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Identification of switched linear systems via sparse

optimization

*
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Abstract

The work presented in this paper is concerned with the identification of switched linear systems from input-output data.
The main challenge with this problem is that the data are available only as a mixture of observations generated by a finite
set of different interacting linear subsystems so that one does not know a priori which subsystem has generated which
data. To overcome this difficulty, we present here a sparse optimization approach inspired by very recent developments from
the community of compressed sensing. We formally pose the problem of identifying each submodel as a combinatorial ¢
optimization problem. This is indeed an NP-hard problem which can interestingly, as shown by recent literature, be relaxed
into a (convex) ¢1-norm minimization problem. We present sufficient conditions for this relaxation to be exact. The whole
identification procedure allows us to extract the parameter vectors (associated with the different subsystems) one after another
without any prior clustering of the data according to their respective generating-submodels. Some simulation results are

included to support the potentialities of the proposed method.
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1 Introduction

We consider in this paper the problem of identifying a
switched linear system from a collection of input-output
data. A switched linear system corresponds to the behav-
ior that results from the interaction (mainly switching)
between a finite set of linear dynamical subsystems. Ex-
amples of such systems arise in many different engineer-
ing fields, typically genetic regulatory networks study,
air traffic management, nonlinear systems control, man-
ufacturing processes modeling, computer vision, etc. (see
e.g.,[19,29] for more examples). Mathematically speak-
ing, a switched linear system can be viewed as a relation
(model) of the form

y(t) = 05,x(t) +e(t), (1)

relating a vector x(t) € R™ called the regressor vector
and a signal y(t) € R designated as the output of the
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system being modeled at time ¢. Here, Ay € {1,...,s}
is the discrete state or the discrete mode, i.e., the index
of the active submodel at time ¢ and 0, € R" is the
associated parameter vector (PV). The sequence {e(t)}
of errors refers to potential mismatch or noise; it is as-
sumed to be bounded. In a general situation, the vector
z(t) appearing in (1) need not be structured but when
dealing with the input-output behavior of switched dy-
namical systems, it sometimes takes the form

2(t) =[y(t = 1) -+ y(t —na)

wt—1)T . ut —nb)T}T,

(2)
where u(t) € R™ and y(t) € R are respectively the input
and output of the considered system, n, and n; are its
orders. The dimension of z(¢) is therefore n = ng +nyny,

and the model (1) is designated as a Switched Auto-
Regressive eXogenous (SARX) model.

1.1 The switched system identification problem
Given observations {xz(¢), y(t)}ii . generated by a
switched linear model of the form (1), with x(¢) defined
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as in (2), we are interested here in estimating the pa-
rameter vectors {6; };:1.

We start by recalling from [31] that the problem of in-
ferring a switched model such as (1) from a set of finite
measurements, admits multiple solutions so that the
identification problem is not well-posed. If the struc-
tural indexes n, and n; are not fixed, then one can find
for example a trivial switched linear model consisting of
one single submodel with large orders that fits all the fi-
nite dataset. Even if finite and fixed values are assigned
to ng and np, there are still infinitely many switched
models that explain the data. For example, it can be
simply verified that there is a switched linear model
with s = IV submodels that can reproduce the data. In
order to remove the identifiability issue, we will assume
in this paper that the orders n, and n; are finite, equal
for all submodels and known a priori. With this setting
for the structural indexes n, and ny, the SARX of in-
terest here will be viewed as the one that, among all
switched linear models consistent with the data, has a
number of submodels that is as small as possible. The
interested reader is referred to the paper [26] for a more
complete treatment of the identifiability problem in the
framework of switched linear state space models.

1.2 Prior work

During the last ten years a number of interesting re-
sults have been achieved in the field of hybrid system
identification. Examples of such works include, in the
case of switched linear models, the algebraic-geometric
method [32,21,30], the product-of-errors based method
[18]. Other methods such as the mixed integer program-
ming approach [27], the bounded-error approach [3], the
bayesian learning based procedure [17], the clustering-
based strategies [13,14,22,4] apply to piecewise affine
systems, i.e., particular switched linear/affine systems
where the switching surfaces are the faces of a set of
non-overlapping polyhedra. An excellent survey can be
found in [25] where most of the methods developed prior
to 2007 have been summarized. Despite the clear merits
of all these pioneering contributions, one can fairly ob-
serve that the subject of hybrid system identification is
still open on many challenging issues such as computa-
tional complexity reduction, optimality and convergence
analysis of the proposed methods. Recently, a promising
idea has emerged as to what extent some results from
sparse optimization based signal recovery can be applied
to hybrid system identification. This idea may indeed be
an expedient for tackling simultaneously both the clus-
tering and estimation problems that are inherent to hy-
brid system computation. The work of Ozay et al. [24]
exploits successfully such an approach. The identifica-
tion of the parameter vectors is formulated as the prob-
lem of recovering a sparse vector-valued sequence, the
instances of which sequence are subsequently agglom-
erated to reach a minimum number of submodels. The
work of Elhamifar and Vidal [12] also suggests sparse
representation as a possible alternative for solving the

problem of subspace clustering. More precisely, the au-
thors of [12] consider the problem of estimating bases
for a set of linear /affine subspaces from data lying in the
union of these subspaces. A limitation of their work how-
ever is that the mixed subspaces need to be linearly inde-
pendent, an assumption which is violated when dealing
with the union of more than one hyperplanes.

1.8 Contributions of this paper

The contribution of the paper consists in the develop-
ment of a new identification method for switched linear
systems. Data vectors generated by such systems lie in
the union of a finite set of linear hyperplanes. Therefore
we pose the identification of a specific submodel as the
problem of extracting the hyperplane that contains the
largest number of data. The corresponding submodel is
hence the one that, among all submodels, achieves, over
the whole dataset, the sparsest vector of fitting errors.
With this formulation, one submodel can be estimated
directly without any prior clustering, by means of sparse
optimization, i.e., the minimization of the number of
nonzero components in an error vector. Since sparse op-
timization is in general non-convex, it is classical to con-
sider instead a convex ¢; relaxation of this problem. We
then present sufficient conditions under which the ¢, re-
laxation is guaranteed to recover exactly the solution of
the initial sparse optimization problem. In the case when
these conditions are not satisfied, we show that all the
PVs can still be identified by slightly adapting an iter-
ative reweighted ¢, optimization technique proposed in
[9]. In contrast to most of the existing methods for hy-
brid system identification, our method lends itself to a
relatively easy analysis. For example, conditions for op-
timality even though somewhat conservative, can be de-
rived. A number of results from the field of compressed
sensing [7,8,10] can be insightful for this purpose.

1.4 Outline of this paper

The remainder of the paper is organized as follows. We
start by presenting in Section 2 the main mathematical
terminology used in the paper. We then describe in Sec-
tion 3 the proposed algorithm for the identification of
switched linear systems with arbitrary switchings. Sec-
tion 4 contains some numerical results that confirm the
potential of our method. Section 5 concludes the paper.

2 Mathematical preliminaries

In this preliminary section we introduce some mathe-
matical concepts and notations that will be extensively
used throughout the paper. We first introduce a notion
of k-genericity indez.

Definition 1 For a given data matriz
X =[z(1) ... o(N)] € RN withn < N, and for any



integer k verifying 0 < k < rank(X), we define the k-
genericity index vi(X) of X to be the minimum integer
m such that any n X m submatriz of X has rank k:

vi(X) :min{m:V(tl,...,tm) witht; #t; fori # j,

rank [z(t1) - z(tm)] = k}
3)

If k > rank(X), we set by convention v, (X) = 400 and
if k=0 we set vp(X) =0 for all X.

For an overview on the function v (-), we quickly men-
tion the following two obvious properties.

(1) I v (X) = k then v,(X) = p for all p < k.
(2) Forany k < rank(X), it holds that k£ < v(X) < N.

Observe additionally that when the data {x(t)}tlil are in
general position, i.e., when any subset {z(t1),...,z(t,)}
of n data vectors are linearly independent, we have
vp(X) = n. Hence, the number v,(X) characterizes
a property of richness (or linear independence) of the
columns of X. For v,(X) to be finite, we need to as-
sume that rank(X) = n. It will be so in all the paper.
Other possible indexes for measuring linear indepen-
dence between the columns of a matrix are the so-called
spark and mutual coherence whose formal definitions
are recalled below from [6] and [11].

Definition 2 The spark of a given matriz X denoted
spark(X), is the smallest number o such that there exists
a set of o columns of X that are linearly dependent. In
fact we have

spark(X) = ze{fg&) 12110 (4)
z#0

where ker(X) refers to the kernel subspace of matriz X
and ||z||, stands for the number of nonzero entries in z.
If ker(X) = {0}, then spark(X) will be conventionally
set to +00.

Definition 3 The mutual coherence of a given matriz
X =[z(1),...,2(N)] denoted u(X), is the largest abso-
lute value of the cosine between different columns of X.
More precisely,

X T.T
W) = max L2020 5)

Ta<ek<n |z, - |l (k
Shhs 2@y - lz(R)l

where, without loss of generality! , it is assumed that all
the columns of X are nonzero.

! One can always remove all zero columns from X.

T2 T2

o Z1 0 T
v = 3, spark = 2. vy = 2, spark = 3.

Figure 1. Illustration of the k-genericity index, the spark
and the mutual coherence for the case n = 2. The data are
viewed as vectors originating from the origin O. The mutual
coherence corresponds to the cosine of the smallest angle
between two pairs of data vectors. For example, the mutual
coherence of the data represented on the left is smaller than
the one of the data on the right.

Note that the n-genericity index, the spark and the
mutual coherence (see Figure 1 for a graphical il-
lustration) are all some measures of how rich (we
will say also generic) the columns of the data matrix
X = [z(1) --- x(N)] are. For example, the smaller the
index v, (X) is, the richer the data contained in X are.
Similarly, small mutual coherence (or large spark) in-
dicates highly linearly independent columns. Given a
data matrix X, we may, due to the extensive use of the
genericity index and the spark throughout the paper, be
interested in evaluating v,(X) or spark(X). However,
using directly Definitions 1 and 2 to this purpose seems
computationally difficult. We present in Lemma 4 an
alternative sufficient condition for checking whether
vp(X) = n or not. Lemma 5 gives a rough idea of how
large is the spark by looking at the mutual coherence,
which is much easier to compute.

Lemma 4 Assume that all the columns of X € R™*N
are nonzero. Then for any integer p satisfying p < 1 +

1
——, it holds that v,(X) = p. In particular, if n <
Zesd rH)
14+ —— thenv,(X) =n.

uxy e e

PROOF. Let X be defined from X by normalizing its
columns with £5 norm, i.e., the columns of X are defined
as Z(t) = x(t)/ ||z(t)||5. Such an operation does not af-
fect the rank properties of X so that X and X have the
same genericity indexes. Our method of proof follows
similar arguments as in a lemma stated in [6]. Let I be
a subset of {1,..., N} with cardinality |I| = p. Denote
by X; the matrix formed with the columns of X whose
indexes are in I and define G; = X}'—X 1. According to
the Gershgorin disk theorem [16], if 7y is an eigenvalue of
G, then there is an i € {1,...,p} such that

p
Iy = giil < gkl
k=1

ki



where the g;; are the entries of G;. From the definition
of Gy, we know that g; = #(i)"#(i) = 1 for all i and
\gir] = |2(i) TE(k)| < p(X) for all (i, k) verifying i # k.
We can hence write, for any eigenvalue 7 of G,

Iy =1 < (p = Dp(X),
which is equivalent to
~(p-DuX)+1 <y < (p—Du(X) + 1.

Therefore if —(p—1)u(X)+1 > 0 or equivalently, if p <
1+1/u(X), all the eigenvalues of G are strictly positive.
In other words G is positive definite and rank(X;) =
rank(X;) = p. We have hence shown that any subset of
p columns of X has rank p provided p < 1+ 1/u(X).
This is equivalent to the claim of the lemma.

The following lemma is a restatement of Lemma 4 and
will be of interest in the next developments.

Lemma 5 ([11]) For any matriz X € R™ 4t holds
that

1
1+ Pes) < spark(X). (6)

3 The proposed solution to the identification
problem

In this section we present the main results of the paper.
We begin with a short overview on the switched system
identification problem. The switched system identifica-
tion problem can be posed as the problem of finding a
set {6; }‘;:1 C R™ of parameter vectors and an associ-

ated switching sequence {)\t}ivzl c {1,...,s} by solving
the optimization problem

N

. 2
o A 2 WO =Bz @) (@)

which, by eliminating the discrete mode, is equivalent to

min 4 n{un (y(t) — 0 z(1))".

K3

Finding an optimal solution to this problem may involve

searching exhaustively over the set {1, ..., S}N of all pos-
sible discrete state paths, an ideal path for which there
is a set of corresponding PVs that fits the data. How-
ever, such a procedure is computationally very hard.

Therefore, a driving principle of many approaches is to
first overcome the combinatorial nature of the problem.
The algebraic-geometric method [21] eliminates it by
transforming the identification problem into the one of

fitting the data with one homogeneous polynomial. In
the same vein, a regularized product-of-errors criterion
is formed in [18] and optimized through continuous non-
linear optimization techniques. The recursive approach
discussed in [1] alternates between data assignment to
submodels and parameter vector update. The approach
of the present paper is based on a formulation of the
switched system identification as a sparse optimization
problem which can subsequently be relaxed into a con-
vex program.

8.1  The method

Given the data {(x(t), y(t))}i\’:1 generated by the system
(1), we consider the error vector

$0)=y—XT0—e (9)

where y = [y(1) - y(N)]", e = [e(1) -+~ e(N)]" and
X = [z(1) -+ x(N)]. Let us denote with N; the number
of data (x(t),y(t)) generated exclusively by the subsys-
tem indexed by 4. Then we can observe that if 8 = 6; for
some i € {1,...,s}, then ¢(9) is a sparse vector, i.e., a
vector where many entries are equal to zero. More pre-
cisely, ¢(0) contains exactly N; zero entries and N — N;
nonzero entries.

In order to avoid any ambiguity in the definition of the
number N;, we make the following formal assumption
throughout all the paper.

Assumption 6 There is no data pair (z(t),y(t)) that
fits two different submodels of the SARX (1), i.e., y(t) =
0 x(t) +e(t) = 0] x(t) + e(t) =i = j.

The method to be presented relies on exploiting the spar-
sity of the vector ¢(f) when 6 € R" is a PV associated
with a submodel of (1). For the sake of clarity, assume
for now that the noise sequence {e(t)} is identically null
and introduce the notations

bi=[1 9J]T and 7(t) = [ y(1) —x(t)T]T. (10)

Then for any time instant ¢, there is ¢ € {1,..., s} such
that ~
y(t) — 0] x(t) =z(t)"6; = 0.

Hence the data record {ir(t)}ivzl lie in the union of s lin-
ear hyperplanes whose normal directions are given by the
parameter vectors §;,7 =1, ..., s. Estimating these nor-
mal vectors may require to group data lying in each hy-
perplane and then proceed with standard linear identifi-
cation techniques for each group. Instead of doing so, we
will extract the parameter vectors ; one after another,
starting directly from the entire dataset. In a sense, our
method can be thought of as a robust identification ap-
proach. In fact, the method can only identify one sub-
model at a time and so, when identifying one submodel,



data from other submodels are roughly treated as out-
liers or gross errors to be corrected.

The vector ¢(0) defined in (9) can be interpreted as the
projections of the data Z(t) onto a given vector § =

[1 HT]T e R+,

#(0) = E : (11)

To determine the PV 6; that achieves the sparsest error
¢(0;), we can in principle solve the sparse optimization
problem

min [[¢(0)]lo , (12)

where ||z||, denotes the £; norm? of z, that is, the num-

ber of nonzero entries of z, ||z]|, = [{i : z; # 0}|. Trying
to solve problem (12) is equivalent to attempting to find
a homogeneous hyperplane (or a vector #) that contains
(that is orthogonal to) as many data Z(t) as possible.

If all the submodels are sufficiently excited within the
data {x(t)}f;l then, as suggested by the following
lemma, the solution to problem (12) is a PV represent-
ing one of the constituent submodels of system (1).

Lemma 7 Assume that N; > svp,(X) for all i, where s
is the number of submodels in (1). If Assumption 6 holds,

then
arggmin [(0)ly = b, (13)

where i, € {i: N; > N;Vj=1,...,s} is one of the in-
dices of submodels that has generated the most number
of data.

PROOF. We just need to show that the solution 6 # 0
to (12) lies in {6y,...,0,}, the true set of PVs. Sup-
pose by contradiction that this is not the case. Then 6
achieves a sparser® error vector ¢(6) than all the 6;’s.
In other words, if we let 1(f) = {t:Z(t)"§ =0}, then
[1(0)] > N; > sv,(X) for all i = 1,...,s, where |I(6)]
is the cardinality of I(6). Denote with n; the number
of data generated by submodel i, and whose indices are
contained in I(). If we had n; < v,(X) for all ¢, then
we would get [I(0)] = >°7_, n; < sv,(X) which would

2 Strictly speaking, £y is not a norm as it does not satisfy the
property of positive scalability, i.e., [|Az]|, = |A|||z||, does
not hold in general.

3 We say that a vector z is sparser than another vector y of
the same dimension if [|z]|, < [|yll,-

clearly violate one of the Lemma’s assumptions. There-
fore there is an index j such that n; > v, (X), i.e., I(6)
contains at least v, (X) indices of data vectors Z(t) gen-
erated by the same submodel j. Such data vectors form

a matrix X; = [2(#]) ... 2(t})] in R *CHD It fol-

lows that both § and 6; lie in the null space of A;, which
is one dimensional by evoking the fact that n; > v, (X).
As a consequence, § can be written as § = )\éj with A\ a
nonzero scalar. Since by definition, the first entries of 6
and 0; are equal to 1, we have necessarily A =1, 0 = 0;
and hence 0 = §;, which contradicts the initial thesis.

While Lemma 7 says that the set of parameter vectors
minimizing ||¢(0)]|, is included in {6,,...,6,}, it does
not give any further information on whether the mini-
mizer can be unique or not. Next, we characterize the
uniqueness of the minimizer of (12) in terms of the n-
genericity index of the data matrix X.

Theorem 8 If there is a vector 0 satisfying

N — v, (X)

l@(0)llp < 5 (14)

then 0 is necessarily the unique vector that achieves the
sparsest possible error ¢(0).

If in addition, Assumption 6 holds and N > (2s —
Dvp(X), then 6 € {61,...,05}.

PROOF. We proceed by contradiction. Assume
that there is v € R", v # 6, achieving an er-
ror ¢(vy) that is at least as sparse as ¢(0), ie.,

16l < le@), < =2
notation I(#) = {t: Z(t)"0 = 0}, we can write

. By introducing the

10) = N = [|¢(0)]], > N%“Q
()] = N = ()], > N%(X)

Using these inequalities, we can now bound the cardi-
nality of I(0) N I(«y) as follows

[1(0) NI(y)| = [1(0)] + [I(7)] — [1(0) UI(7)]
> N+ v,(X) = [1(0) UI(7)] (15)
> v, (X)

because N > |I(0) U I(v)|. Let H designate the matrix
formed with the vectors Z(t) € R™*! whose indices t are
in I(#) N I(v). It follows from (15) and the definition
of v,(X) that rank(H) = n and both 6 and ¥ lie in
the nullspace of H' which is of dimension one. This,
together with the fact that the first entries of 8 and %



are all equal to one (see e.g., Eq. (10) for the definition
of 6 from 6), lead to # = 7, which in turn implies that
0 = . We thus obtain a contradiction and so, the claim
of the theorem holds.

The proof of the second statement follows similar steps
as the proof of Lemma 7. Using the same notations, if n;
were strictly less than v, (X) for alli =1,...,s, then it
would hold that 1/2(N + v, (X)) < |[I(0)| = > ni <
svp(X). It is easy to see that this is incompatible with
the assumption N > (2s — 1)v,(X). There is therefore
at least one j such that n; > v4(X). We can now follow
the same line of arguments as in the proof of Lemma 7
to conclude that 6 is necessarily in {61, ...,0,}.

3.2 Relazxation of the £y problem through the basis pur-
suit method

Note however that the problem (12) is a hard non-convex
optimization problem which is NP-hard in general, see
e.g., [23]. As a consequence, minimizing directly the cost
function in (12) is in general intractable. A popular al-
ternative [6,9] is to consider a convex relaxation of prob-
lem (12) based on the ¢; norm. This relaxation strategy
is known as the basis pursuit (BP) method and leads to

the problem
min [[¢(0)]]; . (16)

where ||z||;, = Zfil |z;| for any vector z € RYM. This
latter problem corresponds to what is classically referred
to as sparse error correction problem in [28] and [8].
Contrary to the problem (12), the convex problem (16)
can be transformed into a classical linear program which
is efficiently solvable by standard convex optimization
techniques [5].

A first natural question is, under which conditions solv-
ing the convex problem (16) can lead to the solution of
the combinatorial problem (12). Second, can uniqueness
be guaranteed for that solution. In order to investigate
these important questions, we will slightly reformulate
the optimization problem (16). The objective is to recast
it as a more standard problem known as sparse signal
representation to which some results from the literature
of compressed sensing [6,11] might apply. Multiply Eq.
(9) by the orthogonal projection matrix

Px=Iy-X"(XXT)"'Xx. (17)
Because Px X T = 0, this yields*

Pxy = Px ().

4 Remember that the noise vector e is assumed to be zero
for now.

For the purpose of the analysis to be presented, we now
set z = ¢(0) and replace the problem (16) with the
following constrained one,

min |Wx z||,
6,z

subject to Pxy = Pxz (18)
z=y—X'60

where we have introduced a weighting matrix Wx =
diag(|[p(1)|l5,-- -, [lp(N)|ly) with the p(i) referring to
columns of Pyx. It is assumed here that Px has no zero
column so that Wy is a positive definite diagonal matrix.
Hence the problem (18) above can be viewed as an ¢;
relaxation of the weighted ¢y problem ming |[Wx ()|,
which, thanks to the nonzero scale-invariance of the ¢
norm, is strictly equivalent to (12). Notice also that the
role of Wx in (18) is to normalize the columns of Py.

Remark 9 Note that the (N, N)-matriz Px in (17) can
be replaced by any full row rank matriz P € RW—)xN
spanning the orthogonal complement of the column space
im(X ") of XT. Preferably, such a matriz should be se-
lected such that it has orthogonal Tows (i.e., satisfying
PPT = 1I). The above matrizr Wx needs then to be de-
fined from the columns of P.

In the following we present sufficient conditions for the
convex optimization problem (18) to uniquely recover
the minimizer of (12). We finally apply these results in
Theorem 14 to the special context of switched linear
system identification and derive sufficient conditions for
determining exactly all the PVs by means of /1 norm
minimization.

Theorem 10 If there is a vector 6 achieving an error
@(0) such that

186 < 5 (1+ 7757) (19)

with

[ Mx (¢, F)|

m(X) = IS?EEN VI = Mx(t, 1) (1 — Mx (k. k))

My =X"(XX")"1X,
(20)

then 0 is the unique solution to the £1 minimization prob-
lem (18). In Eq. (20), |Mx (t, k)| stands for the absolute
value of the (t, k)-entry of Mx.

PROOF. The theorem follows directly as a conse-
quence of Theorem 7 in [6]. To see this, note that by



letting z = ¢(6), problem (18) is equivalent to solving

min |[Wx z||,
g (21)
subject to Pxy = Px=z

for z and then computing 6 from the linear equation z =
y—X 0. Withrank(Px) = N—n < N, this corresponds
to a problem studied in [6]. According to Theorem 7
of that paper, the vector z can be uniquely recovered
it 12y = [$(0)ll, < 1/2(1 + 1/u(Px)) where u(Px)
denotes the mutual coherence of Py, see Definition 3. We
are now left with showing that m(X) = u(Px), which
follows by straightforward calculations.

Theorem 11 If there is a vector 6 obeying the condition
(19), then 0 is the unique solution to both problems (12)
and (18).

For the proof of Theorem 11, we need the following
lemma.

Lemma 12 The orthogonal projection matriz Px de-
fined in (17) satisfies

spark(Px) = N — v, (X) + 1. (22)

PROOF. From the definition (4) of the spark, we know
that

spark(Px) = __min, ||z,
2#0
= min Z|lq -
zeim(XT)” lo
z#0

The second equality follows from the fact that ker(Px) =
im(X T). To prove (22), we will, in view of the previous
equalities, just show that

N-v(X)+1= min_ |z,.
2€im(X )
z#0

By definition of the n-genericity index v, (X), there is a
subset {t1,...,tq—1} of {1,..., N}, with ¢ = v,,(X) >
n, such that the rank of [z(¢1), ..., ®(tq—1)] is strictly
less than n. As a consequence, we can find w* € R™,
w* # 0, such that x(t;)Tw* = -+ = 2(t,_1)w* =
0. For such a w*, we must have z(¢)"w* # 0 for all
t & {t1,...,tq—1}. If this were not the case, i.e., if there
existed a t ¢ {t1,...,t,_1} such that z(¢t) w* = 0,
then we would have w* = 0. This follows from the
definition of v,(X) which guarantees that the matrix
[z(t1), ..., z(tg—1) z(t)]" € R?*" has full column rank
(since it contains v, (X) columns). Let us now take z* =
XTw* € im(X ). Then, ||2*[, = ||XTw*HO is exactly

equal to N — (¢ — 1) = N — v,(X) + 1. It follows that
N —=vp(X) +12min g 7 [|2]ly = spark(Px).
z#0

Now let us assume by contradiction that the last inequal-
ity is strict. Then there exists at least one z € im(X ),
z # 0, such that N — v, (X) + 1 > ||z, or equivalently,
N—||z||y = v(X). In words, this means that the number
of zero entries in z (which is equal to N —||z]|,) is greater
than v,(X). As z € im(X "), there is w € R®, w # 0
such that 2 = X Tw. One can therefore find some time in-
dices ki, ..., kq, with ¢ > v,(X) verifying z(k;) "w = 0,
i =1,...,q. However from Definition 1 of v,,(X), ¢ >
v (X)) implies that rank ([z(k1) - - x(kq)]) = n, which
in turn leads to the conclusion w = 0, contradicting the
fact that z # 0.

PROOF. [Proof of Theorem 11| From Lemma 5 we

know that 1 + ﬁ < spark(Px). We have also seen

in the proof of Theorem 10 that u(Px) = m(X) and
in Lemma 12 that spark(Px) = N — v,(X) + 1. This

leads to 1 + ﬁ < N — v,(X) + 1. Hence if there

is a vector 6 obeying condition (19), i.e. if there is
verifying [|@(0)[l, < 3 (1 + ﬁ), then it also holds
that [|@(0)[l, < 2 (N — v, (X) + 1). Since [|¢p(0)]|, is an

integer, it can then be verified that ||¢(0)]|, < W
whether N — v, (X)+1 is odd or even. Now, the claim of
Theorem 11 follows by direct application of Theorems 8

and 10.

Remark 13 If instead of the specific matrix Px we use
an arbitrary full row rank matrizc P € RV=XN yepify-
ing PXT =0, then Theorems 10 and 11 still hold with
the number m(X) appearing in (19) replaced by p(P).
Also the equality (22) is still true if Px is replaced by P.

Theorem 11 says that if there is a vector 6 producing
a sufficiently sparse error ¢(f), then (18) is equivalent
to (12) in the sense that they have the same (unique)
solution. Since (18) is convex, we can therefore recover
exactly the solution to the combinatorial problem (12)
by means of convex optimization.

Without loss of generality, we can assume in this sub-
section that the subsystems of system (1) are indexed in
such a way that Ny > Ny > ... > N,. Define X; = X,
and for any j = 2,...,s, let X; be the matrix X;_;
from which all the data vectors z(t) related to the sub-
system j — 1 have been deleted. This way, X; contains
N = N; + ...+ Ng columns, X5 contains N — N;
columns, X3 contains N — Ny — N5 columns and so forth.
With these notations, we present below an immediate
corollary to Theorem 11, which is relevant to the linear
switched identification problem.



Theorem 14 Consider the data matriz X € R™*N gen-
erated by the SARX system (1) and assume that

Ny > N—Qg(Xl) > 0,
N2>N—N1—19(X2)>0,
(23)

Ny_1>N—-N; —--- = Ng_o —9(X,_1) >0,

where 9(X;) = 1/2(1 + 1/m(X;)) with m(X;) defined
as in (20) for all j = 1,...,s. Then all the parameter
vectors {01, ...,0s} can be extracted one after another by
solving ¢1 minimization problems of the form (18).

PROOF. Consider the whole dataset X; = X €
R™*N Then the inequality Ny > N —9(X1), is equiva-
lent to ||¢(61)|l, = N — N1 < 9(X1), which by Theorem
11, implies that 6; solves (uniquely) both (12) and (18).
The result follows by applying the same reasoning to
Xo,...,Xs_1. Finally, X, contains data generated only
by the submodel with index s; the PV 6, of this sub-
model can therefore be immediately obtained by ¢; or
{5 minimization.

As it turns out, the main difficulty in applying the basis
pursuit method to computing the submodels of a hybrid
system is that it may happen that none of the submodels
achieves a sufficiently sparse error vector ¢(6). In other
words, the conditions of Theorem 14 may not be easy to
meet on arbitrary datasets. We therefore need, in more
general cases, to find a way of increasing the possibil-
ity to effectively obtain, by convex ¢; optimization, the
solution @ which yields the sparsest error vector ¢(6).

3.8 Improving sparsity

When the PVs 6; do not realize sufficiently sparse errors
¢(0;), we may increase the capacity of the BP method to
still recover them by instead solving a weighted variant

min [WiWx ¢ (0)]), (24)

of problem (16) and (18), where W = diag (w1, ..., wn)
is a weighting diagonal matrix with elements w; > 0.
While the role of the weighting matrix Wx > 0 defined
in (18) is to compensate potential differences of mag-
nitude in the columns of Px 5, W > 0 in (24) desig-
nates an adjustable weighting matrix which is intended,
if it is appropriately chosen, for reinforcing the sparsity-
promoting ability of the 1 norm. To see this, suppose for
example that we are seeking to estimate a particular PV
0 = 0; for some i = 1,...,s. If by some means we could
know (at least approximately) the entire discrete state

5 In what follows, we will not make Wx appear explicitly.

sequence {At}i\;17 then by setting w; = 1 when \; = ¢
and w; = 0 when \; # i, 8 = 6, could be recovered from
(24). Hence, by appropriately adjusting the weights one
can encourage the obtention of the sparsest possible er-
ror vector ¢(0). Although the discrete state sequence is
not known, the weights can be iteratively approached
by solving a sequence of convex ¢; norm optimization
problems of the form (24). This idea is supported by the
results of [9] which argue that sparsity of the solution
can be enhanced through reweighting ¢; optimization.
For the sake of completeness we recall, with a slight
adaptation to our setting, the reweighted ¢; optimiza-
tion technique [9] in Algorithm 1 (see below).

Algorithm 1 Reweighted ¢; minimization

Inputs: Data {(:z:(t), y(t)) }ivzl
Initialization: Set the initial weights as: w§0> =1,t=
1,...,N and W©) = diag (wgo),...,
counter, r < 0.
Repeat

(1) Solve the convex problem

wj(\(,))) ; Initialize a

0(’”) = arg min ||W(T)¢O(9)H1
0

where ¢°(6) is an ¢5-normalized version of ¢(6) de-

fined as
_ AT

5°(6) = z(1)T0 Z(N)TO

lzll, [z,

(2) Update the weights as
(r+1) 1
=——F t=1,...,N

T T o) + 2

) rr+1
Until r attains a pre-specified maximum number of
iterations rmax or until convergence (for example when
|0¢) — gr=1) ||2 < Tol, where r > 2 and Tol is a thresh-
old).

Return 6(")

3.4 Dealing with noisy data

We now turn to the case when the identification data are
corrupted by a moderate amount of noise {e(¢)}. Then
recall from Eq. (9) that

y=X"0+9¢0)+e.

If the error sequence {e(t)} were known, the previous
noise-free identification method could be readily applied



with § = y — e € R¥ as the new output vector and
X € R™N as the regressor matrix. If § represents one
submodel of the switched system (1), then

&(H,e)zﬂ—XTHZy—XTH—e (25)

should be sparse, which leads to the minimization of
qu(@, e)“1 as a possible way of recovering 6. Although
{e(t)} is not measurable, one can still look for the spars-
est error by minimizing ||¢(8)||; and ignoring the noise
e. This is only possible up to what extent the ¢; opti-
mization can stand noise. In fact the ¢; estimator can
correct (be insensitive to) very gross error entries with
arbitrary magnitude provided the considered error vec-
tor is sparse enough. However it is much less capable of
removing the effect of non-sparse small noise e than the
£2 norm for example. Therefore a quite natural approach
would be to minimize the ¢; norm ||¢(6, e)H1 of ¢(0,e)
while minimizing the ¢ norm ||e||, of e. There are two
possible ways of implementing this idea.

A first possibility is to minimize [|¢ (0, e)|l; while con-
straining e to be bounded with respect to a certain norm.
In [7], Candés and Randall used this approach to cor-
rect errors occurring when decoding messages transmit-
ted over communication channels. Their idea is to esti-
mate, under sparsity of (25), the error e together with
the vector 6 which we suppose here to represent one sub-
model of the switched system (1). To do so, one needs
however to know a priori an upper bound 7 on the norm
of the noise. More precisely, a somewhat tight bound 7
satisfying ||e||, < n, with £ a certain norm in {2, co, ...},
is required. If 6 is a PV for the switched linear system,
then 6 may be computed from the convex program

ain W30, o
subject to |le|, < n.

The solution 6 to (26) is expected to be in {1,...,605};
the vector e € RY is the variable whose estimate is
expected to be equal or close to the true error e defined
in (9). Here, W = diag (w1, ..., wy) is a positive semi-
definite and diagonal weighting matrix. For both the
cases £ = 2 and £ = oo (see [7] for more comments),
problem (26) is convex and can be efficiently solved using
for example interior-point or simplex methods [5].

A second alternative approach is to trade-off H(ﬁ(@, e) H1

and ||e||? i.e., to consider a convex optimization problem
of the form

- 1
min [ (0. ), + 5 el (27)

In this latter method, no a priori upper bound is required
on the magnitude of the noise but a regularization term

~ needs to be set. Problem (27) can be solved for example
by Iterated Shrinkage (see e.g., [6] for some comments
on these methods).

3.5  Summary of the algorithm

We have seen in the previous subsections that by apply-
ing Algorithm 1, we can identify one of the s parameter
vectors of a switched system such as (1) from the whole
dataset. If the conditions of Theorem 11 are satisfied,
then we know that Algorithm 1 will find (after only one
iteration) a vector 8* in the set {f1,...,05} such that
both [|¢(6*)||, and ||¢(6%)||; are minimum. If these con-
ditions are not fulfilled, Algorithm 1 may not converge
towards a point in {61, ..., 0 }. However, as argued in [9]
and suggested by different experiments reported in [9]
and in Section 4 of this paper, the algorithm is likely to
find the vector 6* that realizes the sparsest error ¢(6).
According to Lemma 7 and Theorem 8, such a point 6*
isin {61,...,60s} when enough rich data are available.

Without loss of generality, we will denote with él, i.e.
the estimate of 61, the point of {61, ..., 60} to which the
algorithm converges when it is run over all the data. Ob-
serve that él can be obtained from thg whole mixed data
without any prior clustering. Given 6, we need now to
estimate the rest of the PVs. However we cannot pro-
ceed this time with the whole dataset because the algo-
rithm may still converge to the same PV ;. Therefore it
is preferable to remove the data generated by that sub-
model. The indices of such data can be determined as

I(él):{te{l,...,N}:

where it is assumed that Tresh € [0, 1] is a tolerance
threshold and 6, = [1 élT ] " From the data indexed by

I\ I(6,), we estimate #,. We can repeat this procedure
until all the PVs are identified. A pseudo-code of the
method is summarized in Algorithm 2.

Observe that if the number of submodels is known be-
forehand, it can be fed into the identification Algorithm
2. In such a case the while loop can be replaced by a for
loop. Also, the stopping test need not be that strict as
the condition | J| # 0. The algorithm can also be stopped
once the cardinality of J falls under a given number.
Before pursuing this subsection, let us emphasize a few
remarks.

Remark 15 (Number of submodels) When the
threshold Thres in Algorithm 2 is suitably chosen, the
proposed identification scheme can automatically pro-
vide the number of submodels. However when dealing
with highly noisy data, selecting a threshold may, as is
well-known, be a delicate task (for more details, see the
paragraph concerning the implementation issues).



Algorithm 2 Identification of all PVs

(1) Inputs: {(z(t), y(t)},,
(2) Initialization: S < ), J « {
(3) While |J| #0
e Estimate a submodel by the reweighted ¢; mini-
mization method (See Algorithm 1) based on the
data whose indices are contained in J
e Record the identified PV: § + S U {0}
e Remove from J indices of data generated by the
submodel obtained:

1,...,N}

J e J\ (JNI)),

with I(0) defined as in Eq. (28).
(4) EndWhile
(5) Return S and s = |S|.

Remark 16 (Unknown orders) In case the ordersn,
and ny are unknown, assume that some upper bounds
Mg = Ng and Ny > Ny are available a priori. We can then
parameterize the regressor x(t) with i, andny i.e., define
a Tegressor

T, () =yt —1) -+ y(t —ng)

.
u(t =)7L u(t )]

In this case, we can, instead of (18), solve the convex
problem
win [[Woa(0)], + Wyl

where Wy and Wy are some diagonal weighting matrices
with positive entries. This way, the solution 0 is expected
to be sparse; its sparsity can be enhanced by choosing a
matriz Wy so as to penalize more the entries of 6 which
correspond to the components y(t — i) and u(t — j) of
T, 7, () having the largest i and j.

Implementation issues. Implementation of the iden-
tification Algorithm 2 necessitates mainly three user-
defined parameters to be set. The number £ in Algo-
rithm 1 aims essentially to prevent division by zero; the
tolerance Tol in the same algorithm is used to detect
convergence. Finally, the number Thres appearing in Al-
gorithm 2 is a decision parameter. As is apparent from
their respective roles, the first two user-defined parame-
ters are easy to tune and do not have much effect on the
performance of the algorithm. The parameter Tol can
even be replaced with a fixed maximum number of iter-
ations (See Algorithm 1). The last parameter is proba-
bly the most delicate to set when the identification data
are affected by noise. The difficulty in choosing Thres
increases with the magnitude of the noise. First notice
that the threshold Thres does not impact the identifi-
cation of the first PV 6, (first is used here with respect
to the numbering agreed in the beginning of this sub-
section) because all the dataset is processed at this first

10

step. However, it does have an influence on the identi-
fication of the subsequent PVs. For example the identi-
fication of the second PV 65 requires that we manipu-
late the dataset in the objective of promoting the con-
vergence of the algorithm to that second PV. An intu-
itive way of achieving this goal is, as proposed in Algo-
rithm 2, to remove the data generated by the first sub-
model, before proceeding further. These data need not
be removed entirely. For the algorithm to choose 65 as
a convergence point, we just need a sufficient number of
them to be removed. What can happen however is that if
Thres is too small with respect to the level of noise, only
a very small number of the data related to submodel 1
will be removed so that the algorithm can still identify
f1 in the second step. This will likely results in an over-
estimation of the number of submodels with redundant
PVs. Although the number of estimated submodels is
not minimal, the input-output map can still be recon-
structed from the identified PVs. If Thres is too large,
more than the data pertaining to the first submodel may
be removed, probably causing the algorithm to provide
bad estimates for some of the remaining PVs.

4 Applications

In this section, we apply the proposed identification al-
gorithm to a SISO SARX model composed of three linear
submodels of order two. The SARX model is defined by

y(t) = 63 [y(t — 1) y(t —2) u(t — 1) u(t —2)] " +e(t)

(29)
with \; € {1,2,3} and
.
61 = [-0.40 0.25 —0.15 0.08] ,
6> = [1.55 —0.58 —2.10 0.96] ', (30)
05 = [1 —0.24 —0.65 0.30] .

Using this switched model, we generate the identification
data under the following conditions:

e The excitation input {u(¢)} is a centered signal with
normal distribution and variance unity.

e The noise {e(t)} is a white Gaussian noise whose mag-
nitude is such that the Signal to Noise Ratio (SNR) is
equal to 30 dB with respect to the output signal.

e The switching sequence {);} is uniformly distributed
in {1,2,3}.

For all the results to be presented in this section, all con-
vex optimization instances occurring in our method have
been numerically implemented with the Matlab based
software developed by Grant and Boyd [15].



4.1 Tests on the BP and the reweighted 1 methods

In a first experiment, we verify the ability of the BP
method to exactly recover the solution of the sparse op-
timization problem, under the condition derived in The-
orem 11. With regard to this goal we can set the noise
sequence {e(t)} to be identically null. We assign a fixed
value to the sparsity of the error ¢(f3) (expressed in
terms of the number [|¢(63)l|, of nonzero components
in ¢(03)) and then solve problem (18) 100 times on dif-
ferent independent simulations of input-output data of
length N = 100 each. This procedure is repeated for dif-
ferent values of ||¢(03)]|, reported in Table 1. In this ta-
ble we display for each given value of ||¢(63)]|,, the per-
centage of successes in attempting to compute the solu-
tion of (12) by solving (18). Since the data (z(t),y(t)),
t=1,...,N,is generated from (29) with white noise as
input and uniformly distributed discrete mode, it holds
with overwhelming probability that the columns of X are
in general position. Consequently, it can be reasonably
assumed that v4(X) is as small as 4 i.e., v4(X) is equal
to the dimension of z(t), see (29). According to Theo-
rem 11, if [|@¢(63)]|, is roughly less than NovalX) — yg,
then equivalence holds between problems (12) and (18)
and the unique solution to both of them is 83. This can
be verified from the results of Table 1 where we see that
(18) effectively solves (12) successfully with a score of
100% over 100 trials (on randomly generated data) once
llp(03)]|, falls under 48.

loB3)l, | 58% | 55% | 53% | 50% | 48% | 45%
# succ. | 46% | 76% | 94% | 99% | 100% | 100%
Table 1

Equivalence between fp and ¢; minimizations versus the
sparsity of ¢(f3). The ¢y norm of ¢(f3) is expressed as a
fraction of the nonzero entries over the total length of the
vector ¢(03).

Now we propose, in the same conditions as the first ex-
periment, to solve the sparse optimization problem (12)
with the reweighted ¢; optimization technique described
in Algorithm 1 [9]. The related results are presented in
Table 2. It turns out that the reweighted ¢ optimization
approach significantly improves the basis pursuit tech-
nique. When ||¢(03)|, starts getting much larger than
lp(01)]l, and ||p(02)],, Algorithm 1 may not keep on
converging towards #3 any longer. Instead, it is likely to
converge towards 6, or ¢ since ||¢(01)|, and ||p(62)]|,
decrease as ||¢(03)]|, increases.

l#0a)|, | 58% | 55% | 53% | 50% | 48% | 45%
# succ. | 94% | 100% | 100% | 100% | 100% | 100%
Table 2

Approximation of ¢y by reweighted ¢; minimization versus
the sparsity of ¢(6s). The o norm of ¢(03) is expressed as
a fraction of the nonzero entries over the total length of the
vector ¢(03).

11

4.2 Identification of the PVs

The second objective is to test the statistical robustness
of the identification algorithm. For this purpose, we use
100 different independent realizations of the input, the
discrete state and the output noise (SNR=30 dB) to
generate 100 data sequences of length N = 600 each. The
identification algorithm (Algorithm 2 indeed) is then run
on each of these different 100 data sequences. The user-
specified parameters of Algorithm 1 and Algorithm 2 are
set to ¢ = 0.1, Tol = 0.001 and Thres = 0.05. At each
run, the first 300 points are used to identify a model and
the whole sequence of length 600 is used to validate the
estimated model, i.e., to verify its ability to reconstruct
the system output from the true input and an estimated
discrete state. This is evaluated with the criterion [20]

19—yl

- — (31)
ly _leH2

FIT = <1 ) x 100%

which measures the fitting error between the true output
sequence y and the estimated model output sequence y.
In this formula, ¥ stands for the mean of the true output
sequence and 1y is an N-dimensional vector with all
entries equal to one. The reader can refer to Figure 2 for
an insight into the form of the input-output signals. For
better visualization purpose, the size of the observation
window in that figure has been shortened.

The number of submodels is given a priori. We
start by assuming that the number of submodels is fed
into the identification algorithm. We present in Table 3
the average values of the estimated PVs together with
their standard deviations over 100 independent runs of
the algorithm. Along with those results are provided, for
comparison purpose, the PVs’ estimates the standard
least squares would yield if the discrete mode sequence
were fully known. By comparing the averaged estimates

{éi}j:v of the PVs displayed in Table 3 to the true

values {01-};1 given in (30), we can see that the pro-
posed algorithm has effectively recovered the true PVs
with a relatively good precision despite the presence of
noise. Moreover, by judging from the standard devia-
tions a(éi), we are prompted to conclude that the al-
gorithm performs well on statistically independent real-
izations of the input-output data. Of course, when the
data is noise-free, the parameters are exactly recovered
by the algorithm.

In Figure 3 is represented the distribution of the FIT over
100 runs of the identification algorithm on independent
input-output data. This plot shows that most of the runs
of the algorithm yield a FIT greater than 90%. In fact
98% of the runs produce a FIT measure larger than 87%
(which means 100% if there were no noise in the data) on
both identification and validation data. It can therefore
be concluded that 98% of the runs yield the correct PVs.
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Least squares average estimates if the discrete state were known.

Table 3

Comparison of the proposed identification algorithm to standard least squares (if the discrete state were known) over 100

independent runs: € = 0.1, Tol = 0.001, Thres = 0.05.
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Figure 2. 100 identification and 100 validation data with an
SNR of 30 dB. The algorithm is run with € = 0.1, Tol = 0.001
and Thres = 0.05: Obtained FIT = 93%.
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Figure 3. Distribution of the FIT measure over the 100 in-

dependent runs of the algorithm. ¢ = 0.1, Tol = 0.001,
Thres = 0.05.
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Thres 0.1 0.1 0.2 0.3
SNR (dB) | 40 | 30 | 25 20
# successes | 98% | 90% | 96% 87%

FIT 97.9% | 93% | 83.8% | 63.7%

Table 4

Performance of our method in determining the correct num-
ber of submodels, under different proportions of noise. Here,
# successes is the number of times the algorithm yields the
correct number of submodels (which is equal to 3) over 100
runs using a fixed threshold Thres. The value of FIT dis-
played here is the average fit over 100 independent runs.

The number of submodels is unknown. We turn
now to the case when the number s of submodels is not
known a priori. In such a context, we need to estimate,
as in Algorithm 2, the number of submodels together
with the parameter vectors. As we have seen in Subsec-
tion 3.5, the ability of the algorithm to provide the cor-
rect number (in fact the minimum number) of submod-
els from noisy data depends heavily on the threshold
Thres . And selecting a threshold in a noisy environ-
ment is known to be challenging in general.

For different levels of noise, the number of submodels
is estimated over 100 independent realizations of data.
The results displayed in Table 4 reveal a rather good
tendency of the proposed method in recovering the true
number of submodels.

5 Conclusion

The paper discusses a new optimization-based method
for the identification of linear switched systems. By ex-
ploiting some ideas from the field of sparse signal re-
covery, we have first formulated this challenging iden-

5 This problem is common to most existing methods that

estimate the number of submodels, i.e. their capacity of de-
termining the correct number of submodels depends on a
user-specified parameter, see [3,2,4,24].



tification problem as a combinatorial £y minimization
problem. As such however, the problem is still compu-
tationally intractable so that practical implementation
may involve relaxing it into an £; norm based program,
which is convex and therefore solvable with classical and
well documented tools. Some sufficient conditions are
derived for the convex relaxation strategy to exactly re-
cover the solution of the initial {5 norm problem. In prac-
tice, different conclusive experiments on simulated data
tend to show that the performance of the convex relax-
ation technique can be boosted far more beyond the es-
tablished theoretical conditions of equivalence. Hence,
the method for extracting the parameter vectors asso-
ciated with the different subsystems, proves to be both
computationally simple and satisfactorily efficient. As
future work, we may envision to further study the prop-
erties of the method by (i) studying the convergence
of the reweighted £; minimization problem described in
Algorithm 1 in the context of hybrid system identifica-
tion, (ii) looking for tight bounds on the estimation error
in highly noisy conditions. It would also be interesting
to look for a way of efficiently extending the proposed
method to switched systems in which the noise has a spe-
cific structure (for example, when the linear subsystems
are described with ARMAX models).
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