

# Structural characterization of SiO2-Na2O-CaO-B2O3-MoO3 glasses

Daniel Caurant, Odile Majérus, Edouard Fadel, Marion Lenoir, Christel Gervais, Thibault Charpentier, D.R. Neuville

#### ▶ To cite this version:

Daniel Caurant, Odile Majérus, Edouard Fadel, Marion Lenoir, Christel Gervais, et al.. Structural characterization of SiO2-Na2O-CaO-B2O3-MoO3 glasses. XXIst International Congress on Glass, Jul 2007, Strasbourg, France. hal-00584178

HAL Id: hal-00584178

https://hal.science/hal-00584178

Submitted on 9 Apr 2011

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

### Structural characterization of SiO<sub>2</sub>-Na<sub>2</sub>O-CaO-B<sub>2</sub>O<sub>3</sub>-MoO<sub>3</sub> glasses

D. Caurant, O. Majérus, E. Fadel, M. Lenoir CNRS, ENSCP, Laboratoire de Chimie de la Matière Condensée de Paris (UMR-CNRS 7574), 75231 Paris, France

#### C. Gervais

CNRS, Université Pierre et Marie Curie, Laboratoire de Chimie de la Matière Condensée de Paris (UMR-CNRS 7574), 75252 Paris, France

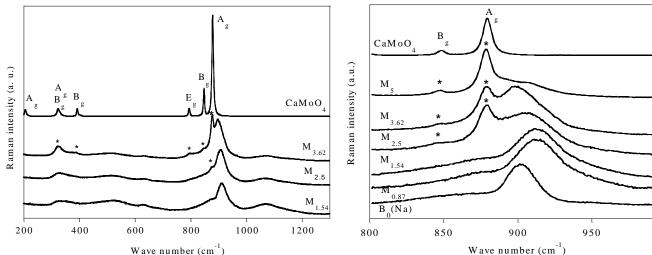
#### T. Charpentier

CEA Saclay, Laboratoire de Structure et Dynamique par Résonance Magnétique, DSM/DRECAM/SCM-CEA/CNRS URA 331, 91191 Gif sur Yvette, France

#### D. Neuville

Laboratoire de Physique des Minéraux et Magmas CNRS-IPGP, 4 Place Jussieu, 75252, France

Nuclear spent fuel reprocessing generates high level radioactive waste with high Mo concentration that are currently immobilized in borosilicate glass matrices containing both alkali and alkaline-earth elements [1]. Because of its high field strength, Mo<sup>6+</sup> ion has a limited solubility in silicate and borosilicate glasses and crystallization of alkali or alkalineearth molybdates can be observed during melt cooling or heat treatment of glasses [2-4]. Glass composition changes can significantly modify the nature and the relative proportions of molybdate crystals that may form during natural cooling of the melt. For instance, in a previous work we showed that CaMoO<sub>4</sub> crystallization tendency increased at the expenses of Na<sub>2</sub>MoO<sub>4</sub> when B<sub>2</sub>O<sub>3</sub> concentration increased in a SiO<sub>2</sub>-Na<sub>2</sub>O-CaO-MoO<sub>3</sub> glass composition [4]. In this study, we present structural results on two series (Mx, By) of quenched glass samples belonging to this system using <sup>29</sup>Si, <sup>11</sup>B, <sup>23</sup>Na MAS NMR and Raman spectroscopies. The effect of MoO<sub>3</sub> on the glassy network structure is studied and its structural role is discussed (M<sub>x</sub> series). The evolution of the distribution of Na<sup>+</sup> ions within the borosilicate network is followed when B<sub>2</sub>O<sub>3</sub> concentration increased (B<sub>v</sub> series) and is discussed according to the evolution of the crystallization tendency of the melt. For all glasses, ESR was used to investigate the nature and the concentration of paramagnetic species.


#### GLASS PREPARATION AND CHARACTERIZATION METHODS

Two series of glasses were prepared for this study all derived from the following composition (mol.%):  $58.2 \text{SiO}_2$  -  $13.77 \text{Na}_2 \text{O}$  - 9.81 CaO -  $18.08 \text{B}_2 \text{O}_3$  either by increasing MoO<sub>3</sub> concentration from 0 to 5.0 (M<sub>x</sub> series with x = 0, 0.87, 1.54, 2.50, 3.62 and 5 mol.% MoO<sub>3</sub>) or by changing B<sub>2</sub>O<sub>3</sub> concentration from 0 to 24 mol.% (B<sub>y</sub> series with y = 0, 6, 12, 18 and 24 mol.% B<sub>2</sub>O<sub>3</sub>) keeping constant MoO<sub>3</sub> concentration (2.50 mol.%). For all samples, 0.15 mol.% Nd<sub>2</sub>O<sub>3</sub> was introduced in composition both to facilitate <sup>29</sup>Si nuclei relaxation during MAS NMR experiments and to perform optical studies not presented in this paper [4]. Glasses were all prepared at  $1300^{\circ}\text{C}$  under air in Pt crucibles using reagent grade SiO<sub>2</sub>, CaCO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, H<sub>3</sub>BO<sub>3</sub>, MoO<sub>3</sub> and Nd<sub>2</sub>O<sub>3</sub> powders. Depending on glass composition, samples were quenched either as cylinders or disks [4]. Several reference glass samples (borate and silicate glasses) were also prepared for comparison with M<sub>x</sub> and B<sub>y</sub> glasses (NMR and Raman spectra). The amorphous character of samples was checked using both X-ray diffraction

(XRD) and Raman spectroscopy. Unpolarized Raman spectra of monolithic samples were collected with T64000 Jobin-Yvon confocal Raman spectrometer operating at approximately 1.5 W at room temperature with the 488 nm line of an argon ion laser for excitation. <sup>29</sup>Si MAS NMR spectra were recorded on a Bruker Avance 300 spectrometer operating at 59.63 MHz. <sup>11</sup>B MAS NMR spectra were recorded on a Bruker Avance 400 operating at 128.28 MHz. <sup>23</sup>Na MAS NMR spectra were recorded on a Bruker Avance II 500WB spectrometer operating at 132.03 MHz. Chemical shifts were determined relative to tetramethylsilane for <sup>29</sup>Si, liquid BF<sub>3</sub>OEt<sub>2</sub> for <sup>11</sup>B and 1.0M aqueous NaCl solution for <sup>23</sup>Na. ESR spectra were recorded on a Bruker ELEXYS E500 spectrometer operating at X band (9.5 GHz) in the range of temperature 20-300 K. For all glasses of M<sub>x</sub> and B<sub>y</sub> series, ESR showed the existence of a signal due to Mo near g~1.91 and that can be detected at least from 20K to room temperature. These ESR characteristics indicated that this signal is due to paramagnetic Mo<sup>5+</sup> (4d<sup>1</sup>) ions located in low symmetry sites. Indeed, the spin-lattice relaxation time of d<sup>1</sup> ions is known to increase (and thus the possibility to detect the ESR signal at high temperature also) with the distortion of the sites. This result is in agreement with the paper of Farges et al. [5] which proposed that the ESR signal of Mo in glasses was associated with low symmetry molyddenyl entities. No signal associated with Mo<sup>3+</sup> (4d<sup>3</sup>) ions near g~5.19 was detected on ESR spectra [5]. For instance, at 20K only a low intensity contribution due to Nd<sup>3+</sup> and Fe<sup>3+</sup> (impurity) ions was detected in the low field region of the spectra. The proportion of Mo<sup>5+</sup> ions (over all molybdenum) ranges between 0.4 and 0.8 % for all the glasses studied in this work as estimated using a DPPH sample as concentration standard. Consequently, the majority of molybdenum (> 99%) occurs as Mo<sup>6+</sup> ions in glasses of M<sub>x</sub> and B<sub>y</sub> series prepared under air (oxidizing conditions). According to Mo EXAFS and XANES results in silicate glasses and to bond valence-bond length considerations published in literature, Mo<sup>6+</sup> ions are present as tetrahedral molybdate entities MoO<sub>4</sub><sup>2</sup>- in modifiers rich regions of the glass structure (depolymerized regions) and are not linked directly to the silicate network [1,5,6].

## STRUCTURAL EVOLUTION OF GLASSES WITH INCREASING M<sub>0</sub>O<sub>3</sub> CONCENTRATION

Raman spectra confirm the XRD results presented in [4] showing that the solubilty limit of molybdenum in M<sub>x</sub> glasses was reached between 1.54 and 2.5 MoO<sub>3</sub> mol.%. Indeed, Fig. 1 clearly reveals the occurrence of the contribution of CaMoO<sub>4</sub> (powellite) Raman vibration modes for x > 1.54 mol.%. For comparison, the Raman spectrum of a powellite ceramic sample is given with the attribution of the bands according to [7]. All the CaMoO<sub>4</sub> bands with frequency  $\geq 321 \text{ cm}^{-1}$  correspond to internal vibrational modes of MoO<sub>4</sub><sup>2-</sup> tetrahedra and the strongest band at 879 cm<sup>-1</sup> can be associated with the symmetric streching vibration of Mo-O bonds. By analogy, we propose that the wide and intense band observed in the 898-913 cm<sup>-1</sup> range on the Raman spectra of all glasses of M<sub>x</sub> series (and also of the B<sub>y</sub> series) is also due to the symmetric streching vibration of Mo-O bonds of molybdate tetraedra within the glass structure. Fig. 2 indicates that this band moves towards lower frequencies when x increases (x  $\geq 2.5$ ) which shows that the environnment and/or the symmetry of MoO<sub>4</sub><sup>2-</sup> tetrahedra in the glass is modified at least when the crystallization of powellite is detected. Comparison of M<sub>x</sub> spectra with the spectrum of a glass without Ca<sup>2+</sup> ions and belonging to the SiO<sub>2</sub>-Na<sub>2</sub>O-MoO<sub>3</sub> system (B<sub>0</sub>(Na) glass in Fig. 2) seems to indicate that the amount of Na<sup>+</sup> ions acting as charge compensators near  $MoO_4^{2-}$  tetrahedra increases with x at the expenses of  $Ca^{2+}$  ions. This evolution can be explained by the increase of the Na/Ca ratio in the modifiers-rich regions of the glass structure when powellite is formed. Thus, Raman spectroscopy of glasses containing Mo seems to be more sensisitive than EXAFS to detect local composition variations around MoO<sub>4</sub><sup>2</sup> tetrahedra (and thus symmetry modifications) in the glass structure. Indeed, the Mo EXAFS results published in literature gave very similar Mo-O distance for different silicate glass compositions (1.76-1.78 Å) [1,5,6].



**Fig. 1.** Normalized Raman spectra of  $M_{1.54}$ ,  $M_{2.5}$  and  $M_{3.62}$  glasses. The Raman spectrum of a CaMoO<sub>4</sub> (powellite) ceramic is given for comparison. Spectra were not corrected with the Long formula. \*: vibration bands due to CaMoO<sub>4</sub> crystals in  $M_x$  samples.

**Fig. 2.** Normalized Raman spectra of  $M_{0.87}$ ,  $M_{1.54}$ ,  $M_{2.5}$ ,  $M_{3.62}$  and  $M_5$  glasses. The spectra of a CaMoO<sub>4</sub> (powellite) ceramic and of sodium silicate glass with Mo (69.34SiO<sub>2</sub> - 28.09Na<sub>2</sub>O - 2.43MoO<sub>3</sub> - 0.15Nd<sub>2</sub>O<sub>3</sub> in mol.%) are given for comparison. \*: vibration bands due to CaMoO<sub>4</sub> crystals in  $M_x$  samples.

1000

<sup>29</sup>Si MAS NMR spectra were simulated with three bands centered at -80.0, -92.2 and -103.6 ppm respectively associated with  $Q_2$ ,  $Q_3$  and  $Q_4$  units ( $Q_n$  units with n=0 to 4 correspond to SiO<sub>4</sub> tetrahedra with n bridging oxygen atoms). These chemical shift values were kept constant for the simulation of the spectra of all samples of  $M_x$  and  $B_y$  series. An example of curve-fitting is shown in Fig. 3a and the evolution of the relative proportions [ $Q_n$ ] of  $Q_n$  units is shown in Fig. 3b. This evolution reveals that [ $Q_2$ ] and [ $Q_3$ ] decrease whereas [ $Q_4$ ] increases when molybdenum concentration increases in samples of the  $M_x$  series: when MoO<sub>3</sub> increases from 0 to 5 mol.%, the proportion of  $Q_4$  units increases of more than 20 % (Table 1).

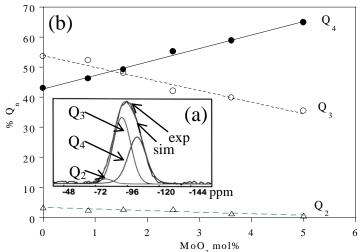
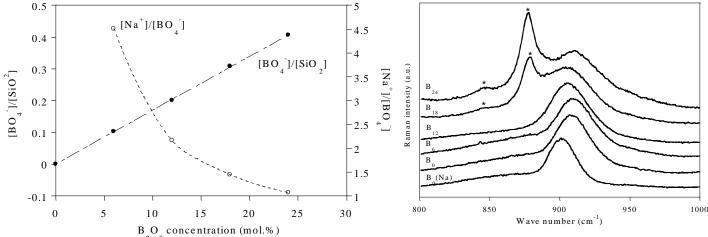



Fig. 3. (a) Example of <sup>29</sup>Si MAS NMR spectra recorded for the M<sub>0</sub> sample. The corresponding simulation using three shape Gaussian line contributions associated with Q2, Q3 and Q4 units is shown (exp: experimental spectrum, sim: simulated spectrum). The same chemical shift values were used for the spectra simulation of all the samples of  $M_x$  and  $B_y$ series. (b) Evolution of the relative proportions of  $Q_4$ ,  $Q_3$  and  $Q_2$  units in  $M_x$ samples with the increase of MoO<sub>3</sub> concentration. Linear fits of Q<sub>n</sub> evolution are shown.

For the  $M_x$  series,  $^{11}B$  MAS NMR spectra simulation only shows a slight and non-monotonous decrease of the relative proportion of  $BO_4^-$  units when molybdenum concentration increases: the variation of the proportion of  $BO_4^-$  units was only about 2-4 % (Table 1). Consequently,  $MoO_3$  acts as a reticulating agent for the silicate network in  $M_x$  glasses and  $MoO_3$  mainly acts on the amount of  $Q_3$  units (Table 1). This result can be explained as follows. As molybdenum is introduced as  $MoO_3$  (corresponding to one  $Mo^{6+}$  ion

|                                       | $\mathbf{M}_0$ | $\mathbf{M}_{0.87}$ | $M_{1.54}$ | $\mathbf{M}_{2.50}$ | M <sub>3.62</sub> | $\mathbf{M}_{5}$ |
|---------------------------------------|----------------|---------------------|------------|---------------------|-------------------|------------------|
| % Q <sub>4</sub>                      | 43             | 46.2                | 49.2       | 55.2                | 58.8              | 64.8             |
| % Q <sub>3</sub>                      | 53.6           | 52.2                | 48.0       | 42.0                | 39.8              | 34.5             |
| % Q <sub>2</sub>                      | 3.4            | 2.6                 | 2.8        | 2.8                 | 1.4               | 0.7              |
| $n_{Q3}$                              | 31.19          | 30.38               | 27.93      | 24.44               | 23.16             | 20.08            |
| $n_{ m Mo}$                           | 0              | 0.87                | 1.56       | 2.56                | 3.75              | 5.26             |
| $\Delta n_{\mathrm{Q3}}$              | -              | 0.81                | 3.26       | 6.75                | 8.03              | 11.11            |
| 2n <sub>Mo</sub>                      | 0              | 1.74                | 3.12       | 5.12                | 7.5               | 10.52            |
| % BO <sub>3</sub>                     | 46.0           | 43.8                | 46.4       | 47.8                | 49.7              | 47.8             |
| % BO <sub>4</sub>                     | 54.0           | 56.2                | 53.6       | 52.3                | 50.3              | 52.3             |
| [BO <sub>4</sub> ]/[BO <sub>3</sub> ] | 1.17           | 1.28                | 1.15       | 1.09                | 1.01              | 1.09             |

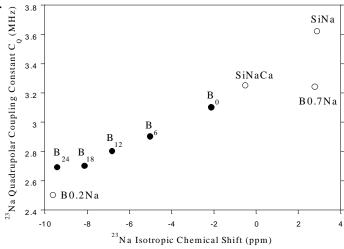
**Table 1.** Relative proportions of  $Q_n$  units (n = 2, 3, 4) and (BO<sub>3</sub>, BO<sub>4</sub>) units in  $M_x$  samples determined after simulation and integration of <sup>29</sup>Si and <sup>11</sup>B MAS-MNR spectra respectively. For a constant number of moles of SiO<sub>2</sub> (58.2 in  $M_0$  composition), the number of moles of Mo<sup>6+</sup> ions (n<sub>Mo</sub>) and Q<sub>3</sub> units (n<sub>Q3</sub>) is reported for  $M_x$  samples. The number of moles of Q<sub>3</sub> units that disappeared ( $\Delta n_{Q3}$ ) when x increased (in comparison with  $M_0$  glass) is also reported.


and 3 non-bridging atoms of oxygen (NBO)) in glass batch whereas  $Mo^{6+}$  ions are known to occur as  $MoO_4^{2-}$  units (corresponding to one  $Mo^{6+}$  ion and 4 NBO) both in glass structure and powellite crystals, each  $Mo^{6+}$  ion needs to catch one NBO more from the borosilicate network. We thus propose the following reaction scheme between  $MoO_3$  and  $Q_3$  units (initially charge compensated by  $Na^+$  or  $Ca^{2+}$  ions) in the melt:

$$MoO_3 + (2Q_3, Ca^{2+} \text{ or } 2Na^+) \rightarrow (MoO_4^{2-}, Ca^{2+} \text{ or } 2Na^+) + 2Q_4$$
 (1)

For a constant number of moles of  $SiO_2$  (58.2 in  $M_0$  composition), the number of moles of  $Mo^{6+}$  ions  $(n_{Mo})$  and  $Q_3$  units  $(n_{Q3})$  was calculated for all  $M_x$  samples and is reported in Table 1. The comparison of  $\Delta n_{Q3}$  (the number of moles of  $Q_3$  units that have disappeared in  $M_x$  sample in comparison with  $M_0$  sample) with  $2n_{Mo}$  (see equation (1)) shows that the values of  $\Delta n_{Q3}$  and  $2n_{Mo}$  remain close to each other when the amount of  $MoO_3$  increases in glass composition which seems to confirm the reaction scheme (1) proposed above.

## STRUCTURAL EVOLUTION OF GLASSES WITH INCREASING B<sub>2</sub>O<sub>3</sub> CONCENTRATION


In [4] we showed that Na<sub>2</sub>MoO<sub>4</sub> crystallization tendency during slow cooling of the melt (1°C/min) decreased with the increase of B<sub>2</sub>O<sub>3</sub> concentration whereas the tendency of CaMoO<sub>4</sub> to crystallize increased. Such as evolution can be explain by the preferential charge compensation of BO<sub>4</sub><sup>-</sup> units by Na<sup>+</sup> rather than by Ca<sup>2+</sup> ions in borosilicate glasses [8]. For the B<sub>y</sub> series, Fig. 4 shows that the [BO<sub>4</sub><sup>-</sup>]/[SiO<sub>2</sub>] ratio increases whereas [Na<sup>+</sup>]/[BO<sub>4</sub><sup>-</sup>] decreases with B<sub>2</sub>O<sub>3</sub> concentration. It is interesting to notice that for the B<sub>24</sub> sample almost all Na<sup>+</sup> ions can act as BO<sub>4</sub><sup>-</sup> charge compensator ([Na<sup>+</sup>]/[BO<sub>4</sub><sup>-</sup>] ~ 1). In these conditions, the amount of Na<sup>+</sup> ions able to compensate the MoO<sub>4</sub><sup>2-</sup> entities strongly decreases when B<sub>2</sub>O<sub>3</sub> concentration increases and the [Ca<sup>2+</sup>]/[Na<sup>+</sup>] ratio in the depolymerized regions of glass structure increases which can explained the evolution of the crystallization tendency. Fig. 5 shows that the isotropic <sup>23</sup>Na chemical shift ( $\delta_{iso}$ (<sup>23</sup>Na)) decreases when B<sub>2</sub>O<sub>3</sub> concentration increases. Thus, the distribution of Na<sup>+</sup> ions through the glassy network significantly changes when increasing amounts of boron are introduced in B<sub>y</sub> glasses. Comparison of  $\delta_{iso}$ (<sup>23</sup>Na) of B<sub>y</sub> glasses with



**Fig. 4.** Evolution of the [BO<sub>4</sub>]/[SiO<sub>2</sub>] and [Na<sup>+</sup>]/[BO<sub>4</sub>] ratios versus B<sub>2</sub>O<sub>3</sub> concentration in B<sub>y</sub> samples (mol.%). The Na<sup>+</sup> and SiO<sub>2</sub> concentrations were determined by chemical analysis whereas the BO<sub>4</sub> concentration was determined by chemical analysis and <sup>11</sup>B MAS NMR.

**Fig. 6**. Evolution of Raman spectra of By samples. For comparison the spectrum of the  $B_0(Na)$  reference glass without calcium is also shown. \*: vibration bands due to CaMoO<sub>4</sub> crystals in  $M_x$  samples.

that of sodium silicate (SiNa), sodium calcium silicate (SiNaCa) and borate (B0.2Na, B0.7Na) reference glasses clearly reveals that when  $B_2O_3$  concentration increases,  $Na^+$  ions moves from a charge compensator position near NBO to a charge compensator position near  $BO_4^-$  units.



**Fig. 5**. Evolution of the  $^{23}$ Na isotropic chemical shift ( $\delta_{iso}$ ) and quadrupolar coupling constant ( $C_Q$ ) in the samples of  $B_y$  series. For comparison the values of  $\delta_{iso}$  and  $C_Q$  of reference glasses are also shown: SiNa (80.93SiO<sub>2</sub> - 19.07Na<sub>2</sub>O), SiNaCa (71.21SiO<sub>2</sub>-16.78Na<sub>2</sub>O-12CaO), B0.7Na (58.8B<sub>2</sub>O<sub>3</sub>-41.2Na<sub>2</sub>O), B0.2Na (83.3B<sub>2</sub>O<sub>3</sub>-16.7Na<sub>2</sub>O). For the three former reference glasses Na<sup>+</sup> ions can compensate NBO whereas in the later one Na<sup>+</sup> ions only compensate bridging oxygen atoms near BO<sub>4</sub><sup>-</sup> units.

In accordance with the XRD results on the  $B_y$  quenched disk samples, Raman spectra show that the crystallization of CaMoO<sub>4</sub> is detected when  $B_2O_3$  concentration is higher than 12 mol.% (Fig. 6). Contrary to the Raman spectra of the samples of the  $M_x$  series, the position of the band associated with Mo-O streching vibration near 905 cm<sup>-1</sup> only slightly evolutes when  $B_2O_3$  concentration increases which indicates that the environment of  $MoO_4^{\ 2^-}$  entities is only slightly modified. As the depolymerized regions in which are located  $MoO_4^{\ 2^-}$  entities become progressively depleted in sodium when  $B_2O_3$  concentration increases, the lack of strong evolution of the M-O vibrationnal frequency could indicate that  $MoO_4^{\ 2^-}$  entities are preferentially charge compensated by  $Ca^{2+}$  ions.

<sup>&</sup>lt;sup>1</sup> G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, J. Nucl. Mater. **322** (2003) 15.

<sup>&</sup>lt;sup>2</sup> R. J. Short, R. J. Hand, N. C. Hyatt, *Mat. Res. Soc. Symp. Proc.* **757** (2003) 141.

<sup>&</sup>lt;sup>3</sup> C. Cousi, F. Bart, J. Phallipou, J. Phys. IV France **118** (2004) 79.

<sup>&</sup>lt;sup>4</sup> D. Caurant, O. Majérus, E. Fadel, M. Lenoir, C. Gervais, O. Pinet, J. Am. Ceram. Soc. 90 (2007) 774.

<sup>&</sup>lt;sup>5</sup> F. Farges, R. Siewert, G. E. Brown, A. Guesdon, G. Morin, *The Canadian Mineralogist* 44 (2006) 731.

<sup>&</sup>lt;sup>6</sup> N. Sawaguchi, T. Yokokawa, K. Kawamura, *Phys. Chem. Glasses* 37 (1996) 13.

<sup>&</sup>lt;sup>7</sup> E. Sarantopoulou, C. Raptis, S. Ves, D. Christofilos, G. A. Kourouklis, *J. Phys. Condens. Matter* **14** (2002)

<sup>&</sup>lt;sup>8</sup> A. Quintas, T. Charpentier, O. Majérus, D. Caurant, J-L. Dussossoy, Appl. Magn. Reson. 32 (2007) 613-634.