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In [Anza Hafsa, O., Mandallena, J.-P., The nonlinear membrane energy: variational derivation under the 
constraint “det ∇u �= 0”, J. Math. Pures Appl. 86 (2006) 100–115] we gave a variational definition of the 
nonlinear membrane energy under the constraint “det ∇u �= 0”. In this paper we obtain the nonlinear 
membrane energy under the more realistic constraint “det ∇u > 0”.
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1. Introduction

Consider an elastic material occupying in a reference configuration the bounded open set

Σε ⊂ R3 given by

Σε := Σ ×

]

−
ε

2
,
ε

2

[

,
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where ε > 0 is very small and Σ ⊂ R2 is Lipschitz, open and bounded. A point of Σε is denoted

by (x, x3) with x ∈ Σ and x3 ∈]– ε
2
, ε

2
[. Let W : M3×3 → [0,+∞] be the stored-energy function

supposed to be continuous and coercive, i.e., W(F) � C|F |p for all F ∈ M3×3 and some C > 0.

In order to take into account the important physical properties that the interpenetration of matter

does not occur and that an infinite amount of energy is required to compress a finite volume into

zero volume, i.e.,

W(F) → +∞ as detF → 0,

where detF denotes the determinant of the 3 × 3 matrix F , we assume that:

W(F) = +∞ if and only if detF � 0; (1)

for every δ > 0, there exists cδ > 0 such that for all F ∈ M3×3, (2)

if detF � δ then W(F) � cδ

(

1 + |F |p
)

.

Our goal is to show that as ε → 0 the three-dimensional free energy functional Eε :W 1,p(Σε;R3)

→ [0,+∞] (with p > 1) defined by

Eε(u) :=
1

ε

∫

Σε

W
(

∇u(x, x3)
)

dx dx3 (3)

converges in a variational sense (see Definition 2.1) to the two-dimensional free energy functional

Emem :W 1,p(Σ;R3) → [0,+∞] given by

Emem(v) :=

∫

Σ

Wmem

(

∇v(x)
)

dx (4)

with Wmem : M3×2 → [0,+∞]. Usually, Emem is called the nonlinear membrane energy asso-

ciated with the two-dimensional elastic material with respect to the reference configuration Σ .

Furthermore we wish to give a representation formula for Wmem.

To our knowledge, the problem of giving a variational definition of the nonlinear membrane

energy was studied for the first time by Percivale in [15]. His paper deals with the constraint

“det∇u > 0” but seems to contain some mistakes (it never was published). Nevertheless, Per-

civale introduced the “good” formula for Wmem, i.e., Wmem = QW0 where W0 is given by (5)

and QW0 denotes the quasiconvex envelope of W0. Then, in [14] Le Dret and Raoult gave

a complete proof of Percivale’s conjecture in the simpler case where W is of p-polynomial

growth, i.e., W(F) � c(1 + |F |p) for all F ∈ M3×3 and some c > 0. Although the p-polynomial

growth case is not compatible with (1) and (2) their paper established a suitable framework

to deal with dimensional reduction problems (it is the point of departure of many works on

the subject). After Percivale, Ben Belgacem also considered the constraint “det∇u > 0”. In [7,

Theorem 1] he announced to have succeed to handle (1) and (2). In [8], which is the paper

corresponding to the note [7], the statement [7, Theorem 1] is partly proved (however, a more

detailed proof, but not fully complete, can be found in his thesis [6]). Moreover, for Ben Bel-

gacem Wmem = QRW0 where RW0 denotes the rank one convex envelope of W0 (in fact, as

we proved in [2,3], QRW0 = QW0). Nevertheless, Ben Belgacem’s thesis highlighted the role

of approximation theorems for Sobolev functions by smooth immersions in the studying of the

passage 3D-2D in presence of (1) and (2). Recently, in [3] we gave a variational definition of

the nonlinear membrane energy under the constraint “det∇u �= 0”. In the present paper, using

the same method as in [3] and some results of Ben Belgacem’s thesis (mainly, Theorem A.1
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and Lemma 5.4), we obtain the nonlinear membrane energy under the more realistic constraint

“det∇u > 0”.

An outline of the paper is as follows. The variational convergence of Eε to Emem as ε → 0 as

well as a representation formula for Wmem are given by Corollary 2.9 in Section 2.4. Corollary 2.9

is a consequence of Theorems 2.5, 2.6 and 2.8. Roughly, Theorems 2.5 and 2.6 establish the

existence of the variational limit of Eε as ε → 0 (see Section 2.2), and Theorem 2.8 gives an

integral representation for the corresponding variational limit, and so a representation formula

for Wmem (see Section 2.3). In fact, Theorem 2.8 is obtained from Theorem 2.6 which furnishes

a “simplified” formula for the variational limit.

Theorem 2.5 is proved in Section 4. The principal ingredients are Theorems 2.6 and 3.4 whose

proof (given in Section 3) uses an interchange theorem of infimum and integral that we obtained

in [1]. (Note that the techniques used to prove Theorems 2.5 and 3.4 are the same as in [3,

Sections 3 and 4].)

Theorem 2.6 is proved is Section 5. The main arguments are two approximation theorems

developed by Ben Belgacem–Bennequin (see [6]) and Gromov–Eliashberg (see [11]). These the-

orems are stated in Appendix A.

Theorem 2.8 is proved in [3, Appendix A] (see also [2]).

2. Results

2.1. Variational convergence

To accomplish our asymptotic analysis, we use the notion of convergence introduced by

Anzellotti, Baldo and Percivale in [4] in order to deal with dimension reduction problems in

mechanics. Let π = {πε}ε be the family of maps πε :W 1,p(Σε;R3) → W 1,p(Σ;R3) defined by

πε(u) :=
1

ε

ε/2
∫

−ε/2

u(·, x3)dx3.

Definition 2.1. We say that Eε Γ (π)-converges to Emem as ε → 0, and we write Emem =

Γ (π)- limε→0 Eε , if the following two assertions hold:

(i) for all v ∈ W 1,p(Σ;R3) and all {uε}ε ⊂ W 1,p(Σε;R3),

if πε(uε) → v in Lp
(

Σ;R3
)

then Emem(v) � lim inf
ε→0

Eε(uε);

(ii) for all v ∈ W 1,p(Σ;R3), there exists {uε}ε ⊂ W 1,p(Σε;R3) such that:

πε(uε) → v in Lp
(

Σ;R3
)

and Emem(v) � lim sup
ε→0

Eε(uε).

In fact, Definition 2.1 is a variant of De Giorgi’s Γ -convergence. This is made clear by

Lemma 2.3. Consider Eε :W 1,p(Σ;R3) → [0,+∞] defined by

Eε(v) := inf
{

Eε(u): πε(u) = v
}

.
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Definition 2.2. We say that Eε Γ -converges to Emem as ε → 0, and we write Emem =

Γ - limε→0 Eε if for every v ∈ W 1,p(Σ;R3),
(

Γ - lim inf
ε→0

Eε

)

(v) =
(

Γ - lim sup
ε→0

Eε

)

(v) = Emem(v),

where
(

Γ - lim inf
ε→0

Eε

)

(v) := inf
{

lim inf
ε→0

Eε(vε) :vε → v in Lp
(

Σ;R3
)

}

and
(

Γ - lim sup
ε→0

Eε

)

(v) := inf
{

lim sup
ε→0

Eε(vε) :vε → v in Lp
(

Σ;R3
)

}

.

For a deeper discussion of the Γ -convergence theory we refer to the book [9]. Clearly, Defi-

nition 2.2 is equivalent to assertions (i) and (ii) in Definition 2.1 with “π(uε) → v” replaced by

“vε → v”. It is then obvious that

Lemma 2.3. Emem = Γ (π)- limε→0 Eε if and only if Emem = Γ - limε→0 Eε .

The Γ (π)-convergence of Eε in (3) to Emem in (4) as ε → 0 as well as a representation

formula for Wmem are given by Corollary 2.9. It is a consequence of Theorems 2.5, 2.6 and 2.8.

Roughly, Theorems 2.5 and 2.6 establish the existence of the Γ (π)-limit of Eε as ε → 0 (see

Section 2.2), and Theorem 2.8 gives an integral representation for the corresponding Γ (π)-limit,

and so a representation formula for Wmem (see Section 2.3).

2.2. Γ -convergence of Eε as ε → 0

Denote by C1( 	Σ;R3) the space of all restrictions to 	Σ of C1-differentiable functions from

R2 to R3, and set

C1
∗

(

	Σ;R3
)

:=
{

v ∈ C1
(

	Σ;R3
)

: ∂1v(x) ∧ ∂2v(x) �= 0 for all x ∈ 	Σ
}

,

where ∂1v(x) (resp. ∂2v(x)) denotes the partial derivative of v at x = (x1, x2) with respect

to x1 (resp. x2). (In fact, C1
∗( 	Σ;R3) is the set of all C1-immersions from 	Σ to R3.) Let

E :W 1,p(Σ;R3) → [0,+∞] be defined by

E(v) :=

{∫

Σ
W0(∇v(x))dx if v ∈ C1

∗

(

	Σ;R3
)

,

+∞ otherwise,

where W0 : M3×2 → [0,+∞] is given by

W0(ξ) := inf
ζ∈R3

W(ξ | ζ ) (5)

with (ξ | ζ ) denoting the element of M3×3 corresponding to (ξ, ζ ) ∈ M3×2 × R3. (As W is

coercive, it is easy to see that W0 is coercive, i.e., W0(ξ) � C|ξ |p for all ξ ∈ M3×2 and some

C > 0.) The following lemma gives three elementary properties of W0 (the proof is left to the

reader). Note that conditions (1) and (2) imply W0 is not of p-polynomial growth.

Lemma 2.4. Denote by ξ1 ∧ ξ2 the cross product of vectors ξ1, ξ2 ∈ R3.
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(i) W0 is continuous.

(ii) If (1) holds then W0(ξ1 | ξ2) = +∞ if and only if ξ1 ∧ ξ2 = 0.

(iii) If (2) holds then:

for all δ > 0, there exists cδ > 0 such that for all ξ = (ξ1 | ξ2) ∈ M3×2, (6)

if |ξ1 ∧ ξ2| � δ then W0(ξ) � cδ

(

1 + |ξ |p
)

.

Taking Lemma 2.3 into account, we see that the existence of the Γ (π)-limit of Eε as ε → 0

follows from Theorem 2.5.

Theorem 2.5. Let assumptions (1) and (2) hold. Then Γ - limε→0 Eε = 	E with 	E : W 1,p(Σ;R3) →

[0,+∞] given by

	E(v) := inf
{

lim inf
n→+∞

E(vn): W 1,p
(

Σ;R3
)

∋ vn → v in Lp
(

Σ;R3
)

}

.

The proof of Theorem 2.5 is established in Section 4. It uses Theorem 3.4 (see Section 3) and

Theorem 2.6.

Theorem 2.6. If (6) holds then 	E(v) = I(v) for all v ∈ W 1,p(Σ;R3), where I :W 1,p(Σ;R3) →

[0,+∞] is given by

I(v) := inf

{

lim inf
n→+∞

∫

Σ

W0

(

∇vn(x)
)

dx: W 1,p
(

Σ;R3
)

∋ vn → v in Lp
(

Σ;R3
)

}

.

Theorem 2.6 is proved in Section 6 by using two approximation theorems developed by Ben

Belgacem–Bennequin (see [6]) and Gromov–Eliashberg (see [11]). These theorems are stated in

Appendix A.

2.3. Integral representation of I

From now on, given a bounded open set D ⊂ R2 with |∂D| = 0, we denote by Aff(D;R3) the

space of all continuous piecewise affine functions from D to R3, i.e., v ∈ Aff(D;R3) if and only

if v is continuous and there exists a finite family (Di)i∈I of open disjoint subsets of D such that

|∂Di | = 0 for all i ∈ I , |D \
⋃

i∈I Di | = 0 and for every i ∈ I , ∇v(x) = ξi in Di with ξi ∈ M3×2

(where | · | denotes the Lebesgue measure in R2). Define ZW0 : M3×2 → [0,+∞] by

ZW0(ξ) := inf

{∫

Y

W0

(

ξ + ∇φ(y)
)

dy: φ ∈ Aff0

(

Y ;R3
)

}

(7)

where Y := ]0,1[2 and Aff0(Y ;R3) := {φ ∈ Aff(Y ;R3): φ = 0 on ∂Y }. (As W0 is coercive, it

is easy to see that ZW0 is coercive.) Recall the definitions of quasiconvexity and quasiconvex

envelope:

Definition 2.7. Let f : M3×2 → [0,+∞] be a Borel measurable function.
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(i) We say that f is quasiconvex if for every ξ ∈ M3×2, every bounded open set D ⊂ R2 with

|∂D| = 0 and every φ ∈ W
1,∞
0 (D;R3),

f (ξ) �
1

|D|

∫

D

f
(

ξ + ∇φ(x)
)

dx.

(ii) By the quasiconvex envelope of f , we mean the unique function (when it exists)

Qf : M3×2 → [0,+∞] such that:

– Qf is Borel measurable, quasiconvex and Qf � f ;

– for all g : M3×2 → [0,+∞], if g is Borel measurable, quasiconvex and g � f , then

g �Qf .

(Usually, for simplicity, we say that Qf is the greatest quasiconvex function which less than

or equal to f .)

Under (6), we proved that ZW0 is of p-polynomial growth and so continuous (see [3, Propo-

sitions A.3 and A.1(iii)]) and that ZW0 is the quasiconvex envelope of W0, i.e., ZW0 = QW0

(see [3, Proposition A.5]). Taking Theorems 2.5 and 2.6 together with Lemmas 2.3 and 2.4(iii)

into account, we see that Theorem 2.8 gives an integral representation for the Γ (π)-limit of Eε

as ε → 0 as well as a representation formula for Wmem.

Theorem 2.8. If (6) holds then for every v ∈ W 1,p(Σ;R3),

I(v) =

∫

Σ

QW0

(

∇v(x)
)

dx.

Theorem 2.8 is proved in [3, Appendix A] (see also [2]).

2.4. Γ (π)-convergence of Eε to Emem as ε → 0

According to Lemmas 2.3 and 2.4(iii), a direct consequence of Theorems 2.5, 2.6 and 2.8 is

the following.

Corollary 2.9. Let assumptions (1) and (2) hold. Then as ε → 0, Eε in (3) Γ (π)-converge to

Emem in (4) with Wmem =QW0.

Remark 2.10. Corollary 2.9 can be applied when W : M3×3 → [0,+∞] is given by

W(F) := h(detF) + |F |p,

where h : R → [0,+∞] is a continuous function such that:

– h(t) = +∞ if and only if t � 0;

– for every δ > 0, there exists rδ > 0 such that h(t) � rδ for all t � δ.

3. Representation of E

The goal of this section is to show Theorem 3.4. To this end, we begin by proving two lemmas.
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For every v ∈ C∗
1(Σ	; R3) and j � 1, we define the multifunction Λj

v : Σ	−→
−→R3 by

Λj
v(x) :=

{

ζ ∈ R3: det
(

∇v(x) | ζ
)

�
1

j

}

.

Lemma 3.1. Let v ∈ C1
∗( 	Σ;R3). Then:

(i) for every j � 1, Λ
j
v is a nonempty convex closed-valued lower semicontinuous1 multifunc-

tion;

(ii) for every x ∈ 	Σ , Λ1
v(x) ⊂ · · · ⊂ Λ

j
v(x) ⊂ · · · ⊂

⋃

j�1 Λ
j
v(x) = Λv(x), where Λv(x) := {ζ ∈

R3: det(∇v(x) | ζ ) > 0}.

Proof. (ii) is obvious. Prove then (i). Let j � 1. It is easy to see that for every x ∈ 	Σ , Λ
j
v(x) is

nonempty, convex and closed. Let X be a closed subset of R3, let x ∈ 	Σ , and let {xn}n�1 ⊂ 	Σ

such that |xn − x| → 0 as n → +∞ and Λ
j
v(xn) ⊂ X for all n � 1. Let ζ ∈ Λ

j
v(x) and let

{ζm}m�1 ⊂ R3 be given by ζm := ζ + 1
m

ζ . Then, for every m � 1,

det
(

∇v(x) | ζm

)

= det
(

∇v(x) | ζ
)

+
1

m
det

(

∇v(x) | ζ
)

�
1

j
+

1

mj
. (8)

Fix any m � 1. Since det(∇v(xn) | ζm) → det(∇v(x) | ζm) as n → +∞, using (8) we see that

det(∇v(xn0
) | ζm) > 1

j
for some n0 � 1, so that ζm ∈ Λ

j
v(xn0

). Thus ζm ∈ X for all m � 1. As X

is closed we have ζ = limm→+∞ ζm ∈ X. ✷

In the sequel, given Λ : 	Σ−→
−→R3 we set

C( 	Σ;Λ) :=
{

φ ∈ C
(

	Σ;R3
)

: φ(x) ∈ Λ(x) for all x ∈ 	Σ
}

,

where C( 	Σ;R3) denotes the space of all continuous functions from 	Σ to R3.

Lemma 3.2. Given v ∈ C1
∗(Σ;R3) and j � 1, if (2) holds, then

inf
φ∈C

(

	Σ;Λ
j
v

)

∫

Σ

W
(

∇v(x) | φ(x)
)

dx =

∫

Σ

inf
ζ∈Λ

j
v(x)

W
(

∇v(x) | ζ
)

dx.

To prove Lemma 3.2 we need the following interchange theorem of infimum and integral (that

we proved in [1, Corollary 5.4]).

Theorem 3.3. Let Γ : 	Σ−→
−→R3 and let f : 	Σ × R3 → [0,+∞]. Assume that:

(H1) f is a Carathéodory integrand;

(H2) Γ is a nonempty convex closed-valued lower semicontinuous multifunction;

(H3) C( 	Σ;Γ ) �= ∅ and for every φ, φ̂ ∈ C( 	Σ;Γ ),
∫

Σ

max
α∈[0,1]

f
(

x,αφ(x) + (1 − α)φ̂(x)
)

dx < +∞.

1 A multifunction Λ : 	Σ → R3 is said to be lower semicontinuous if for every closed subset X of R3, every x ∈ 	Σ and

every {xn}n�1 ⊂ 	Σ such that |xn − x| → 0 as n → +∞ and Λ(xn) ⊂ X for all n � 1, we have Λ(x) ⊂ X (see [5] for

more details).
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Then,

inf
φ∈C( 	Σ;Γ )

∫

Σ

f (x,φ(x))dx =

∫

Σ

inf
ζ∈Γ (x)

f (x, ζ )dx.

Proof of Lemma 3.2. Since W is continuous, (H1) holds with f (x, ζ ) = W(∇v(x) | ζ ).

Lemma 3.1 shows that (H2) is satisfied with Γ = Λ
j
v , and C( 	Σ;Λ

j
v) �= ∅ (for example

Φ : 	Σ → R3 defined by (12) belongs to C( 	Σ;Λ
j
v)). Given φ, φ̂ ∈ C( 	Σ;Λ

j
v), it is clear that

det(∇v(x) | αφ(x) + (1 − α)φ̂(x)) � 1/j for all α ∈ [0,1] and all x ∈ 	Σ . By (2) there exists

c > 0 depending only on j , v, φ and φ̂ such that W(∇v(x) | αφ(x) + (1 − α)φ̂(x)) � c for all

x ∈ 	Σ . Thus (H3) is verified with f (x, ζ ) = W(∇v(x) | ζ ) and Γ = Λ
j
v , and Lemma 3.2 follows

from Lemma 3.3. �

Here is our (non-integral) representation theorem for E .

Theorem 3.4. If (1) and (2) hold, then for every v ∈ C1
∗( 	Σ;R3),

E(v) = inf
j�1

inf
φ∈C

(

	Σ;Λ
j
v

)

∫

Σ

W
(

∇v(x) | φ(x)
)

dx. (9)

Proof. Fix v ∈ C1
∗( 	Σ;R3) and denote by Ê(v) the right-hand side of (9). It is easy to verify that

E(v) � Ê(v). We are thus reduced to prove that

Ê(v) � E(v). (10)

Using Lemma 3.2, we obtain

Ê(v) � inf
j�1

∫

Σ

inf
ζ∈Λ

j
v(x)

W
(

∇v(x) | ζ
)

dx. (11)

Consider the continuous function Φ : 	Σ → R3 defined by

Φ(x) :=
∂1v(x) ∧ ∂2v(x)

|∂1v(x) ∧ ∂2v(x)|2
. (12)

Then, det(∇v(x) | Φ(x)) = 1 for all x ∈ 	Σ . Using (2) we deduce that there exists c > 0 depend-

ing only on p such that

∫

Σ

inf
ζ∈Λ1

v(x)
W

(

∇v(x) | ζ
)

dx � c
(

|Σ | + ‖∇v‖
p

Lp
(

Σ;M3×2
) + ‖Φ‖

p

Lp
(

Σ;R3
)

)

.

It follows that infζ∈Λ1
v(·)

W(∇v(·) | ζ ) ∈ L1(Σ). From Lemma 3.1(i) and (ii), we see that

{inf
ζ∈Λ

j
v(·)

W(∇v(·) | ζ )}j�1 is non-increasing, and that for every x ∈ 	Σ ,

inf
j�1

inf
ζ∈Λ

j
v(x)

W
(

∇v(x) | ζ
)

= W0(∇v(x)), (13)

and (23) follows from (11) and (13) by using Lebesgue’s dominated convergence theorem. ✷
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4. Existence of Γ - limε→0 Eε

In this section we prove Theorem 2.5. Since Γ - lim infε→0 Eε � Γ - lim supε→0 Eε , we only

need to show that:

(a) 	E � Γ - lim infε→0 Eε;

(b) Γ - lim supε→0 Eε � 	E .

In the sequel, we follow the notation used in Section 3.

4.1. Proof of (a)

Let v ∈ W 1,p(Σ;R3) and let {vε}ε ⊂ W 1,p(Σ;R3) be such that vε → v in Lp(Σ;R3). We

have to prove that

lim inf
ε→0

Eε(vε) � 	E(v). (14)

Without loss of generality we can assume that supε>0 Eε(vε) < +∞. To every ε > 0 there corre-

sponds uε ∈ π−1
ε (vε) such that

Eε(vε) � Eε(uε) − ε. (15)

Defining ûε : Σ1 → R3 by ûε(x, x3) := uε(x, εx3) we have

Eε(uε) =

∫

Σ1

W

(

∂1ûε(x, x3) | ∂2ûε(x, x3) |
1

ε
∂3ûε(x, x3)

)

dx dx3. (16)

Using the coercivity of W , we deduce that ‖∂3ûε‖Lp(Σ1;R3) � cεp for all ε > 0 and some c > 0,

and so ‖ûε − vε‖Lp(Σ1;R3) � c′εp by Poincaré–Wirtinger’s inequality, where c′ > 0 is a constant

which does not depend on ε. It follows that ûε → v in Lp(Σ1;R3). For x3 ∈]– 1 , 1
2
[, let w

x3
ε ∈

W 1,p(Σ;R3) given by w
x3
ε (x) := ûε(x, x3). Then (up to a subsequence) w

x3
ε → v in Lp(Σ;R3)

for a.e. x3 ∈]– 1 , 1
2
[. Taking (15) and (16) into account and using Fatou’s lemma, we obtain

lim inf
ε→0

Eε(vε) �

1/2
∫

−1/2

(

lim inf
ε→0

∫

Σ

W0

(

∇wx3
ε (x)

)

dx

)

dx3,

and so lim infε→0 Eε(vε) � I(v), and (14) follows by using Theorem 2.6. ✷

4.2. Proof of (b)

As Γ - lim supε→0 Eε is lower semicontinuous with respect to the strong topology of

Lp(Σ;R3) (see [9, Proposition 6.8 p. 57]), it is sufficient to prove that for every v ∈ C1
∗( 	Σ;R3),

lim sup
ε→0

Eε(v) � E(v). (17)

Given v ∈ C1
∗( 	Σ;R3), fix any j � 1, and any n � 1. Using Theorem 3.4 we obtain the existence

of φ ∈ C( 	Σ;Λ
j
v) such that

∫

Σ

W
(

∇v(x) | φ(x)
)

dx � E(v) +
1

n
. (18)
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By Stone–Weierstrass’s approximation theorem, there exists {φk}k�1 ⊂ C∞( 	Σ;R3) such that

φk → φ uniformly as k → +∞. (19)

We claim that:

(c1) det(∇v(x) | φk(x)) � 1
2j

for all x ∈ 	Σ , all k � kv and some kv � 1;

(c2) limk→+∞

∫

Σ
W(∇v(x) | φk(x))dx =

∫

Σ
W(∇v(x) | φ(x))dx.

Indeed, setting μv := supx∈ 	Σ |∂1v(x) ∧ ∂2v(x)| (μv > 0) and using (19), we deduce that there

exists kv � 1 such that for every k � kv ,

sup
x∈ 	Σ

∣

∣φk(x) − φ(x)
∣

∣ <
1

jμv

. (20)

Let x ∈ 	Σ , and let k � kv . As φ ∈ C( 	Σ;Λ
j
v) we have

det
(

∇v(x) | φk(x)
)

�
1

j
− det

(

∇v(x) | φk(x) − φ(x)
)

. (21)

Noticing that det(∇v(x) | φk(x) − φ(x)) � |∂1v(x) ∧ ∂2v(x)||φk(x) − φ(x)|, from (20) and (21)

we deduce that det(∇v(x) | φk(x)) � 1
2j

, and (c1) is proved. Combining (c1) with (2) we see that

supk�kv
W(∇v(·) | φk(·)) ∈ L1(Σ). As W is continuous we have limk→+∞ W(∇v(x) | φk(x)) =

W(∇v(x) | φ(x)) for all x ∈ V , and (c2) follows by using Lebesgue’s dominated convergence

theorem, which completes the claim.

Fix any k � kv and define θ : ]– 1
2
, 1

2
[→ R by θ(x3) := infx∈ 	Σ det(∇v(x)+x3∇φk(x) | φk(x)).

Clearly θ is continuous. By (c1) we have θ(0) � 1
2j

, and so there exists ηv ∈]0, 1
2
[ such that

θ(x3) � 1
4j

for all x3 ∈] − ηv, ηv[. Let uk : Σ1 → R be given by uk(x, x3) := v(x) + x3φk(x).

From the above it follows that

(c3) det∇uk(x, εx3) � 1
4j

for all ε ∈]0, ηv[ and all (x, x3) ∈ 	Σ ×]– 1 , 1
2
[.

As in the proof of (c1), from (c3) together with (2) and the continuity of W , we obtain

lim
ε→0

Eε(uk) = lim
ε→0

∫

Σ1

W
(

∇uk(x, εx3)
)

dx dx3 =

∫

Σ

W
(

∇v(x) | φk(x)
)

dx. (22)

For every ε > 0 and every k � kv , since πε(uk) = v we have Eε(v) � Eε(uk). Using (22), (c2)

and (18), we deduce that

lim sup
ε→0

Eε(v) � E(v) +
1

n
,

and (17) follows by letting n → +∞. �

5. A simplified formula for �E

In this section, we prove of Theorem 2.6. It is based upon two approximation theorems by

Ben Belgacem–Bennequin (see Section A.1) and Gromov–Eliashberg (see Section A.2).

Recall the definition of rank one convexity and rank one convex envelope:
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Definition 5.1. Let f : M3×2 → [0,+∞] be a Borel measurable function.

(i) We say that f is rank one convex if for every α ∈]0,1[ and every ξ, ξ ′ ∈ M3×2 with

rank(ξ − ξ ′) = 1,

f
(

αξ + (1 − α)ξ ′
)

� αf (ξ) + (1 − α)f (ξ ′).

(ii) By the rank one convex envelope of f , that we denote by Rf , we mean the greatest rank

one convex function which less than or equal to f .

In [6, Proposition 7 p. 32 and Lemma 8 p. 34] (see also [8, Section 5.1], [16, Proposition 3.4.4

p. 112] and [17, Lemma 6.5]) Ben Belgacem proved the following lemma that we will use in the

proof of Theorem 2.6. (As W0 is coercive, it is easy to see that RW0 is coercive.)

Lemma 5.2. If (6) holds then:

(i) RW0(ξ) � c(1 + |ξ |p) for all ξ ∈ M3×2 and some c > 0;

(ii) RW0 is continuous.

Define I :W 1,p(Σ;R3) → [0,+∞] by

I (v) := inf

{

lim inf
n→+∞

∫

Σ

W0

(

∇vn(x)
)

dx: Affli

(

Σ;R3
)

∋ vn → v in Lp
(

Σ;R3
)

}

with Affli(Σ;R3) := {v ∈ Aff(Σ;R3): v is locally injective} (Aff(Σ;R3) is defined in Sec-

tion 2.3). To prove Theorem 2.6 we will use Proposition 5.3.

Proposition 5.3. I = J with J :W 1,p(Σ;R3) → [0,+∞] given by

J (v) := inf

{

lim inf
n→+∞

∫

Σ

RW0

(

∇vn(x)
)

dx: Affli

(

Σ;R3
)

∋ vn → v in Lp
(

Σ;R3
)

}

.

To prove Proposition 5.3 we need Lemma 5.4 whose proof is contained in the thesis of Ben

Belgacem [6]. Since it is difficult to lay hands on this thesis (which is written in French), we give

the proof of Lemma 5.4 in Appendix B.

Lemma 5.4. I (v) �
∫

Σ
RW0(∇v(x))dx for all v ∈ Affli(Σ;R3).

Proof of Proposition 5.3. Clearly J � I . We are thus reduced to prove that

I � J. (23)

Fix any v ∈ W 1,p(Σ;R3) and any sequence vn → v in Lp(Σ;R3) with vn ∈ Affli(Σ;R3). Using

Lemma 5.4 we have I (vn) �
∫

Σ
RW0(∇vn(x))dx for all n � 1. Thus,

I (v) � lim inf
n→+∞

I (vn) � lim inf
n→+∞

∫

Σ

RW0

(

∇vn(x)
)

dx,

and (23) follows. ✷
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Proof of Theorem 2.6. We first prove that

	E � I. (24)

As in the proof of Proposition 5.3, it suffices to show that if v ∈ Affli(Σ;R3) then

	E(v) �

∫

Σ

W0

(

∇v(x)
)

dx. (25)

Let v ∈ Affli(Σ;R3). By Theorem A.1-bis (and Lemma A.2), there exists {vn}n�1 ⊂ C1
∗( 	Σ;R3)

such that (28) and (29) holds and ∇vn(x) → ∇v(x) a.e. in Σ . As W0 is continuous (see

Lemma 2.4(i)), we have

lim
n→+∞

W0

(

∇vn(x)
)

= W0

(

∇v(x)
)

a.e. in Σ.

Using (6) together with (29), we deduce that there exists c > 0 such that for every n � 1 and

every measurable set A ⊂ Σ ,
∫

A

W0

(

∇vn(x)
)

dx � c

(

|A| +

∫

A

∣

∣∇vn(x) − ∇v(x)
∣

∣

p
dx +

∫

A

∣

∣∇v(x)
∣

∣

p
dx

)

.

But ∇vn → ∇v in Lp(Σ;M3×2) by (28), hence {W0(∇vn(·))}n�1 is absolutely uniformly inte-

grable. Using Vitali’s theorem, we obtain

lim
n→+∞

∫

Σ

W0

(

∇vn(x)
)

dx =

∫

Σ

W0

(

∇v(x)
)

dx,

and (25) follows.

We now prove that

J � J̄ , (26)

with J̄ :W 1,p(Σ;R3) → [0,+∞] given by

J̄ (v) := inf

{

lim inf
n→+∞

∫

Σ

RW0

(

∇vn(x)
)

dx :W 1,p
(

Σ;R3
)

∋ vn → v in Lp
(

Σ;R3
)

}

.

It is sufficient to show that

J (v) �

∫

Σ

RW0

(

∇v(x)
)

dx. (27)

Let v ∈ W 1,p(Σ;R3). By Corollary A.6, there exists {vn}n�1 ⊂ Affli(Σ;R3) such that ∇vn →

∇v in Lp(Σ;R3) and ∇vn(x) → ∇v(x) a.e. in Σ . Taking Lemma 5.2 into account, from Vitali’s

lemma, we see that

lim
n→+∞

∫

Σ

RW0

(

∇vn(x)
)

dx =

∫

Σ

RW0

(

∇v(x)
)

dx,

and (27) follows.

Noticing that I � 	E and J̄ � I , and combining Proposition 5.3 with (24) and (26), we con-

clude that 	E = I . ✷
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Appendix A. Approximation theorems

A.1. Ben Belgacem–Bennequin’s theorem

Denote by AffET(Σ;R3) the space of Ekeland–Temam continuous piecewise affine functions

from Σ to R3, i.e., u ∈ AffET(Σ;R3) if and only if v is continuous and there exists a finite

family (Vi)i∈I of open disjoint subsets of Σ such that |Σ \
⋃

i∈I Vi | = 0 and for every i ∈ I , the

restriction of v to Vi is affine. Note that from Ekeland–Temam [10], we know that AffET(Σ;R3)

is strongly dense in W 1,p(Σ;R3). Set

AffET
li

(

Σ;R3
)

:=
{

v ∈ AffET
(

Σ;R3
)

: v is locally injective
}

.

In [6, Lemma 8 p. 114] (see also [16, Proposition C.0.4 p. 127] and [17, Lemma 1.3]) Ben

Belgacem and Bennequin proved the following result.

Theorem A.1. For every v ∈ AffET
li (Σ;R3), there exists {vn}n�1 ⊂ C1

∗( 	Σ;R3) such that:

vn → v in W 1,p
(

Σ;R3
)

; (28)
∣

∣∂1vn(x) ∧ ∂2vn(x)
∣

∣ � δ for all x ∈ 	Σ, all n � 1 and some δ > 0. (29)

Denote by AffV (Σ;R3) the space of Vitali continuous piecewise affine functions from Σ to

R3 (introduced by Ben Belgacem in [6,8]), i.e., v ∈ AffV (Σ;R3) if and only if v is continuous

and there exists a finite or countable family (Oi)i∈I of disjoint open subsets of Σ such that

|∂Oi | = 0 for all i ∈ I , |Σ \
⋃

i∈I Oi | = 0, and v(x) = ξi · x + ai if x ∈ Oi , where ai ∈ R3,

ξi ∈ M3×2 and Card{ξi : i ∈ I } is finite. In [16, Lemma 3.1.5 p. 99] Trabelsi remarked that

Theorem A.1 can be generalized replacing the space AffET
li (Σ;R3) by

AffVli
(

Σ;R3
)

:=
{

v ∈ AffV
(

Σ;R3
)

: v is locally injective
}

.

Theorem A.1-bis. For every v ∈ AffVli (Σ;R3), there exists {vn}n�1 ⊂ C1
∗( 	Σ;R3) satisfying (28)

and (29).

Here we consider the space Aff(Σ;R3) defined in Section 2.3. It is clear that AffET(Σ;R3) ⊂

Aff(Σ;R3), and so Aff(Σ;R3) is strongly dense in W 1,p(Σ;R3). Moreover, we have

Lemma A.2. AffV (Σ;R3) = Aff(Σ;R3).

Proof. Setting Di := {x ∈
⋃

i∈I Oi : ∇v(x) = ξi} with v ∈ AffV (Σ;R3), we see that Card{Di :

i ∈ I } is finite. Thus AffV (Σ;R3) ⊂ Aff(Σ;R3). Given v ∈ Aff(Σ;R3), let (Oj )j∈Ji
be the

connected components of Di with i ∈ I (where I is finite). Since Di is open, Oj is open for all

j ∈ Ji , hence Ji is finite or countable because Q2 is dense in R2. Moreover, for each j ∈ Ji , the

restriction of v to Oj is affine. Thus Aff(Σ;R3) ⊂ AffV (Σ;R3). ✷

A.2. Gromov–Eliashberg’s theorem

In [11, Theorem 1.3.4B] (see also [12, Theorem B′
1 p. 20]) Gromov and Eliashberg proved

the following result.
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Theorem A.3. Let 1 � N < m be two integers and let M be a compact N -dimensional manifold

which can be immersed in Rm. Then, for each C1-differentiable function v from M to Rm there

exists a sequence {vn}n of C1-immersions from M to Rm such that vn → v in W 1,p(M;Rm).

In our context, we have

Theorem A.4. For every v ∈ C1( 	Σ;R3) there exists {vn}n�1 ⊂ C1
∗( 	Σ;R3) such that vn → v in

W 1,p(Σ;R3).

Moreover, from [16, Proposition 3.1.7 p. 100], we have

Proposition A.5. For every v ∈ C1
∗( 	Σ;R3) there exists {vn}n�1 ⊂ AffET

li (Σ;R3) such that vn →

v in W 1,p(Σ;R3).

Thus, as a consequence of Theorem A.4 and Proposition A.5, we obtain

Corollary A.6. AffET
li (Σ;R3) is strongly dense in W 1,p(Σ;R3).

Appendix B. Ben Belgacem’s lemma

In this appendix we prove Ben Belgacem’s lemma, i.e., Lemma 5.4.

B.1. Preliminaries

Define the sequence {RiW0}i�0 by R0W0 = W0 and for every i � 1 and every ξ ∈ M3×2,

Ri+1W0(ξ) := inf
a∈R

2

b∈R
3

t∈[0,1]

{

(1 − t)RiW0(ξ − ta ⊗ b) + tRiW0

(

ξ + (1 − t)a ⊗ b
)}

.

Recall that W0 is coercive and continuous (see Lemma 2.4(i)). The following lemma is due to

Kohn and Strang [13].

Lemma B.1. Ri+1W0 �RiW0 for all i � 0 and RW0 = infi�0 RiW0.

Fix any i � 0 and any v ∈ Affli(Σ;R3) := {v ∈ Aff(Σ;R3): v is locally injective} (with

Aff(Σ;R3) defined in Section 2.3). By definition, there exists a finite family (Vj )j∈J of open

disjoint subsets of Σ such that |∂Vj | = 0 for all j ∈ J , |Σ \
⋃

j∈J Vj | = 0 and, for every j ∈ J ,

∇v(x) = ξj in Vj with ξj ∈ M3×2. (As v is locally injective we have rank(ξj ) = 2 for all j ∈ J .)

Fix any j ∈ J . For a proof of Lemmas B.2 and B.3 we refer to [16, Proposition 3.1.2 p. 96].

Lemma B.2. RiW0 is continuous.

Lemma B.3. There exist a ∈ R2, b ∈ R3 and t ∈ [0,1] such that

Ri+1W0(ξj ) = (1 − t)RiW0(ξj − ta ⊗ b) + tRiW0

(

ξj + (1 − t)a ⊗ b
)

.
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Without loss of generality we can assume that a = (1,0). For each n � 3 and each k ∈ {0, . . . ,

n − 1}, consider A−
k,n,A

+
k,n,Bk,n,B

−
k,n,B

+
k,n,Ck,n,C

−
k,n,C

+
k,n ⊂ Y given by:

A−
k,n :=

{

(x1, x2) ∈ Y :
k

n
� x1 �

k

n
+

1 − t
and

1

n
� x2 � 1 −

1

n

}

;

A+
k,n :=

{

(x1, x2) ∈ Y :
k

n
+

1 − t
� x1 �

k + 1
and

1

n
� x2 � 1 −

1

n

}

;

Bk,n :=

{

(x1, x2) ∈ Y :
k

n
� x1 �

k + 1

n
and 0 � x2 � −x1 +

k + 1

n

}

;

B−
k,n :=

{

(x1, x2) ∈ Y : −x2 +
k + 1

n
� x1 � −tx2 +

k + 1

n
and 0 � x2 �

1

n

}

;

B+
k,n :=

{

(x1, x2) ∈ Y : −tx2 +
k + 1

n
� x1 �

k + 1

n
and 0 � x2 �

1

n

}

;

Ck,n :=

{

(x1, x2) ∈ Y :
k

n
� x1 �

k + 1

n
and x1 + 1 −

k + 1

n
� x2 � 1

}

;

C−
k,n :=

{

(x1, x2) ∈ Y : x2 − 1 +
k + 1

n
� x1 � t (x2 − 1) +

k + 1

n
and 0 � x2 �

1

n

}

;

C+
k,n :=

{

(x1, x2) ∈ Y : t (x2 − 1) +
k + 1

n
� x1 �

k + 1

n
and 0 � x2 �

1

n

}

,

and define {σn}n�1 ⊂ Aff0(Y ;R) by

σn(x1, x2) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−t (x1 − k
n
) if (x1, x2) ∈ A−

k,n,

(1 − t)(x1 − k+1
n

) if (x1, x2) ∈ A+
k,n ∪ B+

k,n ∪ C+
k,n,

−t (x1 + x2 − k+1
n

) if (x1, x2) ∈ B−
k,n,

−t (x1 − x2 + 1 − k+1
n

) if (x1, x2) ∈ C−
k,n,

0 if (x1, x2) ∈ Bk,n ∪ Ck,n

(see Fig. B.1).

Set

bℓ :=

{

b if b /∈ Im ξj ,

b + 1
ℓ
ν if b ∈ Im ξj

(with Im ξj := {ξj · x: x ∈ R2}) where ℓ � 1 and ν ∈ R3 is a normal vector to Im ξj .

Lemma B.4. Define {θn,ℓ}n,ℓ�1 ⊂ Aff0(Y ;R3) by

θn,ℓ(x) := σn(x)bℓ.

Then:

(i) for every ℓ � 1, θn,ℓ → 0 in Lp(Y ;R3);

(ii) limℓ→+∞ limn→+∞

∫

Y
RiW0(ξj + ∇θn,ℓ(x))dx =Ri+1W0(ξj ).
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Fig. B.1. The function σn and the sets A−
k,n

,A+
k,n

,Bk,n,B−
k,n

,B+
k,n

,Ck,n,C−
k,n

,C+
k,n

.

Proof. (i) It suffices to prove that σn → 0 in Lp(Y ;R). For every k ∈ {0, . . . , n − 1}, it is clear

that |σn(x)|p �
tp(1−t)p

p for all x ∈] k
n
, k+1

n
[×]0,1[, and so

∫

] k
n
, k+1

n
[×]0,1[

∣

∣σn(x)
∣

∣

p
dx �

tp(1 − t)p

np+
.

As

∫

Y

∣

∣σn(x)
∣

∣

p
dx =

n−1
∑

k=0

∫

] k , k+1
n

[×]0,1[

∣

∣σn(x)
∣

∣

p
dx

it follows that
∫

Y

∣

∣σn(x)
∣

∣

p
dx �

tp(1 − t)p

np
,

which gives the desired conclusion.

(ii) Recalling that a = (1,0) we see that

ξj + ∇θn,ℓ(x) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξj − ta ⊗ bℓ if x ∈ int(A−
k,n),

ξj + (1 − t)a ⊗ bℓ if x ∈ int(A+
k,n ∪ B+

k,n ∪ C+
k,n),

ξj − t (a + a⊥) ⊗ bℓ if x ∈ int(B−
k,n),

ξj − t (a − a⊥) ⊗ bℓ if x ∈ int(C−
k,n),

ξj if x ∈ int(Bk,n) ∪ int(Ck,n)

with a⊥ = (0,1) (and int(E) denotes the interior of the set E). Moreover, we have:
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∫

⋃n−1
k=0 A−

k,n

RiW0(ξj − ta ⊗ bℓ)dx = (1 − t)

(

1 −
2

n

)

RiW0(ξj − ta ⊗ bℓ);

∫

⋃n−1
k=0 A+

k,n

RiW0

(

ξj + (1 − t)a ⊗ bℓ

)

dx = t

(

1 −
2

n

)

RiW0

(

ξj + (1 − t)a ⊗ bℓ

)

;

∫

⋃n−1
k=0(B+

k,n∪C+
k,n)

RiW0

(

ξj + (1 − t)a ⊗ bℓ

)

dx =
t

n
RiW0

(

ξj + (1 − t)a ⊗ bℓ

)

;

∫

⋃n−1
k=0 B−

k,n

RiW0

(

ξj − t (a + a⊥) ⊗ bℓ

)

dx =
1 − t

n
RiW0

(

ξj − t (a + a⊥) ⊗ bℓ

)

;

∫

⋃n−1
k=0 C−

k,n

RiW0

(

ξj − t (a − a⊥) ⊗ bℓ

)

dx =
1 − t

2n
RiW0

(

ξj − t (a − a⊥) ⊗ bℓ

)

;

∫

⋃n−1
k=0(Bk,n∪Ck,n)

RiW0(ξj )dx =
1

n
RiW0(ξj ).

Hence
∫

Y

RiW0

(

ξj + ∇θn,ℓ(x)
)

dx

=

(

1 −
2

n

)

[

(1 − t)RiW0(ξj − ta ⊗ bℓ) + tRiW0

(

ξj + (1 − t)a ⊗ bℓ

)]

+
1

n

[

tRiW0

(

ξj + (1 − t)a ⊗ bℓ

)

+
1 − t

2

(

RiW0

(

ξj − t
(

a + a⊥
)

⊗ bℓ

)

+RiW0

(

ξj− t (a − a⊥) ⊗ bℓ

))

+RiW0(ξj )

]

for all n, ℓ � 1. It follows that for every ℓ � 1,

lim
n→+∞

∫

Y

RiW0

(

ξj + ∇θn,ℓ(x)
)

dx = (1 − t)RiW0(ξj − ta ⊗ bℓ)

+ tRiW0

(

ξj + (1 − t)a ⊗ bℓ

)

.

Taking Lemma B.2 into account and noticing that bℓ → b, we deduce that

lim
ℓ→+∞

lim
n→+∞

∫

Y

RiW0

(

ξj + ∇θn,ℓ(x)
)

dx = (1 − t)RiW0(ξj − ta ⊗ b)

+ tRiW0

(

ξj + (1 − t)a ⊗ b
)

,

and (ii) follows by using Lemma B.3. ✷

Consider V
j
q ⊂ Vj given by V

j
q := {x ∈ Vj : dist(x, ∂Vj ) > 1

q
} with q � 1 large enough. By

Vitali’s covering theorem, there exists a finite or countable family (rm + ρmY)m∈M of disjoint
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subsets of V
j
q , with rm ∈ R2 and ρm ∈]0,1[, such that |V

j
q \

⋃

m∈M(rm + ρmY)| = 0 (and so
∑

m∈M ρ2
m = |V

j
q |). Let {φn,ℓ,q}n,ℓ,q�1 ⊂ Aff0(Vj ;R3) be given by

φn,ℓ,q(x) :=

{

ρmθn,ℓ((x − rm)/ρm) if x ∈ rm + ρmY ⊂ V
j
q ,

0 if x ∈ Vj \ V
j
q .

Lemma B.5. Define {Φ
j

n,ℓ,q}n,ℓ,q�1 ⊂ Aff(Vj ;R3) by

Φ
j

n,ℓ,q(x) := v(x) + φn,ℓ,q(x). (30)

Then:

(i) for every n, ℓ, q � 1, Φ
j

n,ℓ,q is locally injective;

(ii) for every ℓ, q � 1, Φ
j

n,ℓ,q → v in Lp(Vj ;R3);

(iii) limq→+∞ limℓ→+∞ limn→+∞

∫

Vj
RiW0(∇Φ

j
n,ℓ,q(x))dx = |Vj |Ri+1W0(ξj ).

Proof. (i) Let x ∈ Vj and let W ⊂ Vj be the connected component of Vj such that x ∈ W (as Vj

is open, so is W ). Since ∇v = ξj in W , there exists c ∈ R3 such that v(x′) = ξj · x′ + c for all

x′ ∈ W . We claim that Φ
j

n,ℓ,q⌊W is injective. Indeed, let x′ ∈ W be such that Φ
j

n,ℓ,q(x) =

Φ
j

n,ℓ,q(x′). One the three possibilities holds:

(a) Φ
j
n,ℓ,q(x) = ξj · x + c + ρmσn(

x−rm
ρm

)bℓ and Φ
j

n,ℓ,q(x′) = ξj · x′ + c + ρm′σn(
x′−rm′

ρm′
)bℓ;

(b) Φ
j

n,ℓ,q(x) = ξj · x + c + ρmσn,ℓ(
x−rm
ρm

)bℓ and Φ
j

n,ℓ,q(x′) = ξj · x′ + c;

(c) Φ
j

n,ℓ,q(x) = ξj · x + c and Φ
j

n,ℓ,q(x′) = ξj · x′ + c.

Setting α := ρmσn(
x−rm
ρm

) − ρm′σn(
x′−rm′

ρm′
) and β := ρmσn(

x−rm
ρm

) we have:

{

ξj (x
′ − x) = 0 if α = 0,

bℓ = 1
α
ξj

(

x′ − x
)

if α �= 0
when (a) is satisfied;

{

ξj (x
′ − x) = 0 if β = 0,

bℓ = 1
β
ξj

(

x′ − x
)

if β �= 0
when (b) is satisfied;

ξj (x
′ − x) = 0 when (c) is satisfied.

It follows that if x �= x′ then either rank(ξj ) < 2 or bℓ ∈ Im ξj which is impossible. Hence x = x′,

and the claim is proved. Thus Φ
j

n,ℓ,q is locally injective.

(ii) As ρm ∈]0,1[ for all m ∈ M and
∑

m∈M ρ2
m = |V

j
q | we have

∫

V
j
q

∣

∣φn,ℓ,q(x)
∣

∣

p
dx �

∣

∣V
j
q

∣

∣

∫

Y

∣

∣θn,ℓ(x)
∣

∣

p
dx.
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Using Lemma B.4(i) we deduce that for every ℓ, q � 1,

lim
n→+∞

∫

V
j
q

∣

∣φn,ℓ,q(x)
∣

∣

p
dx = 0,

and (ii) follows.

(iii) Recalling that
∑

m∈M ρ2
m = |V

j
q | we see that

∫

Vj

RiW0

(

∇Φ
j

n,ℓ,q(x)
)

dx =

∫

Vj

RiW0

(

ξj + ∇φn,ℓ,q(x)
)

dx

=

∫

V
j
q

RiW0

(

ξj + ∇φn,ℓ,q(x)
)

dx +
∣

∣Vj \ V
j
q

∣

∣RiW0(ξj )

=
∣

∣V
j
q

∣

∣

∫

Y

RiW0

(

ξj + ∇θn,ℓ(x)
)

dx +
∣

∣Vj \ V
j
q

∣

∣RiW0(ξj ).

Using Lemma B.4(ii) we deduce that for every q � 1,

lim
ℓ→+∞

lim
n→+∞

∫

Vj

RiW0

(

∇Φ
j

n,ℓ,q(x)
)

dx =
∣

∣V
j
q

∣

∣Ri+1W0(ξj ) +
∣

∣Vj \ V
j
q

∣

∣RiW0(ξj ),

and (iii) follows by noticing that |V
j
q | → |Vj | and |Vj \ V

j
q | → 0. ✷

B.2. Proof of Lemma 5.4

According to Lemma B.1, it is sufficient to show that for every i � 0,

I (v) �

∫

Σ

RiW0

(

∇v(x)
)

dx for all v ∈ Affli

(

Σ;R3
)

. (Pi )

The proof is by induction on i. As R0W0 = W0 it is clear that (P0) is true. Assume that (Pi) is

true, and prove that (Pi+1) is true. Let v ∈ Affli(Σ;R3). By definition, there exists a finite family

(Vj )j∈J of open disjoint subsets of Σ such that |∂Vj | = 0 for all j ∈ J , |Σ \
⋃

j∈J Vj | = 0 and,

for every j ∈ J , ∇v(x) = ξj in Vj with ξj ∈ M3×2. Define {Ψn,ℓ,q}n,ℓ,q�1 ⊂ Aff(Σ;R3) by

Ψn,ℓ,q(x) := Φ
j

n,ℓ,q(x) if x ∈ Vj

with Φ
j

n,ℓ,q given by (30). Taking Lemma B.5(i) into account (and recalling that v is locally

injective), it is easy to see that Ψn,ℓ,q is locally injective. Using (Pi) we can assert that

I (Ψn,ℓ,q) �

∫

Σ

RiW0

(

∇Ψn,ℓ,q(x)
)

dx for all n, ℓ, q � 1.

By Lemma B.5(ii) it is clear that for every ℓ, q � 1, Ψn,l,q → v in Lp(Σ;R3). It follows that

I (v) � lim
n→+∞

I (Ψn,ℓ,q) � lim
n→+∞

∫

Σ

RiW0

(

∇Ψn,ℓ,q(x)
)

dx for all ℓ, q � 1.
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Moreover, from Lemma B.5(iii) we see that

lim
q→+∞

lim
ℓ→+∞

lim
n→+∞

∫

Σ

RiW0

(

∇Ψn,ℓ,q(x)
)

dx =

∫

Σ

Ri+1W0

(

∇v(x)
)

dx.

Hence

I (v) �

∫

Σ

Ri+1W0

(

∇v(x)
)

dx,

and the proof is complete. ✷
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