INTRODUCTION

This script performs the three analyses presented in figure YY of the # article. In these analyses the likelihood of the model given the data # is approximated by a distance metric between the target data and some # simulated data. Further details in main article and below. The objective # of the analysis is to estimate the parameter theta=2*N*mu (where N is the # effective population size and mu the mutation rate) of a constant # size demographic model and a infinite site mutation model.

HOW TO USE:

1) download external required programs and scripts and place them in the # working directory # 2) edit the line of the script that sets R working directory [setwd()]

3) copy text and paste in R command prompt

EXTERNAL REQUIREMENTS

Coalescent simulator: COMPASS by Jakobsson 2009 http://www.egs.uu.se/evbiol/Research/JakobssonLab/compass.html # # RR Hudson's R script to read ms output (same format as COMPASS) http://home.uchicago.edu/~rhudson1/source/mksamples.html # # MA Beaumont's R script to perform ABC rejection and regression steps # http://www.rubic.rdg.ac.uk/~mab/ # Sets working directory to the directory containg the executable # for the coalescent simulator COMPASS, and the external R scripts setwd("C:/directory/subdirectory/etcetera/REMEMBER TO EDIT THIS") *#* Loads external R scripts source("readms.output.R") # RR Hudson's R script source("make_pd2.r") *# MA Beaumont's R script # Creates graphic output file* pdf(file="FigureABC.pdf",width=6.28,height=8)

par(mfrow=c(2,1),mar=c(4,4,0.3,0.05), oma=c(0.15,0.15,0.15,0.15))

CHARACTERISTICS OF TARGET DATA

Total number of samples
tot_sample_size <- 10</pre>

Contemporary DNA number of samples
mDNA_sample_size <- 5</pre>

Ancient DNA number of samples
aDNA_sample_size <- 5</pre>

Age of ancient DNA samples (measured in N generations, # where N is the effective population size) aDNA_age <- 0.2</pre>

Summary satistic (number of segregating sites)
target_seg_sites <- 20</pre>

Approximation of the likelihood as the proportion of simulations
with exactly the same value for the summary statistic (number of
segregating sites).

Likelihood of 40 different values of theta will be evaluated # the values are taken in a logarithm scale in the interval [1-100) theta <- 10^seq(from=0, to=1.45, by=0.05)</pre>

A vector is created to store the likelihood values estimated for # each value of theta considered likelihood <- array(data=NA, length(theta))</pre>

Sets the number of simulation to perform for each value of theta evaluated <code>number_of_simulations <- 1000</code>

" -h 0.0 ", mDNA_sample_size,

```
" -h ", aDNA_age, aDNA_sample_size,
                                       " > sim.txt")
  # Runs COMPASS (automatically detects operative system and runs COMPASS
  # with the appropriate function)
  if(.Platform$OS.type == "windows") shell( compass_command )
  if(.Platform$OS.type == "unix") {
    compass_command <- paste( "./", compass_command, sep="" )</pre>
    system( compass_command )
  }
  # Reads COMPASS output file using Hudson function 'read.ms.output'
  cat(paste(" reading COMPASS output file: progress... "))
  sim_results <- read.ms.output(file="sim.txt")</pre>
  # Counts the number of simulations with the same number of seqegating
  # sites than the target data and calculated the proportion
  likelihood[i] <- length( which(sim_results$segsites==target_seg_sites) )</pre>
  likelihood[i] <- likelihood[i]/number_of_simulations</pre>
}
# Plots the estimated likelihoods in function of the theta
# at logarithmic scale
log theta <- expression(log*" "*theta1)</pre>
plot( log10(theta), likelihood,
                   type="h",
                   ylab="likelikelihood",
                   1wd=3,
                   cex.lab=1.4,
                   xlim=c(0, 1.5),
                   xlab=log theta)
text(1.5, max(likelihood)[1], "a", cex=1.5)
# Obtains maximum likelihood point estimate of theta
round(theta[which(likelihood==max(likelihood))])
# Reports the proportion of simulations rejected
cat( paste( sum(likelihood)*number_of_simulations,
            " simulations kept of ",number_of_simulations*length(theta),"\n"))
# ANALYSIS NUMBER 2
# ABC analysis using the rejection method as in Pritchard_1999. The number
# of segregating sites is the only summary statistic used as example but
# more satistics should be used in a real analysis.
# Sets the number of simulations to perform in total
number of simulations <- 30000
# The value of the parameter theta for each simulation is taken from
# a prior distribution. In this example, a uniform prior on the logarithm
# of theta is chosen.
theta <- 10<sup>runif</sup>(number_of_simulations,min=-0.1,max=1.6)
# Note: additional parameters would be also sampled from priors
```

```
# for more complex models
# Stores all parameters into a matrix
parameters <- cbind(theta) # for additional parameters: cbind(theta,p1,p2)</pre>
# Writes the values of theta into a file that will be used by COMPASS
# to make simulations from those values (function 'tbs', see manual of
# COMPASS for further details)
write( t(parameters), file="parameters.txt", ncol=dim(parameters)[2])
# Generation of the string containing the comand line to be passed to the
# operative system for the execution of COMPASS
compass_command <- paste("compass ", tot_sample_size,</pre>
                                      number_of_simulations,
                                       " -t tbs ",
                                       " -h 0.0 ", mDNA_sample_size,
                                       " -h ", aDNA_age, aDNA_sample_size,
                                       " < parameters.txt > sim.txt")
# Runs COMPASS
if(.Platform$OS.type == "windows") shell( compass_command )
if(.Platform$OS.type == "unix") {
  compass_command <- paste( "./", compass_command, sep="" )</pre>
  system( compass_command )
}
# Reads COMPASS output file
sim_results <- read.ms.output(file="sim.txt")</pre>
# IMPORTANT NOTE: The current example, which uses only the number of
# segregating sites, does not perform any calculation at this point.
# However, for a real analysis additional summary statistics would be
# calculated for each simulated data set. Some R packages for the
# analysis of population genetics data (such as pegas, Paradis_2009)
# might be useful for this.
# Stores the number of segregating sites of the simulations in a matrix
sim_seg_sites <- data.matrix(sim_results$segsites)</pre>
# Performs the rejection step using M Beaumont function.
# Note that the proportion of simulations accepted (50%) is anormally
# high compared to the values normally used. This has been chosen for a
# better illustration of the improvement obtained by using the regression
# algorithm.
ABC_rejec_results <- makepd4( target_seg_sites, # target summary statistics
                              log10(parameters), # parameter values (sims)
                              sim_seg_sites,
                                                 # summary statistics (sims)
                              tol=0.5, # proportion of sims kept
                              rej=T)
                                         # perform only rejection algorithm
# Obtains point estimate of theta as median of posterior distribution
10^median(ABC_rejec_results$x)
# Reports the proportion of simulations rejected
cat( paste( number_of_simulations*0.5,
            " simulations kept of ", number_of_simulations, "\n"))
```

ANALYSIS NUMBER 3 # ABC analysis using the regression method proposed by Beaumont_2002. # All the initial steps are the same as the ANALYSYS NUMBER 2 so the same # simulations will be used here. The methods are different after the # rejection step and this is starting point for this final analysis. # Performs the rejection and regression steps using M Beaumont function ABC_regres_results <- makepd4(target_seg_sites, # target summary statistics log10(parameters), # parameter values (sims) sim_seg_sites, # summary statistics (sims) tol=0.5, # proportion of sims kept # performs regression algorithm rej=F) # Plots the estimated posterior (calculated from the rejection algorithm or # with the regression algorithm) and prior probability functions for the # paramater theta at logarithmic scale <- density(log10(parameters), from=0, to=1.5) prior posterior_rejection <- density(ABC_rejec_results\$x,from=0,to=1.5)</pre> posterior_regression <- density(ABC_regres_results\$x,from=0,to=1.5)</pre> # Adds to the plot the estimated posterior from the regression algorithm plot(posterior_regression\$x, posterior_regression\$y, ylab="probability density", xlab=log_theta, cex.lab=1.4, type="l", xlim=c(0,1.5),lwd=1.5) # Adds to the plot the estimated posterior from the rejection algorithm lines(posterior_rejection\$x, posterior_rejection\$y, type="l", lwd=1.5, lty="dashed") # Adds to the plot the prior lines(prior\$x, prior\$y, lty="dotted", lwd=1.5) legend(-0.1,max(posterior_regression\$y)[1], c("prior","posterior (rejection)","posterior (regression)"), lwd=1.5,bty="n", lty=c("dotted","dashed","solid")) text(1.5, max(posterior_regression\$y)[1], "b", cex=1.5) # Obtains point estimate of theta as median of posterior distribution 10^median(ABC_regres_results\$x)


```
# Closes graphical device (i.e. output file)
dev.off(which = dev.cur())
```

REFERENCES

```
# @article{Beaumont_2002,
# title = {Approximate Bayesian computation in population genetics},
\# volume = {162},
# url = {http://www.genetics.org/cgi/content/abstract/162/4/2025},
# number = \{4\},
# journal = {Genetics},
# author = {Mark A. Beaumont and Wenyang Zhang and David J. Balding},
# month = dec,
# year = \{2002\},\
  pages = \{2025 - 2035\}
#
# }
# @article{Jakobsson 2009,
# title = {{COMPASS:} a program for generating serial samples under
#
            an infinite sites model },
\# volume = {25},
# url = {http://dx.doi.org/10.1093/bioinformatics/btp534},
# doi = {10.1093/bioinformatics/btp534},
# number = \{21\},
# journal = {Bioinformatics},
# author = {Mattias Jakobsson},
# month = sep,
\# year = {2009},
#
  pages = \{2845 - 2847\}
# }
# @misc{Paradis 2009,
# title = {pegas: Population and Evolutionary Genetics Analysis System},
# url = {http://ape.mpl.ird.fr/pegas/pegas.html},
  author = {E. Paradis},
#
  year = \{2009\}
#
# }
# @article{Pritchard_1999,
# title = {Population growth of human Y chromosomes:
#
            a study of Y chromosome microsatellites},
\# volume = {16},
  url = {http://mbe.oxfordjournals.org/cgi/content/abstract/16/12/1791},
#
  number = \{12\},
#
# journal = {Molecular Biology and Evolution},
# author = {J. K. Pritchard and M. T. Seielstad
#
             and A. {Perez-Lezaun} and M. W. Feldman},
# month = dec,
\# year = {1999},
  pages = \{1791 - 1798\}
#
# }
```