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EMIAN, CUFR, Site de Carmes, Place Gabriel Péri,

Cedex 01-30021 Nımes, France

anza@math.unizh.ch

We derive variational formulations for thin elastic plates from bulk energies by dimensional reduction.
The main feature is to consider a family of problems with internal constraints on normal deformations.
Our approach consists of two stages. First we obtain an abstract variational convergence result. Then
we study the integral representation of the limit functional.

1. Introduction

The goal of this paper1 is to provide variational formulations on some thin elastic plates
by dimensional reduction (see for instance [1, 5, 12]). The distinguishable feature is its
capability of taking account of internal constraints on normal deformations in original
three dimensional problems.
Let ω ⊂ R

2 be a Lipschitz bounded domain. Let Ωε = ω×] − ε/2; ε/2[ be the reference
configuration of an hyperelastic three dimensional body, with ε ∈]0, 1] a small paramater
which describes the small thickness of the geometric structure. Let W : M3×3 → [0,+∞[
be a continuous function which is the stored energy function associated with the material.
We consider the family of constrained minimization problems

(Pε) inf
{1

ε

∫

Ωε

W (∇u(x, x3))dxdx3 : u ∈ Aε and
∂u

∂x3

(x, x3) ∈ Λ(x)
}

,

where Aε = {u ∈ C∞(Ωε;R
3) : u(x, x3) = (x, x3) on ∂ω×] − ε/2; ε/2[} is the set of

admissible deformations. The lower semicontinuous2 convex closed valued3 multifunction
Λ : ω−→

−→R
3 plays the role of constraints. To avoid the trivial case in which the set of

admissible deformations is empty, we will assume that for every x ∈ ω

e ∈ Λ(x) where e = (0, 0, 1).

To handle the constraints Λ in our analysis, we set, for each F = (ξ | ζ) ∈ M
3×3 with

ξ ∈ M
3×2 and ζ ∈ R

3

W (x, F ) =

{

W (ξ | ζ) if ζ ∈ Λ(x)
+∞ otherwise.

1This paper is a revised version of [3].
2A multifunction Λ : ω−→

−→R
3 is said to be lower semicontinuous if for every closed set G ⊂ R

3 and
converging sequence ω ∋ xn → x satisfying Λ(xn) ⊂ G, we have Λ(x) ⊂ G.
3Λ(x) is a nonempty convex closed subset of R3 for all x ∈ ω.
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Thus, we rewrite (Pε) as inf
{

Eε(u) : u ∈ Aε

}

where

Aε ∋ u 7→ Eε(u) =
1

ε

∫

Ωε

W (x,∇u(x, x3))dxdx3;

we will consider this formulation in the rest of the paper.
Our objective is then to provide a variational limit of the problems (Pε), i.e., to find a
two-dimensional minimization problem which is the limit of infima of (Pε). In addition, we
need that “limitÔ points of ε-minimizing sequences to be minimizers of the limit problem.
A serious difficulty is that the set of admissible deformations depends on the thickness
ε. To avoid it, we “immerseÔ original functionals Eε in Lp(ω;R3) with p ∈ [1,+∞[, by
considering functionals

Lp(ω;R3) ∋ v 7→ Eε(v) = inf

{

Eε(u) : u ∈ Aε, −

∫ ε
2

− ε
2

u(·, x3)dx3 = v(·)

}

.

These functionals will be justified by the Anzellotti-Baldo-Percivale’s variational conver-
gence notion [5] (see Section 2). Then, our approach is divided in two steps. We first
show an abstract variational convergence theorem under coercivity conditions on W (see
Section 3 for precise assumptions). Indeed, we show (Theorem 3.2 (a)) that there exists a
functional F given by the Γ-limit of functionals {Eε}ε (with respect to the strong topology
of Lp(ω;R3)), which satisfies (Theorem 3.2 (b)) that: any ε-minimizing sequence {uε}ε of
{Eε}ε admit a subsequence such that

−

∫
εk
2

−
εk
2

uεk(·, x3)dx3 → v(·) in Lp(ω;R3),

and
lim
ε→0

inf
u∈Aε

Eε(u) = inf
v∈Lp(ω;R3)

F (v) = F (v).

In fact, the functional F is nothing but the relaxed functional (with respect to the strong
topology of Lp(ω;R3)) of

C∞
∗ (ω;R3) ∋ v 7→ I(v) = inf

{∫

ω

W (x, (∇v(x) | φ(x)))dx : φ ∈ C∞
e (ω; Λ)

}

.

Therefore, in the second step, assuming growth conditions on W , we give integral rep-
resentations for F . More precisely, with the help of interchange of infimum and integral
arguments introduced in [4], we obtain (Proposition 5.2) the following representation for
I

I(v) =

∫

ω

WΛ(x,∇v(x))dx, where WΛ(x, ξ) = inf
ζ∈Λ(x)

W (x, (ξ | ζ)).

Then the integral representations for F in Lp(ω;R3) are achieved (Theorem 3.4) by using
standard relaxation theorems.
This approach seems rather flexible because if, now, we relax I in the space of Young
measures instead of Lebesgue’s spaces then we can also obtain a variational formulation
in terms of Young measures (Theorem 3.6).
The paper is organized as follows. In Section 2 we state the main results of Anzellotti-
Baldo-Percivale’s variational convergence. Section 3 is devoted to statements of main
results. In Sections 4, 5 and 6 we give the proofs.
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Notation. Let Ω ⊂ R
3 be an open subset and u : Ω → R

3 be a differentiable function,

we write Du =

(

∂u

∂x

∣

∣

∣

∣

∂u

∂x3

)

with

∂u

∂x
=























∂u1

∂x1

∂u2

∂x2

∂u2

∂x1

∂u2

∂x2

∂u3

∂x1

∂u3

∂x2























and
∂u

∂x3

=























∂u1

∂x3

∂u2

∂x3

∂u3

∂x3























.

Let ω ⊂ R
2 be an open subset. A function v belongs to C∞(ω;R3) if there exists w ∈

C∞(R2;R3) such that v = w⌊ω. We denote

C∞
∗ (ω;R3) = {v ∈ C∞(ω;R3) : v(x) = (x, 0) on ∂ω},

and similarly for W 1,p
∗ (ω;R3). We denote

C∞
e (ω; Λ) =

{

φ ∈ C∞(ω;R3) : φ(x) = e on ∂ω and φ(x) ∈ Λ(x) a.e. in ω
}

.

For a topological space X and a function G : X → [0,+∞], cl(G) will denote the lower
semicontinuous envelope of G. In particular if X = Lp(ω;R3) is endowed with the strong
topology, we denote clp(G).

2. Preliminaries: Γ(π)-convergence

Since {Eε}ε is defined on varying domains {Aε}ε, we need to make precise definition
of variational limit. In [5] Anzellotti-Baldo-Percivale introduced an adapted notion of
variational convergence for these kind of problems: the Γ(q)-convergence. In the following,
we state the main results of this convergence.
Let X be a topological space. Let {Aε}ε be a family of arbitrary sets and Eε : Aε →
[0,+∞] be a family of functionals. Let {πε}ε, πε : Aε → X be a family of maps.

Definition 2.1. We say that {Eε}ε Γ(π)-converges, if for every v ∈ X and {εn}n ⊂]0, 1]
such that εn → 0 when n → +∞ we have

sup
U∈Vv

lim inf
n→+∞

infEεn(π
−1
εn
(U)) = sup

U∈Vv

lim sup
n→+∞

infEεn(π
−1
εn
(U)),

where Vv is the set of all open neighborhoods of v in X.

The following lemma makes precise the fact that this definition is not far from Γ-conver-
gence. For each ε ∈]0, 1] we consider Eε : X → [0,+∞] given by

Eε(v) = inf
{

Eε(w) : w ∈ π−1
ε (v)

}

.

Lemma 2.2. For every v ∈ X and {εn}n ⊂]0, 1] such that εn → 0 when n → +∞, we

have

(a) sup
U∈Vv

lim inf
n→+∞

infEεn(π
−1
εn
(U)) = (Γ- lim inf

n→+∞
Eεn)(v);
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(b) sup
U∈Vv

lim sup
n→+∞

infEεn(π
−1
εn
(U)) = (Γ- lim sup

n→+∞
Eεn)(v).

Furthermore, assume that for every ε ∈]0, 1] we have Aε = A, πε = π and Eε = E then

(c) sup
U∈Vv

infE(π−1(U)) = cl(E)(v),

where E(v) = inf
{

E(w) : w ∈ π−1(v)
}

for all v ∈ X.

Proof. It is sufficient to note that for every v ∈ X, U ∈ Vv and ε ∈]0, 1] we have

infEε(π
−1
ε (U)) = inf

w∈U
inf

u∈π−1
ε (w)

E(u).

Note also that (c) is a particular case of (a).

Remark 2.3.

i) {Eε}ε Γ(π)-converges to E if and only if {Eε}ε Γ-converges to E .

ii) The Definition 2.1 covers the case of Γ-convergence. For instance, if Aε = X and
πε = π for all ε ∈]0, 1], with π the identity map, then {Eε}ε Γ(π)-converges if
and only if {Eε}ε Γ-converges. If moreover Eε = E for all ε ∈]0, 1], then {Eε}ε
Γ(π)-converges to cl(E) (the lower semicontinuous envelope of E).

iii) If A ⊂ X and π : A → X is the natural embedding then E : A → [0,+∞] Γ(π)-
converges to cl( E), where E : X → [0,+∞] is given by

E(v) =

{

E(v) if v ∈ A
+∞ otherwise.

A sequence {uε}ε is said to be an ε-minimizing sequence of {Eε}ε, if for each ε ∈]0, 1]

uε ∈ Aε and Eε(uε) ≤ inf{Eε(u) : u ∈ Aε}+ ε.

The following result is an analogue of convergence of infima and minimizers result in the
theory of Γ-convergence. Under the notations of Definition 2.1, we have

Proposition 2.4. Assume that X is a metric space. Assume that

(i) {Eε}ε Γ(π)-converges to F ;

(ii) for any ε-minimizing sequence {uε}ε of {Eε}ε, {πε(uε)}ε ⊂ X is relatively compact.

Then for every ε-minimizing sequence {uε}ε of {Eε}ε, there exist a sequence {εk}k ⊂]0, 1]
going to zero, and v ∈ X such that

πεk(uεk) → v and lim
ε→0

inf{Eε(u) : u ∈ Aε} = inf{F (v) : v ∈ X} = F (v).

Proof. Let ε ∈]0, 1]. We begin by noticing that there is conservation of infima between
Eε and Eε. Indeed, since π−1

ε (X) =
⋃

{π−1
ε (v) : v ∈ X} = Aε, then

inf
u∈Aε

Eε(u) = inf
⋃

{π−1
ε (v):v∈X}

Eε(u) = inf
v∈X

inf
u∈π−1

ε (v)
Eε(u) = inf

v∈X
Eε(v). (1)

Let {uε}ε be an ε-minimizing sequence of {Eε}ε. From (1), we can deduce the following
inequalities

Eε(πε(uε)) ≤ Eε(uε) ≤ inf
u∈Aε

Eε(u) + ε = inf
v∈X

Eε(v) + ε,
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which proves that {πε(uε)}ε is an ε-minimizing sequence of {Eε}ε. By (ii) {πε(uε)}ε is
relatively compact. From (i) and according to Remark 2.3 i), we have that {Eε}ε Γ-
converges to F . Thus by property of Γ-convergence (see [10]), we deduce that there exist
a sequence {εk}k ⊂]0, 1] which satisfies εk → 0 as k → +∞, and v ∈ X such that

πεk(uεk) → v and lim
ε→0

inf
v∈X

Eε(v) = inf
v∈X

F (v) = F (v).

From (1) it follows
lim
ε→0

inf
u∈Aε

Eε(u) = inf
v∈X

F (v) = F (v).

This completes the proof.

Remark 2.5. Since the Γ(π)-convergence depends on the choice of the topological space
X and the “projectionsÔ maps {πε}ε, we should pay attention to choose them to avoid
losing informations on deformations.

3. Statements of main results

Throughout the paper, we consider three conditions on W .
There exists p ∈ [1; +∞[ such that:

(H0) there exists α > 0 such that for every x ∈ ω and F ∈ M
3×2 × Λ(x)

α|F |p ≤ W (F );

(H1) there exists β > 0 such that for every F ∈ M
3×2 × {e}

W (F ) ≤ β(1 + |F |p).

Moreover, we will suppose that:

(H2) for every v ∈ C∞
∗ (ω;R3) the function

x 7→ max
{

W (∇v(x) | rφ(x) + (1− r)φ(x)) : r ∈ [0, 1]
}

belongs to L1
loc(ω) for some φ ∈ C∞

e (ω; Λ) and for all φ ∈ C∞
e (ω; Λ).

Remark 3.1. Note that if W satisfies standard growth conditions, i.e.,

c|F |p ≤ W (F ) ≤ C(1 + |F |p)

for some c > 0, C > 0, p ≥ 1, and for all F ∈ M
3×3, then (H1) and (H2) are satisfied.

Assumption (H2) is satisfied if, for instance, we suppose that the function

ζ 7→ W (· | ζ)

is convex.

3.1. Abstract variational convergence result

Let ε ∈]0, 1]. Set X = Lp(ω;R3) endowed with the strong topology and πε : Aε →
Lp(ω;R3) the average operator defined by

πε(u)(·) = −

∫ ε
2

− ε
2

u(·, x3)dx3

(

=
1

ε

∫ ε
2

− ε
2

u(·, x3)dx3

)

.
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Note that, since the thickness of the structure is small, roughly speaking, we don’t lose
informations on original deformations by replacing them with their mean value. Let
Eε : L

p(ω;R3) → [0 +∞] be defined by

Eε(v) = inf{Eε(u) : u ∈ π−1
ε (v)}.

Let us define the functional4 I : Lp(ω;R3) → [0,+∞] by

I(v) =







inf

{∫

ω

W (x, (∇v(x) | φ(x)))dx : φ ∈ C∞
e (ω; Λ)

}

if v ∈ C∞
∗ (ω;R3)

+∞ otherwise,

where

C∞
e (ω; Λ) =

{

φ ∈ C∞(ω;R3) : φ(x) = e on ∂ω and φ(x) ∈ Λ(x) a.e. in ω
}

.

Now, we can give one main result of the paper.

Theorem 3.2. Assume that (H0) holds, then

(a) {Eε}ε Γ(π)-converges to F given by

F = Γ- lim
ε→0

Eε = clp(I);

(b) for every ε-minimizing sequence {uε}ε of {Eε}ε, there exist a sequence {εk}k ⊂]0, 1]
going to zero, and v ∈ Lp(ω;R3), such that

πεk(uεk) → v in Lp(ω;R3) and lim
ε→0

inf
u∈Aε

Eε(u) = inf
v∈Lp(ω;R3)

F (v) = F (v).

Remark 3.3. Assertion (b) is an abstract variational formulation in the sense that we
have not identified the “limitÔ stored energy function associated with the plate.

3.2. Integral representations in Lebesgue’s spaces

Now we deal with the problem of giving an integral representation for F = clp(I).
Let us introduce some notation. Let f : ω×M

3×2 → [0,+∞[ be a Carathéodory function,
following Morrey [14], f is quasiconvex if for every x ∈ ω

f(x, ξ) ≤ −

∫

A

f(x, ξ +∇φ(z))dz

for all ξ ∈ M
3×2, A ⊂ R

N bounded open set, and for all φ ∈ C∞
c (A;R3). The quasiconvex

envelope of f is the greatest quasiconvex function g : ω×M
3×2 → [0,+∞[ which satisfies

g(x, ·) ≤ f(x, ·) for all x ∈ ω. We denote Qf = g. The recession function f∞ associated
with f is given by

f∞(x, ξ) = lim sup
t→+∞

f(x, tξ)

t
.

If u ∈ L1(ω;R3) is such that the distributional derivativeDu is a bounded Radon measure,
then u belongs to the space of bounded variation functions BV (ω;R3). We denote by
γ : BV (ω;R3) → L1(∂ω) the trace operator, and ν(x) the outward unit normal at H2

almost all x on ∂ω.
Now we can state the integral representations for F .

4This functional has relationships with geometric integrals, see [3, 4, 13].
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Theorem 3.4. Assume that (H0), (H1) and (H2) hold.

(a) If p > 1 then

F (v) =







∫

ω

QWΛ(x,∇v(x))dx if v ∈ W 1,p
∗ (ω;R3)

+∞ otherwise.

(b) If p = 1, we assume moreover that

- there exist C,L > 0 and m ∈]0; 1[ such that

∣

∣

∣

∣

W∞
Λ (x, ξ)−

WΛ(x, tξ)

t

∣

∣

∣

∣

≤
C

tm

for all (x, ξ) ∈ ω ×M
3×2 satisfying |ξ| = 1 and t > L;

- Λ is a closed5 multifunction.

then

F (v) =



















∫

ω

QWΛ(x,∇v(x))dx+

∫

ω

(QWΛ)
∞(x,Dsv)

+

∫

∂ω

(QWΛ)
∞(x, γ(v)(x)⊗ ν(x))dH2(x) if v ∈ BV (ω;R3)

+∞ otherwise.

Now, from Theorem 3.2 and 3.4 we deduce easily variational formulations.

Corollary 3.5. Let assumptions of Theorem 3.4 hold. For every ε-minimizing sequence

{uε}ε of {Eε}ε, there exist a sequence {εk}k ⊂]0, 1] going to zero, and v ∈ Lp(ω;R3) such
that

πεk(uεk) → v in Lp(ω;R3),

and if p > 1

lim
ε→0

inf
u∈Aε

Eε(u) = inf
v∈W 1,p

∗ (ω;R3)

∫

ω

QWΛ(x,∇v(x))dx =

∫

ω

QWΛ(x,∇v(x))dx;

if p = 1

lim
ε→0

inf
u∈Aε

Eε(u) = inf
v∈BV (ω;R3)

{

∫

ω

QWΛ(x,∇v(x))dx+

∫

ω

(QWΛ)
∞(x,Dsv)

+

∫

∂ω

(QWΛ)
∞(x, γ(v)(x)⊗ ν(x))dH2(x)

}

=

∫

ω

QWΛ(x,∇v(x))dx+

∫

ω

(QWΛ)
∞(x,Dsv)

+

∫

∂ω

(QWΛ)
∞(x, γ(v)(x)⊗ ν(x))dH2(x).

3.3. Variational formulation in Young measures space

Here, we establish a variational formulation theorem6 in Young measures space for prob-
lems (Pε). The main interest is that there is no quasiconvexification of the density in

5Λ is a closed multifunction if the set {(x, ζ) ∈ ω × R
3 : ζ ∈ Λ(x)} which is the graph of Λ, is closed.

6This result has already proved in [3].
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the relaxation step. Thus limit minimizing sequences may capture oscillations of gradient
minimizing sequences due to possibly multiwell structure of the density WΛ by means of
probability measures whose barycenter is a limit gradient, solution of the classical limit
problem treated in previous sections (see Corollary 6.3). Indeed, if W exhibits poten-
tial wells, it will be the same for WΛ, thus this model may account for microstructures
in thin films as for instance, possible untwinned austenite/martinsite interfaces for thin
structures, predict by Battacharya and James in [6].
Following [16], a Young measure ν ∈ Y(ω;M3×2) is a positive measure on ω ×M

3×2 such
that for every borel set A ⊂ ω, ν(A × M

3×2) = |A|, where | · | denotes the Lebesgue
measure on R

2. The space of Young measures Y(ω;M3×2) is endowed with the narrow
topology which is the weakest topology on Y(ω;M3×2) for which the maps

ν 7→

∫

ω×M3×2

φdν

are continuous for all bounded Carathéodory integrand φ. Let W1,p
∗ be the subset of the

space of Young measures generated by gradients. More precisely, ν ∈ W1,p
∗ if there exists

a bounded sequence {vk}k ⊂ W 1,p
∗ (ω;R3) such that δ{∇vk(·)}

nar
⇀ ν, i.e., δ{∇vk(·)} narrowly

converges to ν.

Theorem 3.6. Let p ∈]1,+∞[. Assume that (H0), (H1) and (H2) hold. LetG :Y(ω;M3×2)
→ [0,+∞] be defined by

G(ν) =







∫

ω×M3×2

WΛ(x, ξ)dν(x, ξ) if ν ∈ W1,p
∗

+∞ otherwise.

For any ε-minimizing sequence {uε}ε of {Eε}ε, there exist a sequence {εk}k ⊂]0, 1] going
to zero, and ν ∈ Y(ω;M3×2), such that

δ{∇πεk
(uεk

)(·)}
nar
⇀ ν and lim

ε→0
inf
u∈Aε

Eε(u) = inf
ν∈Y(ω;M3×2)

G(ν) = G(ν).

4. Proof of Theorem 3.2

Proof of (a). By Lemma 2.2, it suffices to prove that {Eε}ε Γ-converges to clp(I). The
proof will be divided into 2 steps.
Step 1. Let v ∈ Lp(ω;R3), we begin by proving

(Γ- lim sup
ε→0

Eε)(v) ≤ clp(I)(v).

Let ε ∈]0, 2−1]. Note that if u is of the form u(x, x3) = w(x)+x3φ(x) with w ∈ C∞
∗ (ω;R3),

φ ∈ C∞
e (ω; Λ), then u ∈ π−1

ε (w). From that, we define Sε : L
p(ω;R3) → [0,+∞] by

Sε(w) =



















inf
φ∈C∞

e (ω;Λ)

{1

ε

∫

Ωε

W (x, (∇w(x)

+x3∇φ(x) | φ(x)))dxdx3

}

if w ∈ C∞
∗ (ω;R3)

+∞ otherwise.

It follows easily that Eε(v) ≤ Sε(v). Assume that

lim sup
ε→0

Sε(v) ≤ I(v). (2)
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Then we will conclude by the following inequalities

(Γ- lim sup
ε→0

Eε)(v) ≤ clp(lim sup
ε→0

Eε)(v) ≤ clp(lim sup
ε→0

Sε)(v) ≤ clp(I)(v).

We are reduced to prove (2). Without loss of generality, assume I(v) < +∞. Let
φ ∈ C∞

e (ω; Λ), then

Sε(v) ≤
1

ε

∫

Ωε

W (∇v(x) + x3∇φ(x) | φ(x))dx3dx.

Note that the function Ψ : Ω× [0, 1] → M
3×3 defined by

Ψ(x, x3, λ) = (∇v(x) + λx3∇φ(x) | φ(x))

is continuous and so its range Ψ(Ω × [0, 1]) is compact. From continuity assumption on
W , it follows that for every (x, x3, ε) ∈ Ω×]0, 1]

W (∇v(x) + εx3∇φ(x) | φ(x)) ≤ sup( W ◦Ψ)(Ω× [0, 1]) < +∞,

and
lim
ε→0

W (∇v(x) + εx3∇φ(x) | φ(x)) = W (∇v(x) | φ(x)).

By Lebesgue’s dominated convergence theorem, we deduce that

lim
ε→0

1

ε

∫

Ωε

W (∇v(x) + x3∇φ(x) | φ(x))dx3dx

= lim
ε→0

∫

ω×]− 1

2
, 1
2
[

W (∇v(x) + εx3∇φ(x) | φ(x))dx =

∫

ω

W (∇v(x) | φ(x))dx,

and therefore

lim sup
ε→0

Sε(v) ≤ inf
φ∈C∞

e (ω;Λ)

∫

ω

W (x, (∇v(x) | φ(x)))dx,

which completes the first step.
Step 2. Let us show that for every v ∈ Lp(ω;R3)

(Γ- lim inf
ε→0

Eε)(v) ≥ clp(I)(v).

Let v ∈ Lp(ω;R3) and {vε}ε ⊂ C∞
∗ (ω;R3) such that vε → v in Lp(ω;R3). Let {εn}n ⊂]0, 1]

be such that εn → 0 when n → ∞. There is no loss of generality in assuming

lim inf
n→∞

Eεn(vεn) < +∞.

There exists a subsequence still denoted {vεn}n such that

sup{Eεn(vεn) : n ∈ N} < +∞ and lim
n→∞

Eεn(vεn) = lim inf
n→∞

Eεn(vεn).

To simplify notation, we write Eεn = En, vεn = vn and Eεn = En for all n ∈ N. Let n ∈ N.
There exists un ∈ π−1

εn
(vn) such that

∂un

∂x3

(x, x3) ∈ Λ(x)

9



for all (x, x3) ∈ Ωεn and moreover En(un) ≤ En(vn)+εn. Let wn(x, x3) = un(x, εnx3) with
(x, x3) ∈ Ω. This gives En(un) = Gn(wn) where

Gn(wn) =

∫

Ω

W

(

x,

(

∂wn

∂x

∣

∣

∣

1

εn

∂wn

∂x3

))

dxdx3.

According to coercivity condition (H0) on W , there exists a constant C > 0, such that
∥

∥

∥

∂wn

∂x3

∥

∥

∥

Lp(Ω;R3)
≤ Cεpn sup{Gn(vn) : n ∈ N}. By Poincaré-Wirtinger’s inequality, we have

‖wn − vn‖Lp(Ω;R3) ≤ C ′

∥

∥

∥

∥

∂wn

∂x3

∥

∥

∥

∥

Lp(Ω;R3)

,

where C ′ > 0 depends on k and p only. From above, it follows that wn → v in Lp(Ω;R3).
Define w̃x3

n (x) = wn(x, x3) for all (x, x3) ∈ Ω, it is easy to see that, up to a subsequence,
w̃x3

n → v in Lp(ω;R3) for almost all x3 ∈]−
1
2
, 1
2
[. By Fatou’s lemma we obtain

lim
n→∞

Eεn(vεn) ≥ lim inf
n→∞

Gn(wn)

= lim inf
n→∞

∫

Ω

W

(

x,

(

∇w̃x3

n (x)
∣

∣

∣

∂un

∂x3

(x, εnx3)

))

dxdx3

≥

∫ 1

2

− 1

2

(

lim inf
n→∞

∫

ω

W

(

x,

(

∇w̃x3

n (x)
∣

∣

∣

∂un

∂x3

(x, εnx3)

))

dx

)

dx3

≥

∫ 1

2

− 1

2

(

lim inf
n→∞

inf
φ∈C∞

e (ω;Λ)

∫

ω

W (x, (∇w̃x3

n (x) | φ(x))) dx

)

dx3

≥ clp(I)(v).

Consequently, for every v ∈ Lp(Ω;R3)

clp(I)(v) ≤ (Γ- lim inf
ε→0

Eε)(v) ≤ (Γ- lim sup
ε→0

Eε)(v) ≤ clp(I)(v),

which establishes that {Eε}ε Γ-converges to clp(I), and the proof of (a) is complete.

Proof of (b). We begin by proving a compactness lemma.

Lemma 4.1. Assume that (H0) holds. Let {vε}ε ⊂ C∞
∗ (ω;R3) such that

sup{Eε(vε) : ε ∈]0, 1]} < +∞.

Then there exist a subsequence {vεk}k and v ∈ Lp(ω;R3) such that vεk → v in Lp(ω;R3).

Proof. Let {vε}ε ⊂ C∞
∗ (ω;R3) such that sup{Eε(vε) : ε ∈]0, 1]} < +∞. Let {εn}n ⊂]0, 1]

such that εn → 0 when n → +∞. Set Eεn = En, vεn = vn and πεn = πn for all n ∈ N. Let
n ∈ N. According to coercivity (H0) condition and Jensen’s inequality, we have

En(vn) = inf
{

∫

ω

(

∫ εn
2

− εn
2

W (x,∇u(x, x3)dx3

)

dx : u ∈ π−1
n (vn)

}

≥ β inf
{

∫

ω

(

∫ εn
2

− εn
2

|∇u(x, x3)|
pdx3

)

dx : u ∈ π−1
n (vn)

}

≥ β

∫

ω

|∇vn(x)|
pdx.

Poincaré’s inequality gives sup{||vn||Lp(ω;R3)+ ||∇vn||Lp(ω;R3) : n ∈ N} < +∞. The Rellich
compactness embedding theorem leads to the existence of a subsequence {vnk

}k and v ∈
Lp(ω;R3) such that vnk

→ v in Lp(ω;R3). This completes the proof of the lemma.
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By (a), {Eε}ε Γ(π)-converges to F , thus (i) of Proposition 2.4 is satisfied. Let {uε}ε be
an ε-minimizing sequence of {Eε}ε. Take u0(x, x3) = (x, x3) then























u0 ∈ Aε for all ε ∈]0, 1],
∂u0

∂x3

(x, x3) = e ∈ Λ(x);

sup
ε∈]0,1]

inf
u∈Aε

Eε(u) ≤ |ω| W (Id) < +∞, where Id =





1 0 0
0 1 0
0 0 1



 .

Thus, (1) of proof of Proposition 2.4 leads to

sup
ε∈]0,1]

Eε(πε(uε)) < +∞,

and by the previous compactness Lemma 4.1, (ii) of Proposition 2.4 holds. The proof is
then complete. £

5. Proof of Theorem 3.4

The proof of Theorem 3.4 is divided in two steps shown in the following subsections.
In the first step, we obtain an integral representation of I by using interchange of infi-
mum and integral argument. In the second step, by classical relaxation results, integral
representations of clp(I) are obtained.

5.1. Integral representation of I

We recall in a less general form a result of interchange of infimum and integral (for more
details see [4]). Let p ∈ [1,+∞[ and f : ω × R

3 → [0,+∞] be a Carathéodory integrand.
Let X ⊂ Lp(ω;R3) be a C∞

c (ω; [0, 1])-decomposable set, i.e. ϕw+(1−ϕ) w ∈ X whenever
w, w ∈ X and ϕ ∈ C∞

c (ω; [0, 1]). Suppose that there exists φ ∈ X such that
∫

ω

f(x, φ(x))dx < +∞,

and such that the function x 7→ max{f(x, αφ(x) + (1− α)φ(x)) : 0 ≤ α ≤ 1} belongs to
L1
loc(ω), for all φ ∈ X . Then we have the interchange of infimum and integral

inf
φ∈X

∫

ω

f(x, φ(x))dx =

∫

ω

inf
ζ∈Γ(x)

f(x, ζ)dx,

where Γ is the essential supremum of X , i.e.

- φ(x) ∈ Γ(x) a.e. for all φ ∈ X ;
- and Γ(x) ⊂ Γ′(x) a.e. whenever Γ′ is a closed valued measurable7 multifunction

satisfying φ(x) ∈ Γ′(x) a.e. for all φ ∈ X .

We will need the following lemma which we recall in our context, see [7] Sect. 2.2 for the
general case. This one gives some characterizations of the essential supremum.

Characterization lemma. Let p ∈ [1,+∞[ and let Γ be the essential supremum of
X ⊂ Lp(ω;R3). Then:

7A multifunction Σ : ω−→

−→R
3 is measurable if {x ∈ ω : Σ(x) ∩ U 6= ∅} is measurable for all open subset

U ⊂ R
3.
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(1) there exists a countable subset D ⊂ X such that Γ(x) = cl{w(x) : w ∈ D} a.e.;
(2) if X ⊂ Ce(ω;R

3), then Γ(x) = cl{w(x) : w ∈ X} a.e..

The following lemma allows us to determine the essential supremum of C∞
e (ω; Λ).

Lemma 5.1. Let Γ : ω−→
−→R

3 be defined by Γ = ess sup(C∞
e (ω; Λ)) then Γ = Λ a.e..

Proof. From (1) of the Characterization lemma, there exists a countable subset D ⊂
C∞
e (ω; Λ) such that Γ(x) = cl{φ(x) : φ ∈ D} a.e. Hence Γ(x) ⊂ Λ(x) a.e. Let x ∈ ω and

ζ ∈ Λ(x). Let φ ∈ C∞(ω; Λ) be defined by φ(z) = ζ for all z ∈ ω. Let ϕx ∈ C∞
c (ω; [0; 1])

defined by ϕx(z) = 0 if z ∈ ω \ B2δ(x) and ϕx(z) = 1 if z ∈ Bδ(x), with δ small enough
for B2δ(x) ⊂ ω. Set vx = ϕxφ + (1 − ϕx)e. Since vx(z) = ϕx(z)φ(z) + (1 − ϕx(z))e
is a convex combination of elements of Λ(z), then vx(z) ∈ Λ(z) for all z ∈ ω. Thus
vx ∈ C∞

e (ω; Λ) satisfies vx(x) = ζ, therefore Λ(x) ⊂ {φ(x) : φ ∈ C∞
e (ω; Λ)} ⊂ Γ(x) for

all x ∈ ω, where the last inclusion follows from (2) of the Characterization lemma. This
proves the lemma.

Proposition 5.2. Assume that (H2) holds, then

I(v) =







∫

ω

WΛ(x,∇v(x))dx if v ∈ C∞
∗ (ω;R3)

+∞ otherwise,

where WΛ : ω ×M
3×2 → [0,+∞[ is defined by

WΛ(x, ξ) = inf {W (x, (ξ | ζ)) : ζ ∈ Λ(x)} = inf
{

W (ξ | ζ) : ζ ∈ Λ(x)
}

.

Proof. It is easy to see that C∞
e (ω; Λ) is a C∞

c (ω; [0, 1])-decomposable set. Let v ∈
C∞
∗ (ω;R3) and f : ω ×R

3 → [0,+∞] be defined by f(x, ζ) = W (∇v(x) | ζ). Obviously f
is a Carathéodory integrand. Let C∞

e (ω; Λ) ∋ φ = e, then
∫

ω

f(x, φ(x))dx =

∫

ω

W (∇v(x) | e)dx ≤ sup
x∈ω

W (∇v(x) | e).|ω| < +∞.

Assumption (H2) and interchange of infimum and integral argument together with Lemma
5.1 lead us to

I(v) =

∫

ω

WΛ(x,∇v(x))dx,

which completes the proof.

5.2. Integral representations of F = clp(I)

The function WΛ inherites continuity, growth and coercivity conditions from W . More
precisely, we have

Lemma 5.3. Let assumptions (H0) and (H1) holds. Then WΛ is a Carathéodory function

and satisfies growth and coercivity condition of order p ∈ [1,+∞[, i.e., there exists α0, β0 >
0 such that for every (x, ξ) ∈ ω ×M

3×2

α0|ξ|
p ≤ WΛ(x, ξ) ≤ β0(1 + |ξ|p).

Moreover if Λ is a closed multifunction, then WΛ is continuous.
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Proof. Let us first prove that WΛ satisfies growth and coercivity conditions. It is easy
to see that there exists α′, β′ depending on p, such that for every (ξ | ζ) ∈ M

3×2 × R
3

α′(|ξ|p + |ζ|p) ≤ |(ξ | ζ)|p ≤ β′(|ξ|p + |ζ|p).

Let x ∈ ω, ξ ∈ M
3×2 and set α0 = αα′ and β0 = β(1 + β′). By (H0), we have

WΛ(x, ξ) ≥ α inf
ζ∈Λ(x)

|(ξ | ζ)|p ≥ αα′

(

|ξ|p + inf
ζ∈Λ(x)

|ζ|p
)

≥ α0|ξ|
p.

By (H1), we have

WΛ(x, ξ) ≤ W (x, (ξ | e)) ≤ βmax(1 + β′|e|p, β′)(1 + |ξ|p) = β0(1 + |ξ|p).

Now let us show thatWΛ is a Carathéodory function. Classical arguments (see for instance
[9]) lead to the measurability of x 7→ WΛ(x, ·). Let ξ, {ξn}n ⊂ M

3×2 such that ξn → ξ.
Let x ∈ ω. For every n ∈ N

∗ there exists ζn ∈ Λ(x) such that

WΛ(x, ξn) = inf
ζ∈Λ(x)

W (ξn | ζ) ≥ W (ξn | ζn)−
1

n
.

According to coercivity condition (H0) on W , it follows, up to a subsequence, that ζn →
ζ ∈ Λ(x). From continuity of W we deduce that

lim inf
n→+∞

WΛ(x, ξn) ≥ lim
n→+∞

W (ξn | ζn) = W (ξ | ζ) ≥ WΛ(x, ξ).

This proves the l.s.c of WΛ. Now for the u.s.c of WΛ, it is sufficient to remark that for
each ζ ∈ Λ(x), we have

lim sup
n→+∞

WΛ(x, ξn) ≤ lim
n→+∞

W (ξn|ζ) = W (ξ | ζ).

Therefore ξ 7→ WΛ(x, ξ) is continuous.

Assume now, that Λ is a closed multifunction. Let (x, ξ), {(xn, ξn)}n ⊂ ω×M
3×2 such that

xn → x and ξn → ξ. We first prove the lower semicontinuity of WΛ. Up to a subsequence
(not relabelled), we have

lim inf
n→+∞

WΛ(xn, ξn) = lim
n→+∞

WΛ(xn, ξn).

For every n ∈ N
∗ there exists ζn ∈ Λ(xn) such that

WΛ(xn, ξn) ≥ W (ξn | ζn)−
1

n
.

According to coercivity condition (H0) on W , it follows that there exist a subsequence
{nk}k going to infinity and ζ such that ζnk

→ ζ. Since the graph of Λ is closed, ζ ∈ Λ(x).
From the continuity of W , we obtain

lim inf
n→+∞

WΛ(xn, ξn) = lim
k→+∞

WΛ(xnk
, ξnk

) ≥ lim
k→+∞

W (ξnk
| ζnk

)

= W (ξ | ζ) ≥ WΛ(x, ξ).
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The second step is to prove the upper semicontinuity of WΛ. Up to a subsequence (not
relabelled), we have

lim sup
n→+∞

WΛ(xn, ξn) = lim
n→+∞

WΛ(xn, ξn).

Let ζ ∈ Λ(x). From l.s.c of Λ, we can find a subsequence {xnk
}k and a sequence {ζk}k ⊂

R
3, satisfying

∀k ∈ N ζk ∈ Λ(xnk
) and lim

k→+∞
ζk = ζ.

By continuity of W , we have

lim sup
n→+∞

WΛ(xn, ξn) = lim
n→+∞

WΛ(xn, ξn)

= lim
k→+∞

WΛ(xnk
, ξnk

)

≤ lim
k→+∞

W (ξnk
, ζnk

) = W (ξ | ζ).

Since ζ ∈ Λ(x) is arbitrary, the u.s.c of WΛ follows. Which proves the lemma.

We recall some results about relaxation of multiple integrals of the Calculus of Variations
in our context. Let J : Lp(ω;R3) → [0,+∞] be defined by

J(v) =







∫

ω

f(x,∇v(x))dx if v ∈ C∞
∗ (ω;R3)

+∞ otherwise,

where f : ω×M
3×2 → [0,+∞[ is a Carathéodory function, such that there exist c, C > 0

and p ∈ [1; +∞[ such that for all (x, ξ) ∈ ω ×M
3×2

c|ξ|p ≤ f(x, ξ) ≤ C(1 + |ξ|p).

For a proof of the following relaxation theorem see for instance [2].

Theorem. If p > 1, the lower semicontinuous envelope clp(J) for the strong topology of
Lp(ω;R3) is given by

clp(J)(v) =







∫

ω

Qf(x,∇v(x))dx if u ∈ W 1,p
∗ (ω;R3)

+∞ otherwise.

From [8] we have a relaxation result in the case p = 1.

Theorem. Assume that f is continuous and that there exist C > 0, m ∈]0, 1[, L > 0
such that

|f∞(x, ξ)−
f(x, tξ)

t
| ≤

C

tm

for all (x, ξ) ∈ ω ×M
3×2 such that ||ξ|| = 1, and for all t > L. Then the lower semicon-

tinuous envelope cl1(J) for the strong topology of L1(ω;R3) is given by

cl1(J)(v) =



















∫

ω

Qf(x,∇v(x))dx+

∫

ω

(Qf)∞(x,Dsv)

+

∫

∂ω

Qf∞(x, γ(v)(x)⊗ ν(x))dH2(x) if v ∈ BV (ω;R3)

+∞ otherwise.

Proof of Theorem 3.4. By Proposition 5.2 and Lemma 5.3 together with the previous
relaxation theorems, the proof follows. £
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6. Proof of Theorem 3.6

We recall, in our context, two convergence results in the theory of Young measures (see
[16]). Let φ : ω × M

3×2 → [0,+∞[ be a Carathéodory function. Let {wε}ε a sequence
of mesurable functions of ω to M

3×2 and {νε}ε ⊂ Y(ω;M3×2) their corresponding Young
measures, i.e. δ{wε(·)} = νε for all ε ∈]0, 1]. Assume that νε

nar
⇀ ν. Then

(Lsc) lim inf
ε→0

∫

ω×M3×2

φ(x, ξ)dνε(x, ξ) ≥

∫

ω×M3×2

φ(x, ξ)dν(x, ξ);

(Con) if moreover {φ(·, wε(·))}ε is uniformly integrable then

lim
ε→0

∫

ω×M3×2

φ(x, ξ)dνε(x, ξ) =

∫

ω×M3×2

φ(x, ξ)dν(x, ξ).

For the proof of Theorem 3.6, we need of the following two lemma which are adapted
from [15]. Before, let us introduce the setting. Assume that there exist c, C > 0 and
p ∈]1; +∞[ such that

c|ξ|p ≤ φ(x, ξ) ≤ C(1 + |ξ|p) (3)

for all (x, ξ) ∈ ω ×M
3×2. Let J : C∞

∗ (ω;R3) → [0,+∞[ be defined by

J(v) =

∫

ω

φ(x,∇v(x))dx.

Lemma 6.1. Let π : C∞
∗ (ω;R3) → Y(ω;M3×2) be defined by π(v) = δ{∇v(·)}. The integral

functional J Γ(π)-converges to S given by

S(ν) =







∫

ω×M3×2

φ(x, ξ)dν(x, ξ) if ν ∈ W1,p
∗

+∞ otherwise.

Proof. By Lemma 2.2 we are reduced to prove that the lower semicontinuous envelope
for the narrow topology of J : Y(ω;M3×2) → [0,+∞] defined by

J (ν) = inf{I(v) : v ∈ π−1(ν)}

is S. It is easy to see that π is injective. Therefore we have the representation

J (ν) =







∫

ω×M3×2

φ(x, ξ)dν(x, ξ) if ν ∈ π(C∞
∗ (ω;R3))

+∞ otherwise.

Let ν , {νε}ε ⊂ Y(ω;M3×2) such that νε
nar
⇀ ν. Without restriction of generality, we can

assume
lim inf
ε→0

J (νε) < +∞.

Then {νε}ε ⊂ π(C∞
∗ (ω;R3)) and there exists {vε}ε ⊂ C∞

∗ (ω;R3) bounded in W 1,p
∗ (ω;R3)

such that νε = δ{∇vε(·)}
nar
⇀ ν. By (Lsc) it follows that

lim inf
ε→0

J (νε) = lim inf
ε→0

∫

ω×M3×2

φ(x, ξ)dνε(x, ξ) ≥

∫

ω×M3×2

φdν = S(ν).
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Now, let ν ∈ W1,p
∗ . Then there exists a bounded sequence {vε}ε ⊂ W 1,p

∗ (ω;R3) such
that δ{∇vε(·)}

nar
⇀ ν. By coercivity condition (3) on φ and a well known decomposition

lemma, see for instance [15, 11], there exists a sequence {vε}ε ⊂ W 1,∞(ω;R3) bounded in
W 1,p(ω;R3), such that {|∇vε|

p}ε is equi-integrable, νε = δ{∇vε(·)}
nar
⇀ ν. Growth condition

(3) on φ then gives that {x 7→ φ(x,∇vε(x))}ε is uniformly integrable. According to (Con)
we have

lim
ε→0

∫

ω

φ(x,∇vε(x))dx =

∫

ω×M3×2

φ(x, ξ)dν(x, ξ),

and the proof is finished.

A subset H ⊂ Y(ω;M3×2) is tight if for every ε > 0 there exists a compact subset
Kε ⊂ M

3×2 such that sup{ν(ω × (M3×2 \ Kε)) : ν ∈ H} < ε. We recall Prokhorov’s
theorem (see for instance [16]): if H ⊂ Y(ω;M3×2) is tight and {νε}ε ⊂ H, then there
exist a subsequence {νεk}k and ν ∈ Y(ω;M3×2) such that νεk

nar
⇀ ν.

Lemma 6.2. Let {νε}ε ⊂ Y(ω;M3×2) such that sup{J (νε) : ε ∈]0, 1]} < +∞. Then

there exist ν ∈ W1,p
∗ and a subsequence {νεk}k such that νεk

nar
⇀ ν.

Proof. We just give a sketch of the proof here. Since sup{J (νε) : ε ∈]0, 1]} < +∞,
coercivity condition (3) on φ gives

sup
ε∈]0,1]

∫

ω

|∇uε(x)|
pdx < +∞,

where νε = δ{∇uε(·)} for all ε ∈]0, 1]. By Poincaré ’s inequality we have that {uε}ε is
bounded in W 1,p

∗ (ω;R3). Holdër’s inequality gives

sup
ε∈]0,1]

∫

ω

|∇uε(x)|dx < +∞,

and then the sequence {νε}ε is tight. Prokhorov’s theorem gives the desired conclusion.

Proof of Theorem 3.6. From Lemma 5.3,WΛ satisfies growth and coercivity conditions.
By Proposition 5.2, Ĩ = I⌊C∞

∗
(ω;R3) admit an integral representation. Then by Lemma 6.1

Ĩ Γ(π)-converges to G. Let {uε}ε be an ε-minimizing sequence of {Eε}ε. It is easy to
see that {πε(uε)}ε is an ε-minimizing sequence of F . By Proposition 5.2 {πε(uε)}ε is a
minimizing sequence of I and then of Ĩ. Lemma 6.2 implies that there exist a subsequence
{εk}k ⊂]0, 1] going to zero, and ν ∈ W1,p

∗ such that δ{∇πεk
(uεk

)(·)}
nar
⇀ ν, and moreover by

Proposition 2.4 we have

inf
v∈C∞

∗
(ω;R3)

Ĩ(v) = inf
ν∈Y(ω;M3×2)

G(ν) = G(ν).

Since inf{I(v) : v ∈ Lp(ω;R3)} = inf{Ĩ(v) : v ∈ C∞
∗ (ω;R3)}, we deduce

lim
ε→0

inf
u∈Aε

Eε(u) = inf
ν∈Y(ω;M3×2)

G(ν) = G(ν),

which completes the proof. £

Now, it is interesting to compare Theorem 3.2 (b) and Theorem 3.6.
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Corollary 6.3. Let assumptions of Theorem 3.6 hold. Let {uε}ε is an ε-mini-mizing
sequence of {Eε}ε. Then there exist a sequence {εk}k ⊂]0, 1] going to zero, ν ∈ W1,p

∗ and
v ∈ W 1,p

∗ (ω;R3), such that

i) δ{∇πεk
(uεk

)(·)}
nar
⇀ ν and πεk(uεk) ⇀ v in W 1,p(ω;R3);

ii) lim
ε→0

inf
u∈Aε

Eε(u) =







inf
ν∈Y(ω;M3×2)

G(ν) = G(ν)

inf
v∈Lp(ω;R3)

F (v) = F (v);

iii) ∇v(x) =

∫

M3×2

ξdνx(ξ) a.e..

Where {νx}x∈ω is a family of probabilities on M
2×3 corresponding to the disintegration of

ν.

Proof. In our context, we recall a result on gradient Young measures, see for instance
[15, 11]. Let {wε}ε be a bounded sequence in W 1,p(ω;R3) and p > 1. Then there exist a
sequence {εk}k ⊂]0, 1] going to zero, ν ∈ Y(ω;M3×2) and w ∈ W 1,p(ω;R3) such that

δ{∇wεk
(·)}

nar
⇀ ν and wεk ⇀ w in W 1,p(ω;R3)

and

∇w(x) =

∫

M3×2

ξdνx(ξ) a.e..

On account of the previous result together with Theorem 3.2 (b) and Theorem 3.6, it is
easy to deduce the desired conclusion.

References

[1] E. Acerbi, G. Buttazzo, D. Percivale: A variational definition for the strain energy of an
elastic string, J. Elasticity 25 (1991) 137–148.

[2] E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations, Arch. Rational
Mech. Anal. 86 (1984) 125–145.

[3] O. Anza Hafsa: On the variational approach of thin elastic structures, Prépublication 03-01,
Université Montpellier 2 (2003).

[4] O. Anza Hafsa, J. P. Mandallena: Interchange of infimum and integral, Calc. Var. Partial
Differ. Equ. 18 (2003) 433–449.

[5] E. Anzellotti, S. Baldo, D. Percivale: Dimension reduction in variational problems, asymp-
totic development in Γ-convergence and thin structures in elasticity, Asymptotic Anal. 9
(1994) 61–100.

[6] K. Bhattacharya, R. D. James: A theory of thin films of martinsitic materials with appli-
cations to microstructures, J. Mech. Phys. Solids 47 (1999) 531–576.
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