate censoring present

the advantage to be easily computable, since they only consists of adding appropriate

weights into classical procedures used in absence of censoring.

7 Technicalities

De�ne Iτ = {(y(1), y(2)) s.a. 0 ≤ y(1) ≤ τ (1), 0 ≤ y(2) ≤ τ (2)}, where τ = (τ (1), τ (2)).

Lemma 7.1 Let F be a class of functions. Let Pn(t, φ) be a process on IτH ×F . De�ne,
for any τ ∈ IτH , Rn(τ, φ) = Pn(τH , φ) − Pn(τ, φ). Assume that for all τ such that Iτ is

strictly included in the interior part of IτH ,

(Pn(t, φ))t∈IτH ,φ∈F =⇒ (W (Vφ(t)))t∈IτH ,φ∈F ,

where W (Vφ(t)) is a Gaussian process with covariance function Vφ, and =⇒ denotes the

weak convergence.

Assume that the following conditions hold,

1. limτ→τH Vφ(τ) = Vφ(τH), with supφ∈F |Vφ(τH)| <∞,

2. |Rn(τ ′, φ)| ≤Mn × Γn(τ), for all τ ′ ∈ IτH − Iτ ,

3. Mn = OP (1),
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4. Γn(τ)→ Γ(τ) in probability,

5. limτ→τH Γ(τ) = 0.

Then Pn(τH , φ) =⇒ N (0, Vφ(τH)).

Proof. From Theorem 13.5 in Billingsley (1999) and from condition 1, it su�ces to

show that, for all ε > 0,

lim
τ→τH

lim sup
n→∞

P

(
sup

t∈IτH−Iτ ,φ∈F
|Rn(t, φ)| > ε

)
= 0. (7.1)

Using condition 2 in the Lemma, the probability in equation (7.1) is bounded, for all

M > 0, by

P(|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)) + P(Mn > M). (7.2)

Moreover, from condition 4,

lim sup
n→∞

P(|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)) = 1ε/M−Γ(τ)≥0.

Since Γ(τ)→ 0 (condition 5), we can deduce that

lim
τ→τH

lim sup
n→∞

P(|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)) = 0.

Hence,

lim
τ→τH

lim sup
n→∞

P
(

sup
t>τ,φ∈F

|Rn(t, φ)| > ε

)
≤ lim sup

n→∞
P(Mn > M).

As a consequence,

lim
τ→τH

lim sup
n→∞

P

(
sup

t>τ,φ∈F
|Rn(t, φ)| > ε

)
≤ lim

M→∞
lim sup
n→∞

P (Mn > M) = 0,

using the fact that Mn = OP (1) (condition 3).

Lemma 7.2 Let, for i = 1, 2,

Ki(y) = −
∫ y

0

dGi(t)

Gi(t−)2Fi(t)
.

Assume that Assumption 3 to 5 hold. Then, for all ε > 0,

sup
1≤j≤n

∣∣∣∣∣ δ
(1)
j δ

(2)
j

C(Ĝ1(Y
(1)
j ), Ĝ2(Y

(2)
j ))

−
δ

(1)
j δ

(2)
j

C(G1(Y
(1)
j ), G2(Y

(2)
j ))

∣∣∣∣∣
≤Mn

(
2∑
i=1

δ
(1)
j δ

(2)
j G1−αi

i (Y
(i)
j )K1/2+ε

i (Y
(i)
j )

G
α3−i
3−i (Y

(3−i)
j )C(G1(Y

(1)
j ), G2(Y

(2)
j ))

)
,

where |Mn| = OP (n−1/2).
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Proof. Write

δ
(1)
j δ

(2)
j

C(Ĝ1(Y
(1)
j ), Ĝ2(Y

(2)
j ))

−
δ

(1)
j δ

(2)
j

C(G1(Y
(1)
j ), G2(Y

(2)
j ))

=
δ

(1)
j δ

(2)
j [C(G1(Y

(1)
j ), G2(Y

(2)
j ))− C(Ĝ1(Y

(1)
j ), Ĝ2(Y

(2)
j ))]

C(Ĝ1(Y
(1)
j ), Ĝ2(Y

(2)
j ))C(G1(Y

(1)
j ), G2(Y

(2)
j ))

,

and use Assumptions 3 and 4 to bound the right-hand side by

Mδ
(1)
j δ

(2)
j

C(G1(Y
(1)
j ), G2(Y

(2)
j ))

∣∣∣∣∣ |Ĝ1(Y
(1)
j )−G1(Y

(1)
j )|

Ĝα1
1 (Y

(1)
j )Ĝα2

2 (Y
(2)
j )

+
|Ĝ2(Y

(2)
j )−G2(Y

(2)
j )|

Ĝα2
2 (Y

(2)
j )Ĝα1

1 (Y
(1)
j )

∣∣∣∣∣ ,
for some positive constant M. The result follows from Gill (1983), using the fact that, for

i = 1, 2,

sup
t≤τ (i)

H

Gi(t)

Ĝi(t)
= OP (1),

and that

sup
t≤Y (i)

(n)

|Ĝi(t)−Gi(t)|
K1/2+ε
i (t)Gi(t)

= OP (n−1/2).

This last point comes from Theorem 2.1 in Gill (1983), using that
∫
K−1−2ε
i (t)dKi(t) <∞

(see condition (2.1) in Gill, 1983).

Lemma 7.3 For y ∈ Yτ , there exists a Donsker class of functions F∗ such as the function

f ∗(y) =
1

n

n∑
j=1

η(Yj,∆j; y),

belongs to F∗, where η is de�ned in equation (3.5).

Proof. For i = 1, 2, the functions

g1i(y) =
1

n

n∑
j=1

∆
(i)
j 1

Y
(i)
j >y

Fi(Y
(i)
j )

,

g2i(y) =
1

n

n∑
j=1

(1−∆
(i)
j )Gi(Y

(i)
j ∨ y)

Hi(Y
(i)
j )

,

g3i(y) =
1

n

n∑
j=1

∫ 1
Y

(i)
j ≥u

Gi(u ∨ y)dFi(u)

Hi(u)Fi(u)
,
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are all monotone with respect to y, and are bounded on Yτ . The class of monotone

bounded functions is Donsker, see Theorem 2.7.5 in van der Vaart and Wellner (1996).

The functions y → ∂iC(G1(y(1)), G2(y(2)))C(G1(y(1)), G2(y(2)))−2 are bounded continu-

ously di�erentiable with bounded derivatives. From Corollary 2.7.2 in van der Vaart and

Wellner (1996) and a permanence property of Donsker classes, the result of Lemma 7.3

follows.
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Table 1. Root mean squared error for the mean regression in di�erent censoring

schemes for normal, Weibull, Gamma and Pareto distribution for the explained variable.

% of censoring on T1 and T2

0%− 0% 15%− 15% 15%− 30% 30%− 15% 30%− 30%

Normal

n = 50

n = 100

n = 300

n = 500

0.1041

0.0733

0.0418

0.0323

0.1454

0.1075

0.0626

0.0479

0.2003

0.1539

0.0994

0.0777

0.1873

0.1324

0.0865

0.0686

0.2377

0.1829

0.1291

0.1070

T1 and T2 uncensored 100% 75% 65% 65% 59%

Weibull

n = 50

n = 100

n = 300

n = 500

1.1012

0.8086

0.5005

0.3782

1.3820

1.1145

0.7664

0.6703

1.7133

1.3178

1.0189

0.8926

1.6008

1.2350

0.9560

0.8060

1.8434

1.4812

1.1166

0.9932

T1 and T2 uncensored 100% 73% 61% 61% 52%

Pareto

n = 50

n = 100

n = 300

n = 500

0.9806

0.6787

0.3790

0.2920

1.2709

0.8753

0.5148

0.4209

1.6042

1.0846

0.6232

0.4889

1.5522

1.0707

0.6559

0.5395

1.8571

1.3318

0.7718

0.5802

T1 and T2 uncensored 100% 70% 57% 57% 45%
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Table 2. Root mean squared error in the generalized linear model with di�erent

censoring schemes for normal, exponential and Gamma distribution for the explained

variable.

% of censoring on T1 and T2

0%− 0% 15%− 15% 15%− 30% 30%− 15% 30%− 30%

Normal

n = 50

n = 100

n = 300

n = 500

0.1041

0.0716

0.0423

0.0328

0.1454

0.1035

0.0617

0.0477

0.2003

0.1566

0.1006

0.0812

0.1873

0.1382

0.0871

0.0674

0.2377

0.1785

0.1306

0.1054

T1 and T2 uncensored 100% 74% 64% 64% 59%

Exponential

n = 50

n = 100

n = 300

n = 500

1.1954

0.8716

0.4538

0.3513

1.7062

1.2962

0.6883

0.5560

2.3058

1.6910

0.9232

0.7024

2.2722

1.8218

1.0633

0.8694

2.7985

2.0815

1.3656

1.1135

T1 and T2 uncensored 100% 73% 61% 61% 52%

Gamma

n = 50

n = 100

n = 300

n = 500

0.8205

0.5523

0.3181

0.2487

1.1849

0.7993

0.4685

0.3562

1.5013

1.0376

0.6023

0.4697

1.4354

1.0221

0.6119

0.4931

1.7978

1.2758

0.8181

0.6303

T1 and T2 uncensored 100% 73% 61% 61% 52%
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