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a b s t r a c t

In this paper, we report an application of neural networks to simulate daily nitrate-nitrogen and sus-
pended sediment fluxes from a small 7.1 km2 agricultural catchment (Melarchez), 70 km east of Paris,
France. Nitrate-nitrogen and sediment losses are only a few possible consequences of soil erosion and
biochemical applications associated to human activities such as intensive agriculture. Stacked multilayer
perceptrons models (MLPs) like the ones explored here are based on commonly available inputs and yet
are reasonably accurate considering their simplicity and ease of implementation. Note that the simulation
does not resort on water quality flux observations at previous time steps as model inputs, which would be
appropriate, for example, to predict the water chemistry of a drinking water plant a few time steps ahead.
The water quality fluxes are strictly mapped to historical mean flux values and to hydro-climatic variables
such as stream flow, rainfall, and soil moisture index (12 model input candidates in total), allowing its
usage even when no flux observations are available. Self-organizing feature maps based on the network
structure established by Kohonen were employed first to produce the training and the testing data sets,
with the intent to produce statistically close subsets so that any difference in model performance between
validation and testing has to be associated to the model and not to the data subsets. The stacked MLPs
reached different levels of performance simulating the nitrate-nitrogen flux and the suspended sediment
flux. In the first instance, 2-input stacked MLP nitrate-nitrogen simulations, based on the same-day stream
flow and on the 80-cm soil moisture index, have a performance of almost 90% according to the efficiency
index. On the other hand, the performance of 3-input stacked MLPs (same-day stream flow, same-day
historical flux, and same-day stream flow increment) reached a little more than 75% according to the
same criterion. The results presented here are deemed already promising enough, and should encourage
water resources managers to implement simple models whenever appropriate.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Human activities such as intensive agriculture, often alter sur-
face water chemistry. Nitrate-nitrogen and sediment losses are
only a few possible consequences of soil erosion and biochemi-
cal applications. Such contaminants are the prime food supply of
filter feeders, regulate the water turbidity, limit light penetration
and photosynthesis, accelerate the degradation of lakes and rivers,
affect biodiversity, and promote the occurrence of water-related
diseases. Owing to the complexity of the processes controlling
water chemistry in a catchment, simple tools are needed to support
decision-making and to develop best-management practices.

Catchment stakeholders and managers increasingly seek infor-
mation on water quality at catchment scales. This information

∗ Corresponding author. Tel.: +1 418 656 3653; fax: +1 418 656 2928.
E-mail address: francois.anctil@gci.ulaval.ca (F. Anctil).

is required to limit the consequence of human activities on sur-
face water chemistry and in many instances to test ideas on how
to restore water usages. Over the years, many models have been
devised to achieve this goal. For instance, Gassman et al. (2007)
state that “the Soil and Water Assessment Tool (SWAT) model (Arnold
et al., 1998; Arnold and Fohrer, 2005) has proven to be an effective
tool for assessing water resource and nonpoint source pollution prob-
lems for a wide range of scales and environmental conditions across
the globe.” However, despite the tremendous efforts and ingenuities
devoted to the development of water quality models such as SWAT
and many others, lots of improvements are still needed. For exam-
ple, Merritt et al. (2003) conclude an exhaustive review of erosion
and sediment transport models noting that “physics-based models
and the more complex conceptual models are not particularly appro-
priate for estimating catchment exports for the following reasons: lack
of sufficient spatially distributed input data to drive the models, paucity
of calibration data in space and time to define an appropriate param-
eter set for the models and hence reliable output, over-dependency of

0304-3800/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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model results on the experience of the user.” Similar conclusions have
pushed many, like Nour et al. (2006), to seek simpler solutions.

Neural networks (NNs) have evolved from intelligent computer-
based systems mimicking the human brain to non-linear
mathematical algorithms that map a set of input variables to a
set of output variables. As such, NNs need no explicit informa-
tion on the processes causing the response. They are completely
data driven, which often allow reducing the magnitude of the
information needed to build them, in opposition to standard phys-
ically based models (Schultz and Wieland, 1997). The disadvantage
of NNs is that they provide no physical or chemical information
about the occurring processes—it is very difficult to decipher neu-
ral weights and biases. Nonetheless, there has been a growing trend
for the experimentation of NNs in the hydrologic and water qual-
ity domains (Chau, 2006). Reports of NN applications simulating
nitrate-nitrogen losses are given by Lek et al. (1996), Clair and
Ehrman (1998), Lischeid (2001), Sharma et al. (2003), Suen and
Eheart (2003), Yu et al. (2004), Holmberg et al. (2006), and May
and Sivakumar (2008), while reports of NN applications simulating
suspended sediment losses are given by Salehi et al. (2000), Sarangi
and Bhattacharya (2005), Nour et al. (2006), and Zhu et al. (2007).

In this paper, we report an application of NN to simulate daily
nitrate-nitrogen and suspended sediment fluxes from a small agri-
cultural catchment that is artificially drained, a situation not often
simulated by ANN. The simulation does not resort on water qual-
ity flux observations at previous time steps as model inputs, which
would be appropriate, for example, to predict the water chemistry
of a drinking water plant a few time steps ahead. The proposed
NN models are strictly mapped to hydro-climatic variables such
as stream flow, rainfall, and soil moisture index, and to historical
mean flux values allowing its usage even when flux observations
have ceased. First, self-organizing feature maps based on the net-
work structure established by Kohonen (1997) were employed to
produce the training and the testing data sets. Second, multilayer
perceptrons, a category of NN models with efficient and practical
applicability comparable to that of usual black box and conceptual
hydrologic models, were employed for the simulations.

The context of application is presented in the next section, with
a description of the Melarchez catchment, the data collected, and
the neural networks employed. The subsequent section presents
the protocol of experiment, the modelling performance criteria,
and the water quality model developments. Conclusions on the rel-
evant findings of this work are provided in the last section, with
an emphasis comparing differences in NN architecture and perfor-
mance for nitrate-nitrogen and suspended sediment fluxes.

2. Context of application

2.1. The Melarchez experimental basin

With an area of 7.1 km2, the Melarchez experimental basin is
entirely dedicated to agricultural activities, 70 km east of Paris,
France. The Melarchez basin is part of the 104 km2 Orgeval experi-
mental catchment (Fig. 1) where agriculture takes place on 80% of
its surface while the remaining 20% is forested. The average annual
air temperature is 9.7 ◦C, the annual mean rainfall is 706 mm and the
annual mean potential evaporation is 592 mm. Most of the basin,
covered with table-land loess up to 10 m thick, is relatively flat with
slopes increasing near the small valley at the river mouth (80% of
the territory spans between 130 and 170 m above mean sea level).

The hydrological behaviour of the Melarchez basin is influenced
by its regional geology. The unconsolidated deposits, about 2 m in
thickness, are essentially composed of sand and loam lenses of low
permeability. The impermeable lenses allow a temporary perched
water table that can reach the soil surface in wet periods. Conse-

Fig. 1. The Orgeval experimental watershed near Paris, France, including the eastern
sub-watershed of Melarchez. Shaded areas are forested.

quently, two water tables may coexist: one in the limestone Brie
Formation aquifer and the other in the perched aquifer.

The Melarchez basin is drained by a first order 2.3-km stream
whose width ranges from 3.5 m upstream to 7.5 m downstream, and
depth ranges from 1 m upstream to 2 m downstream. Its surface
flow mostly combines groundwater releases and discharges from
the anthropogenic subsurface network that drains 75% of the basin.

The Melarchez basin is affected by non-point source pollution
caused by intensive agricultural soil use and a high level of chem-
ical fertilizers usage. In addition to agricultural sources, nitrates
could result from the organic matter mineralization producing
nitrites and nitrates through nitrification process in an oxidizing
medium. The unassimilated nitrogen stays in transit in the soil
and may be carried out by runoff, contaminating surface water,
or be transported deeper into the soil, contaminating groundwa-
ter. Nitrate-nitrogen (NO3

−-N) concentration in ground and surface
water varies as a function of time. High concentrations occur in
spring, after spreading, when nitrates are in the superficial soil layer
and are easier to carry by runoff. Peaks also occur in autumn and at
the beginning of winter (Molénat et al., 2000), when there is a dom-
inance of organic matter mineralization and crop residues. Lower
concentrations follow flood events that leach the soil of its nutri-
ments: soil leaching is a dilution phenomenon. In the Melarchez
basin, the deep aquifer interacts with the surface water, bringing
buried nitrates to the surface.

In the context of Brie Plateau, Sogon et al. (1999) showed that
the two most common erosive processes in the fields are leaching
of the finest soil particles from the ploughed horizon to the under-
ground drainage network and detachment and transport of topsoil
particles by overland flow. Rill and gully erosion are rare and take
place on bare soils only in extreme rainfall events. Meybeck et al.
(1999) compiled the spatial and temporal variability of suspended
sediment in the Seine basin, which includes the Melarchez sub-
basin. General levels in the Seine River are very low due to a gentle
relief and to an even distribution of rainfall throughout the year.
However, there is a marked increase of the suspended sediment
range from Strahler stream order 8–1: highest quantiles increase
and lowest quantiles decrease. For instance, suspended sediment
peaks at Melarchez are produced by local rainstorms, while such
summer flood are not observed at higher stream orders because
rainstorms are locally distributed. The suspended sediment level at
Melarchez is thus more dependent of the agricultural practices at
the time of the storm. Any first and/or fast increase of river velocity
is also more prone to reactivate river bed material deposited since
the previous flood event.

2.2. The database

The hydrometric and water quality data available to this work
consists of daily rainfall (mm), stream flow (m3), nitrate-nitrogen
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Fig. 2. Monthly (left panel) and yearly (right panel) means of the observed daily rainfall (mm), stream flow (m3), nitrogen-nitrate flux (kg), and suspended sediment flux (kg).

flux (kg), and suspended sediment flux (kg), from 1975 to 1993. All
data was collected at the gauging station. Water level was trans-
formed into stream flow by a rating curve; water and sediment
were sampled twice a day, using an automatic sampler. Approx-
imately 16% of the data is missing from the daily nitrate-nitrogen
record and as much as 20% of the suspended sediment fluxes, which
leaves 5605 daily observations in the first instance, and 5271 in the
second.

Annual and monthly means for each daily parameter are drawn
in Fig. 2. Snow fall is negligible on the catchment, where aver-
age daily temperatures persist below 0 ◦C only for short periods
of time and never consistently. The water inputs of significance
are liquid precipitation, which are relatively constant on a monthly
basis over the years (Lauzon et al., 2004). However, the proportion
of precipitation reaching the streams shows a strong seasonality
(Fig. 2). At times, very little or no stream flow is observed at the
hydrometric station for relatively long periods of time despite sus-
tained precipitation. Stream flow is mainly influenced by the soil
moisture content of the perched aquifer and the intensity of the
evapotranspiration fluxes (Filiz, 1973; Gomendy, 1996; Billy et al.,
2008). There are three distinct stream flow phases each year. During
summer (April to September), the hydrological balance is negative,
exhorting the superficial aquifer to disappear and the deep aquifer
to drop. During this period, flows occur only following intense pre-
cipitation, which temporarily saturate the soil. During fall (October
to December), lower evapotranspiration fluxes allow precipitation
to gradually recharge the deep and superficial aquifers. Flows in
fall are generally higher than those of the summer, but high flows,
if occurring, remain sporadic and short. During winter (Decem-
ber to March), the soil is usually saturated and flows are high
and quick. The highest flows typically occur during winter. The
monthly patterns of the stream flow and of the nitrate-nitrogen
flux are almost identical, suggesting a strong link between those
two parameters (Fig. 2). However, the suspended sediment flux
behaves differently. The same situation prevails for the inter-annual
fluctuations (Fig. 2), where moderate variations in the annual rain-
fall leads to larger, but similar, stream flow and nitrate-nitrogen flux
inter-annual fluctuations, but different and even larger suspended
sediment inter-annual fluctuations.

Small catchments like the Melarchez basin are subjected to
strong daily hydrological fluctuations that are difficult to model,
as illustrated in Fig. 3, 1982 is the year with the lowest num-
ber of missing observations. Even if the Melarchez climatology
cannot be identified as violent with a maximum daily rainfall of
only 57 mm from 1975 to 1993, daily stream flow, nitrate-nitrogen
flux, and suspended sediment flux ranged from about nil to 35.7
times (September 1987), 37.5 times (February 1990), and 327 times
(February 1990) their respective average value.

2.3. Neural networks as descriptive and predictive tools

The database is limited, with only a few types of inputs (i.e.,
rainfall, stream flow, nitrate-nitrogen flux, and suspended sedi-
ment flux), which consequently reduces the choice of models to

Fig. 3. Observed daily precipitation (mm), stream flow (m3), nitrogen-nitrate flux
(kg), and suspended sediment flux (kg), in 1982.
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simple conceptual ones or more empirical tools such as neural net-
works (NNs). In a hydrologic context, the ASCE Task Committee on
Application of Artificial Neural Networks in Hydrology provides a
well documented description of both types of network structure
employed here: the self-organizing feature maps and the multilayer
perceptron (ASCE, 2000a), and gives several examples of applica-
tions demonstrating the merits of such techniques (ASCE, 2000b).
NNs are data driven approaches that do not depend on a formal
physical or chemical reasoning to provide an answer to a given set
of inputs.

Self-organizing feature maps (SOFMs), which are based on the
structure established by Kohonen (1997), are a descriptive tool
equivalent to clustering techniques that discriminate input vectors
with respect to patterns present in them. This network is made of an
input layer that receives the data and an output layer composed of
several neurons often structured as a flat plane. The weights asso-
ciated to a given output neuron is similar to a mass center, which
can be compared against input vectors. The weights define the data
patterns, and an output neuron, among all the others, is said to be
activated if its weight vector most closely matches the input vector
fed to the network. The calibration process, which determines the
values of the weights of the network, ensures that the output layer
is spread over the entire data domain and defines the range of pat-
terns in the data in some meaningful coordinate system, which is
why the Kohonen network is called a self-organizing map.

As a predictive tool, the multilayer perceptrons (MLPs)
employed here for the simulation of nitrate-nitrogen and sus-
pended sediment fluxes are typical and by far the most commonly
used structure in the field of water resources (Coulibaly et al., 1999;
Maier and Dandy, 2000). They consisted of one layer of inputs,
one hidden layer of neurons with a sigmoid activation function,
and one output neuron with a linear activation function. To ensure
that all types of inputs fed to the network are on the same scale,
they were linearly standardized so that their mean is zero and their
standard deviation is one. Bayesian regularization, as described by
MacKay (1992), Foresee and Hagan (1997), and Anctil et al. (2004b)
was employed with the Levenberg–Marquardt back-propagation
algorithm as the calibration procedure, where the objective func-
tion is a weighted sum of the mean of squared errors between
observed and estimated water quality parameter, and the sum
of the squares of the NN weights. The use of this weighted sum
attempts to ensure that the NNs provide accurate output values
for input values not represented in the data set employed for the
calibration of the network. The second element of this weighted
sum imposes a constraint that results in smaller weights, which
produces a smoother network response. Another advantage of the
Bayesian regularization procedure is that generalisation of the net-
work may be achieved using only two sub data sets, instead of the
three sub data sets necessary for the more commonly used stop
training procedure (Anctil and Lauzon, 2004). Furthermore, the
stacking method (Wolpert, 1992) is performed here. In the context
of this application, it is a method by which several networks are
calibrated, and the simulation of a nitrate-nitrogen flux and sus-
pended sediment flux is obtained by calculating the mean of the
responses of all these networks.

3. Protocol of experiment

3.1. Data partitioning

This section addresses several technical issues related to the
development of neural network models. It starts with a clear depar-
ture from the common practice in the development of models to
choose calibration and validation data sets continuous in time. In
common practice, one has to be careful in the selection of time

Table 1
Summary of characteristics for the training and testing data sets.

Nitrate-nitrogen Suspended sediment

Training Testing Training Testing

Pmean (mm) 1.98 1.84 1.95 1.94
Pmax (mm) 56.5 57.0 56.5 57.0
Pmin (mm) 0 0 0 0
Qmean (m3) 4,614 4,732 4,807 4,970
Qmax (m3) 173,664 135,648 173,664 152,064
Qmin (m3) 0 0 0 0
Fmean (kg) 48.4 48.8 556 662
Fmax (kg) 1,898 1,373 168,924 193,425
Fmin (kg) 0 0 0 0
Number 3,723 1,882 3,480 1,791

periods to ensure that both the calibration and validation data sets
contain events that represent all possible conditions of flux pro-
duction (Klemes, 1986). Neural networks do not need continuous
streams of data, for they require only that the input vectors fed to
them be complete.

The SOFM network was applied for the subdivision of the time
series into a training subset and a testing subset, following recom-
mendations by Bowden et al. (2002). The clustering was performed
on vectors of concomitant: rainfall, stream flow, and flux records
(the clustering is performed separately for the nitrate-nitrogen flux
and for the suspended sediment flux). A few output layer configura-
tions have been tested (3 × 3, 3 × 4 and 4 × 4), and the smallest one
have been kept to (1) ensure that a large number of input vectors
is associated to each class of behaviours (i.e., output neuron); and
(2) provide information on the behaviours of the system that is as
meaningful as that provided by the larger configuration. Once the
clustering is complete, the input vectors in each class are randomly
divided into two subsets. Two thirds of the data was employed for
training and one third for testing. Statistics of the resulting training
and testing data sets are given in Table 1 confirming that the SOFM
clustering was successful in leading to the creation of statistically
equivalent data sets for training and testing. The SOFM procedure
is applied with the intent to produce statistically close subsets so
that any difference in model performance between validation and
testing has to be associated to the model and not to the data subsets.

The characteristics of the water quality behaviours of the
Melarchez basin are portrayed by the SOFM clustering in
Tables 2 and 3, where the clusters are sorted in descending order of
cluster mean daily rainfall intensity. From Table 2, it is quite obvious
that the nitrate-nitrogen fluxes are more correlated to stream flow
than to rainfall. For instance, cluster #3 groups the largest flows and
nitrate-nitrogen fluxes but only the third largest rainfall intensi-
ties. Furthermore, in cluster #9, the highest rainfalls are associated
to only the sixth highest flows and nitrate-nitrogen fluxes out of
nine. On the other hand, low rainfall intensities, low flows, and low
nitrate-nitrogen fluxes (cluster #4) are by far the most frequent
behaviour with 2577 occurrences out of 5605 daily observations.

Table 2
Summary of characteristics for each nitrate-nitrogen flux SOFM cluster.

Cluster # Pmean (mm) Qmean (m3) Fmean (kg) Number of observations

9 12.3 2,920 28 292
6 11.7 18,913 220 119
3 6.6 49,610 528 233
8 4.7 1,666 16 483
5 1.8 3,658 36 259
7 1.4 505 4 488
2 1.2 12,889 140 374
1 0.1 4,031 40 780
4 0.1 566 4 2,577

Mean 1.9 4,654 48 5,605
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Table 3
Summary of characteristics for each suspended sediment flux SOFM cluster.

Cluster # Pmean (mm) Qmean (m3) Fmean (kg) Number of observations

9 19.7 27,780 6499 143
6 9.2 3,442 256 299
8 4.7 44,949 7382 205
3 4.3 1,336 28 433
5 2.9 8,479 437 175
2 1.5 955 20 517
7 0.7 14,472 1214 271
4 0.2 4,365 178 785
1 0.1 590 13 2443

Mean 1.9 4,862 592 5271

The SOFM clustering of the suspended sediment fluxes (Table 3)
leads to many features identical to the nitrate-nitrogen clustering,
namely a strong stream flow influence and a large representation
of low rainfall, low flow, and low suspended sediment flux events
(cluster #1). However, the highest rainfalls (cluster #9) are now
associated to the second highest flows and suspended sediment
fluxes, which is a noticeable departure from the nitrate-nitrogen
clustering.

3.2. Model input candidates

The successful development of MLP models, simulating either
the nitrate-nitrogen daily fluxes or the SM daily fluxes exiting
the Melarchez basin, depends largely on the availability of perti-
nent model input parameters. Twelve model input candidates are
considered in the present study (Table 4). The first three model
input candidates are the same-day stream flow (Q), the previous-
day stream flow (Q−1), and the same-day stream flow increment
(�Q). Stream flow is often intimately linked to water quality
fluxes, as revealed by the SOFM clustering in Tables 2 and 3. The
time lag allows accounting for delays in water flowing out of the
catchment—a 1-day delay is probably enough for a small catch-
ment such as the Melarchez basin, as confirmed by hydrological
analyses (Molénat et al., 2000), while the incremental value serves
a similar purpose and sometimes lead to a better model (Anctil
and Rat, 2005). The fourth and fifth model input candidates are the
same-day and previous-day precipitation (P and P−1). Precipitation
is often a very important element of runoff generation because it
is the only climate variable, aside from snowmelt at higher lati-
tude or in mountainous areas that can explain rapid flow increases
(Anctil et al., 2004a). The sixth and seventh model input parame-
ters are the same-day historical mean flux (F*) and historical mean
flux increment (�F*). The former is inspired by Shamseldin (1997)
who showed that consideration of the mean value of the historical
observation for each day of the year is often beneficial to simula-
tion MLP models. This requires that some historical observations
are available at site. For instance, in the present study, the same-

Table 4
List of model input candidates.

# Input Description

1 Q Same-day stream flow (m3)
2 Q−1 Previous-day stream flow (m3)
3 �Q Same-day stream flow increment (m3): Q − Q−1

4 P Same-day precipitation (mm)
5 P−1 Previous-day precipitation (mm)
6 F* Same-day historical mean flux (kg)
7 �F* Same-day historical mean flux increment (kg): F∗ − F∗

−1
8 SMI10 Same-day 10-cm depth soil moisture index (mm)
9 SMI20 Same-day 20-cm depth soil moisture index (mm)

10 SMI40 Same-day 40-cm depth soil moisture index (mm)
11 SMI80 Same-day 80-cm depth soil moisture index (mm)
12 SMI120 Same-day 120-cm depth soil moisture index (mm)

Fig. 4. Schematic of the conceptual soil reservoir model.

day historical means were based on up to 21 observations. The last
five model input candidates are different variants of a soil moisture
index. As an alternative to soil moisture content observations, Anctil
et al. (2004a) explored a soil moisture index (SMI) derived from
the GR4J hydrological model (Perrin et al., 2003), which is a con-
ceptual formulation of the impact of precipitation P and potential
evapotranspiration PET on the water balance within a reservoir of
fixed depth z (Fig. 4). The SMI is the water level within the reservoir.
Perrin et al. (2003) showed that the reservoir depth ranged between
10 and 120 cm for 80% of 429 selected catchments across the world.
In the present study, five depths z were used to construct differ-
ent soil moisture index records, that is, 10 20, 40, 80 and 120 cm.
A 1-year warm-up period was used to alleviate the problem of the
initial conditions. All five calculated SMIz time series were thus also
considered as potential supplemental inputs to the MLP models.

3.3. Evaluation of performance

The evaluation of the performance is primarily based on the
mean average error (MAE), a linear scoring rule, and on the root
mean squared error (RMSE), a quadratic scoring rule. They both
describe the average magnitude of the deviation from the observed
values, range from 0 to ∞ (lower values are better), and show the
errors in the same unit and scale as the parameter itself, which
excludes comparisons of the performance of forecasts for basins of
different sizes or with different stream flow regimes. This drawback
is overcome by using a skill score, which is a simple standardiza-
tion made by comparing the performance of the forecast with the
performance of a reference forecast. The Nash and Sutcliffe (1970)
efficiency index (EI) is a common standardization of the MSE, which
ranges from −∞ to 1. It reaches 1 for a perfect fit between predicted
and observed values, and 0 when the hydrological model is no better
than a one-parameter ‘no-knowledge’ model that gives the mean
of the observations as simulation for all time steps. Finally, since
all of the above scoring rules are averages over a data set, scatter
plots are also drawn to visually assess the concordance between the
simulated and the observed water quality parameters.
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As this study involved a comparison of the performance of var-
ious combinations of model inputs, the r2 criterion of Nash and
Sutcliffe (1970) was applied. This criterion expresses the proportion
of the initial variance unaccounted for by the base MLP that may
subsequently be accounted for by the base MLP with a supplemen-
tal moisture input. The r2 criterion is expressed by the following
equation:

r2 = SSII − SSI

1 − SSI
, (1)

where SS is a skill score, for instance EI, I denotes a reference MLP,
and II denotes the MLP with a supplemental input. Negative values
of the r2 signify that the modification to the input vectors has neg-
ative effects on the MLP performance. Senbeta et al. (1999) suggest
that r2 values greater than 10% may be considered as an indication
of the significance of a supplemental model input in the overall
performance of the water quality model.

4. Results

The selection of the model inputs and of the number of neu-
rons in the hidden layer is important to neural networks. As
stressed by Chau (2006), it is necessary to determine the optimal
choice between available environmental parameters, in opposition
to using them all. Cases involving a large number of potential model
inputs imply a very large number of combinations to test, and the
number of combinations increases if the number of neurons in the
hidden layer is a factor to consider in the decision process. In this
application, the goal was to produce separate MLPs for the simu-
lation of the nitrate-nitrogen and suspended sediment daily fluxes
F.

A preliminary analysis for this application concluded that the
choice of the model inputs is more significant in terms of perfor-
mance gains than that of the number of neurons in the hidden layer,
as for Anctil et al. (2004a). Consequently, the calibration strategy
applied here consisted of a first phase to find the most adequate
combination of model inputs for the MLP model, fixing the number
of hidden nodes to 5. The second phase involves finding the number
of neurons in the hidden layer that provides the best performance
with the chosen combination of variables.

The choice of the combination of model inputs consisted initially
in testing all of them individually, and to choose the one that yield
the best model performance. This best model input is combined
individually with each of the remaining one, and the pair that pro-
duces the best modelling performance is retained and combined
with each of the remaining model inputs individually. This process
can continue until all model inputs are employed, but it was stopped
in this application when the performance benefit of adding an extra

Table 5
Performance of MLPs with five hidden neurons in simulating the nitrate-nitrogen
fluxes in the testing data set.

Model inputs 1-input MLPs 2-input MLPs

EI EI r2 (%)

Q 0.857 ref
Q−1 0.440 0.850 −5.1
�Q 0.684 0.861 2.9
P 0.106 0.845 −8.6
P−1 0.224 0.873 11.2
F* 0.138 0.876 13.3
�F* 0.057 0.876 13.2
SMI10 0.113 0.872 10.5
SMI20 0.116 0.877 14.1
SMI40 0.125 0.879 15.2
SMI80 0.134 0.880 15.9
SMI120 0.134 0.876 13.3

Bold values are best results.

model input was considered small when compared against the par-
simony and generality of the base model. For any given combination
of model inputs and number of neurons in the hidden layer tested,
stacking was always employed. It implies that a model is composed
of a group of MLPs. For any given combination of model inputs and
number of neurons in the hidden layer, 50 MLPs are calibrated, and
the global water quality estimate of the model is the mean of the
estimates from all the networks. Only then the model performance
is calculated.

From the twelve model input candidates in Table 4, and 5-hidden
neurons MLPs, the most pertinent input for nitrate-nitrogen sim-
ulation is the same-day stream flow Q, which alone leads to an
efficiency index of 0.857 in the testing data (Table 5), no other
model input candidate stands as a potential alternative to same-
day stream flow. The remarkable link between stream flow and
nitrate-nitrogen flux was already evidenced by the SOFM clustering
in Table 2. This very simple model is improved by 15.9% according to
Nash–Sutcliffe r2 (EI = 0.880) when the 80-cm soil moisture index
is used as a second model input, revealing that soil moisture plays
a role in the level of the nitrate-nitrogen flux exiting the catch-
ment. All 3-input MLPs failed in improving the performance over
the selected 2-input MLP. After optimisation of the number of hid-
den neurons, ranging from 2 to 20, the best EI performance reached
0.888 when 12 hidden neurons are used, a further Nash–Sutcliffe
r2 gain in performance of 7.2% when compared to the 5-hidden
neurons MLPs. The final 2-input stacked MLPs have a MAE of 14 kg
and a RMSE of 41 kg. Such a large difference between MAE and
RMSE reveals that the error is non-uniform, as illustrated by the
scatter plot of the observed versus the simulated nitrate-nitrogen
flux (Fig. 5). This graph shows the limits of the stacked MLPs to

Fig. 5. Observed versus simulated nitrogen-nitrate fluxes on standard (left panel) and logarithmic (right panel) scales with the 2-12-1 MLP using Q and SMI80 as inputs. The
dashed lines delimit errors smaller than 50%.
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Fig. 6. Observed versus simulated nitrogen-nitrate fluxes on standard (left panel) and logarithmic (right panel) scales with the multi-linear model using Q and SMI80 as
inputs. The dashed lines delimit errors smaller than 50%.

Table 6
Performance of MLPs with five hidden neurons in simulating the suspended sedi-
ment fluxes in the testing data set.

Model inputs 1-input MLPs 2-input MLPs 3-input MLPs

EI EI r2 (%) EI r2 (%)

Q 0.173 ref
Q−1 0.059 0.173 0.0 0.715 −0.6
�Q 0.125 0.170 −0.4 0.769 18.5
P 0.019 0.174 0.0 0.752 12.4
P−1 0.042 0.197 2.8 0.751 12.2
F* 0.011 0.716 65.7 ref
�F* 0.009 0.625 54.7 0.691 −9.0
SMI10 0.021 0.207 4.0 0.573 −50.5
SMI20 0.020 0.195 2.6 0.738 7.5
SMI40 0.021 0.208 4.2 0.736 7.1
SMI80 0.023 0.216 5.2 0.705 −3.9
SMI120 0.023 0.237 7.7 0.734 6.3

Bold values are best results.

simulate nitrate-nitrogen of the small Melarchez catchment which
is characterized by fast reaction to winter rainfalls (see Fig. 3).
Nonetheless, most large nitrate-nitrogen fluxes are simulated with
an error smaller than 50%. For comparison, a multi-linear model
was built using the same two input parameters as for the proposed
NN model. The performance of this simpler model is lesser (testing
data: EI = 0.849, MAE = 16 kg, and RMSE = 47 kg), but it may be seen
in Fig. 6 that discrepancies between simulated and observed fluxes
mostly occur for lower flux values.

Linkage between stream flow and suspended sediment flux
is not as strong as for the nitrate-nitrogen flux simulations (see
Table 3). Nonetheless, stream flow also produced the best 1-input
5-hidden neurons stacked MLPs performance of the available 12
model input candidates. However, in this case, the efficiency index

only reaches 0.173 (Table 6). A second model input, namely the
same-day historical flux, is needed for performance to increase to
an EI of 0.716: a Nash–Sutcliffe r2 performance leap of 65.7%. This
model is further improved by 18.5% after the inclusion of the same-
day stream flow increment as a third model input. All 4-input MLPs
failed in improving the performance over the selected 3-input MLP.
The number of hidden input of the resulting 3-input stacked MLPs
is then optimized. A further gain of only 1,1% is achieved using 7
hidden neurons. The final 3-input 7-hidden neurons stacked MLPs
has EI of 0.769, MAE of 600 kg and RMSE of 2700 kg. The scatter
plots in Fig. 7 show that simulations are biased for low values of the
stream flow and that errors are often larger than 100%, especially
for smaller suspended sediment flux events. In this case, a multi-
linear model exploiting the same three inputs than the proposed
NN model (Fig. 8) fails to simulated the target fluxes (testing data:
EI = −3.88, MAE = 1000 kg, and RMSE = 4830 kg).

5. Discussion and conclusion

Even if simulation of water quality fluxes from a small agri-
cultural catchment is the major objective of this work, issues
related specifically to the development of models based on mul-
tilayer perceptron neural networks must be addressed at the same
time. Such issues affect modelling performance and consequently
influence the appreciation of the results. The construction of cal-
ibration and validation data sets, the selection of input variables
and the number of neurons in the hidden layer, the choice of
employing Levenberg–Marquardt with Bayesian regularization as
calibration procedure and the consideration of using stacking to
obtain response distributions have been performed as a way to
build a rigorous model development process that highlights MLPs
potential to simulate water quality fluxes.

Fig. 7. Observed versus simulated suspended sediment fluxes on standard (left panel—for values up to 10,000 kg) and logarithmic (right panel) scales with the 3-7-1 MLP
using Q, F* and �Q as inputs. The dashed lines delimit errors smaller than 100%.
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Fig. 8. Observed versus simulated suspended sediment fluxes on standard (left panel—for values up to 10,000 kg) and logarithmic (right panel) scales with the multi-linear
model using Q, F* and �Q as inputs. The dashed lines delimit errors smaller than 100%.

Tile drainage present on this catchment short-circuits the natu-
ral pathway of water. This favours pollutants that circulate through
the ground at the expense of those associated to surface runoff.
Tile drainage is thus more favourable to soluble pollutant losses
like nitrate than to surface particulate pollutant losses. However,
as shown by Sogon et al. (1999), the widespread usage of tile
drainage in the Brie Plateau also favours the leaching of the finest
soil particles from the ploughed horizon. Incidentally, the fact that
the same-day historical flux is a suspended sediment model input
shows that these exports are seasonally marked, while their level
is a function of the soil moisture content and cover state, which are
influenced by the agricultural practices.

The stacked MLPs reached different levels of performance simu-
lating the nitrate-nitrogen flux and the suspended sediment flux. In
the first instance, the nitrate-nitrogen simulations exhibit a quasi-
linear relation and have a performance of almost 90% according
to the efficiency index. On the other hand, the performance of the
stacked MLPs reached only a little more than 75% according to the
same criterion, leading to a MAE score that is about 3–4 times
larger than for the nitrate-nitrogen flux, taking into account the
scale difference between the two fluxes. This second model fully
benefited from the non-linear capacity of the NNs, even if sim-
ulations are biased for low values of the stream flow, while its
multi-linear counterpart failed modelling the suspended sediment
flux. However, it should be stressed that the suspended sediment
flux observations are spread over about six orders of magnitude (see
Fig. 7) which is twice as much than the nitrate-nitrogen flux (see
Fig. 5).

Even though both contaminants were sampled at the same loca-
tion and using a similar experimental protocol, it is obvious from
the model input selection and from the final model performance
that their behaviours are quite distinct. No prior scientific judge-
ment was imposed when constructing the MLPs. Both fluxes were
confronted to the same twelve potential inputs that allowed the
consideration of three hydrological processes: rain events poten-
tially generating stream flow, soil water content governing the flow
path within the catchment, and the stream flow itself, by which
the contaminants are transported. Actually, the suspended sedi-
ment, because of its particulate form, is governed by mechanisms
in addition to the ones already mentioned. The particulate flux may
originate from two sources: land processes and fluvial processes.
As such, in opposition to the nitrate-nitrogen flux, it is much more
likely to vary from location to location. Indeed, the suspended sed-
iment flux may be reduced locally by a temporary or permanent
deposition of the suspended particles or be increased by a handing-
over of particles locally available.

Stacked MLP models like the ones explored here are based on
commonly available inputs, yet are reasonably accurate considering
their simplicity and ease of implementation. The results presented

here are deemed already promising enough, and should encourage
water resources managers to implement simple models whenever
appropriate. All concepts presented in this study can easily be dupli-
cated for other similar catchments.
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