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Hermitian pa, bq-modules and Saito’s

“higher residue pairings”

Piotr P. Karwasz�
April 7, 2011

Abstract

Following the work of Daniel Barlet ([Bar97]) and Ridha Belgrade

([Bel01]) the aim of this article is the study of the existence of pa, bq-
hermitian forms on regular pa, bq-modules. We show that every regularpa, bq-module E with a non-degenerate bilinear form can be written in
an unique way as a direct sum of pa, bq-modules Ei that admit either anpa, bq-hermitian or an pa, bq-anti-hermitian form or both; all three cases
are equally possible with explicit examples.

As an application we extend the result in [Bel01] on the existence for allpa, bq-modules E associated with the Brieskorn module of a holomorphic
function with an isolated singularity, of an pa, bq-bilinear non degenerate
form on E. We show that with a small transformation Belgrade’s form
can be considered pa, bq-hermitian and that the result satisfies the axioms
of Kyoji Saito’s “higher residue pairings”.

Mathematics Subject Classification (2010): 32S25, 32S40, 32S50

1 Introduction

In this article we will study the self-duality properties of pa, bq-modules and more
precisely the conditions under which they admit a nondegenerate hermitian
form. As such we wish to provide the reader with a short introduction to the
theory of pa, bq-modules.

The pa, bq-modules were introduced by D. Barlet in [Bar93] as a formal
completion of the Brieskorn module ([Bri70])

D :� Ωn�1

0

df ^ dΩn�1

0

associated to a holomorphic function f : Cn�1 Ñ C with an isolated singularity
at the origin, where we denote by Ωp

0
the germs of holomorphic p-forms in 0.

We wish to recall recall briefly the basic results about pa, bq-modules and
refer the reader to the articles [Bar93] and [Bar97] for further details.�Institut Élie Cartan Nancy UMR 7502
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Definition 1. Let Crrbss be the ring of formal series in the variable b. Anpa,bq-module is an algebraic structure composed by a free Crrbss-module E of
finite rank and a C-linear application a : E Ñ E that satisfies the commutation
relation

ab� ba � b2, (1)

where b : E Ñ E is the multiplication by the element b P Crrbss.
For a complex number λ P C and an pa, bq-module E, we call monomial

of type pλ, 0q, an element x P E that satifies to the relation ax � λbx. The
simplest pa, bq-modules are those generated over Crrbss by a monomial eλ of typepλ, 0q. These modules are called elementary and noted Eλ.

Given an pa, bq-module E, a sub-Crrbss-module F of E closed to the multipli-
cation by a is called sub-pa, bq-modules Since the quotient of an pa, bq-module E
by a sub-pa, bq-module F is not necessarily b-torsion free, a sub-pa, bq-module F
of E will be called normal, if E{F is free and hence have an induced pa, bq-mod-
ule structure.

The pa, bq-modules associated to a Brieskorn module are all regular, i.e.
they are sub-pa, bq-modules an pa, bq-module E satisfying aE � bE (a simple-
pole pa, bq-module). The composition series of regular pa, bq-module satisfy the
following property:

Proposition 2. Let E be a regular pa, bq-module, then all its composition series
are of the form:

0 � E0 � � � � � En�1 � En � E,

with Ei{Ei�1 elementary pa, bq-modules Eλ.

As proven in [Bar93], the quotients of two composition series of an pa, bq-mod-
ule E are not unique, even if we ignore consider the permutations of the quo-
tients.

2 The pa, bq-modules and their duality

The dual and bi-dual structure on pa, bq-modules where first introduced in
[Bar97] and [Bel01] and then expanded in our thesis (cf. [Kar09]). We will
therefore begin by giving a formal definition of the duality structures we work
with.

In the spirit of the category theory we will define an pa,bq-morphism
as an application ϕ : E Ñ F between two pa, bq-modules E and F , which
is a morphism of the underlying Crrbss-modules and respects the a-structure
ϕpaxq � aϕpxq, for any element x P E. We will call ϕ an isomorphism (resp.
endomorphism) of pa, bq-modules if it is bijective (resp. E = F ).

2.1 pa, bq-linear maps and dual pa, bq-modules

Let E and F be two pa, bq-modules. As defined by D. Barlet in [Bar97], the
Crrbss-module HomCrrbss pE,F q of Crrbss-linear maps from E to F has a natural
structure of pa, bq-module provided by an operator Λ that satisfiespΛϕq pxq � aF pϕpxqq � ϕ paExq , (2)
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where ϕ P HomCrrbss pE,F q, x is an element of E and aE and aF are the a-
structures of E and F respectively. We use for this pa, bq-module the notation
Hompa,bq pE,F q.

For notation’s sake we will denote aE , aF and Λ all by the letter a and
to avoid the confusion that such a notation could pose we should read the
expression

a � ϕpxq
as pΛϕq pxq, whereas the expression aE pϕpxqq will keep the conventional nota-
tion

aϕpxq.
We will therefore rewrite the equation 2 as: a � ϕpxq � aϕpxq � ϕpaxq.

By choosing E0 for the codomain of the morphisms, we can give the following
definition:

Definition 3 (Barlet). Let E be an pa, bq-module and E0 the elementary pa, bq-mod-
ule of parameter 0, then we call the module

Hompa,bq pE,E0q
the dual pa, bq-module of E and note it by E�.
Remark 4. When considering only the b-structure of E, the Crrbss-module E�
corresponds exactly to the definition of dual of a Crrbss-module, since E0 �
Crrbsse0, with ae0 � 0.

The duality functor � is exact (cf. [Bar97]).

2.2 Conjugate pa, bq-module

In [Bel01] R. Belgrade uses another definition of dual pa, bq-module which is
not equivalent to the one of D. Barlet. In order to be able to express on
concept in terms of the other the other, we will introduce an operation that
exchanges the signs of both a and b, whose behaviour is similar to that of
conjugation in the complex field.

As in the case of the complex field C, the ring of formal series Crrbss also
admits a rather natural involution

˘: Crrbss Ñ Crrbss
Spbq ÞÑ S̆pbq � Sp�bq,

where Spbq P Crrbss. This remark allows us to define the conjugate of anpa, bq-module in the same way as one defines the conjugate of a complex vector
space.

Definition 5. Let E be an pa, bq-module. We call pa, bq-conjugate of E and
note it Ĕ the set E itself, endowed with an a- and b-structure given by:

a �Ĕ v � �a �E v

b �Ĕ v � �b �E v,

where �Ĕ and �E denote the pa, bq-structure of Ĕ and E respectively.
Since we change signs of both a and b, the formula ab � ba � b2 is still

satisfied.
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Remark 6. An pa, bq-module is not necessarily isomorphic to its conjugate. We
can take, for example, the pa, bq-module of rank 2 generated by two elements x
and y that satisfy:

ax � λbx

ay � λby � p1� αbqx,
where λ and α P C and α � 0. Its conjugate satisfies

ax � λbx

ay � λby � p1� αbqx,
and the classification of rank 2 regular pa, bq-modules, given in [Bar93] implies
that the two modules are not isomorphic.

One can see immediately that for an pa, bq-module E the conjugate of the

conjugate
�
Ĕ
	̆

is the pa, bq-module itself.

On the other hand let E and F be pa, bq-modules and ϕ a morphism between
E and F . Since ϕp�axq � �aϕpxq and ϕp�bxq � �bϕpxq, for all x P E

the application ϕ is also a morphism between the conjugates Ĕ and F̆ . We
call conjugation functor the functor that associates to every pa, bq-module its
conjugate and to every morphism, the morphism itself. Such a functor is exact.

For an pa, bq-module module E we will be interested especially in a particular
kind of conjugate, the conjugate of the dual, which we call adjoint pa, bq-module
and note with Ĕ�.
2.3 Bilinear forms and tensor product

In order to define Hompa,bq pE,F q we used the equivalent object for its under-
lying b-structure. We can proceed in a similar way to obtain the concept ofpa, bq-bilinear maps:

Definition 7. Let E, F and G be two pa, bq-modules. An pa, bq-bilinear map

on E � F is a Crrbss-linear map Φ,

Φ : E � F Ñ G,

that satisfies the following property:

aΦpx, yq � Φpax, yq � Φpx, ayq.
Remark 8. If Φ is an pa, bq-bilinear map on E �F with values in G and v is an
element of E:

Φv :� Φpv, �q : w ÞÑ Φpv, wq w P F

is not necessarily an pa, bq-morphism. However the map π : v ÞÑ Φv is anpa, bq-morphism between E and Hompa,bq pF,Gq. We have in fact:

πpavqpxq � Φavpxq � aΦvpxq � Φvpaxq � a � Φvpxq � aπpvq.
Inherently linked to the concept of pa, bq-bilinear maps is that of tensor

products, that allows a more practical manipulation of these objects.
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Definition 9. Let E and F be two pa, bq-modules. We call pa, bq-tensor product
of E and F and write it as E bpa,bq F the Crrbss-module

E bCrrbss F
endowed with an a-structure defined as follows:

a pv b wq � pavq b w � v b pawq
for every v P E and w P F .

The a-structure we gave on E bpa,bq F is well defined. We have in fact:

a pbv b wq � apbvq b w � bv b apwq � bapvq b w � b2v b w � v b bapwq �
apvq b bw � v b apbwq � a pv b bwq ,

for each v P E, w P F and it satisfies ab� ba � b2:

a pbv b wq � ba pv b wq � bapvq b w � b2v b w � bv b apwq� bapvq b w � bv b apwq � b2 pv b wq .
We can easily verify that the tensor product defined satisfies the usual uni-

versal property: there exists a bilinear map

Φ : E � F Ñ E bpa,bq F,
such that for every bilinear map Ψ on E�F with values in a third pa, bq-module
G, there exists an unique pa, bq-morphism Ψ̃ from E bpa,bq F into G that makes
the following diagram commutative:

E � F

Φ

��

Ψ // G

E bpa,bq F.Ψ̃ ::u
u

u
u

u

We can take as Φ the natural application

Φ : E � F Ñ E bpa,bq Fpv, wq ÞÑ v bpa,bq w
and define Ψ̃ as:

Ψ̃ : E bpa,bq F Ñ G

v bpa,bq w ÞÑ Ψpv, wq
The unicity of Ψ̃ follows directly from the universal property of the tensor
product of Crrbss-modules. We need only to verify that the map is a-linear. We
will do it on the generators v bpa,bq w of E bpa,bq F , for v P E and w P F :

Ψ̃
�
apv bpa,bq wq� � Ψ̃

�pavq bpa,bq w � v bpa,bq pawq� �
Ψpav, wq �Ψpv, awq � aΨpv, wq � aΨ̃pv bpa,bq wq.

Basing ourselves on the properties of the tensor product of Crrbss-modules,
we can derive in a similar manner the other properties of the equivalent object
in the theory pa, bq-modules.
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Lemma 10. Let E, F and G be three pa, bq-modules, then the tensor product
verifies the following properties:

(i)
E bpa,bq F � F bpa,bq E,

(ii) �
E bpa,bq F �bpa,bq G � E bpa,bq �F bpa,bq G� ,

(iii) �
E bpa,bq F �� � E� bpa,bq F�,

(iv) �
E bpa,bq F �̆ � Ĕ bpa,bq F̆ ,

(v) The pa, bq-morphism

Φ : E Ñ E bpa,bq E0

v ÞÑ v bpa,bq e0
where e0 is a generator of the elementary pa, bq-module E0, is an isomor-
phism.

(vi) We have the following isomorphism of pa, bq-modules:

E� bpa,bq F Ñ Hompa,bq �E,F bpa,bq E0

�
ϕbpa,bq y ÞÑ �

Φ : x ÞÑ y bpa,bq ϕpxq� ,
where ϕ P E�, x P E and y P F .

Remark 11. In [Bel01], R. Belgrade defines the concept of δ-dual of anpa, bq-module E:

Definition 12 (Belgrade). Let E be an pa, bq-module and δ P C, then we call the
δ-dual of E the set HomCrrbsspE,Eδq with the pa, bq-structure defined as follow:ra � ϕspxq � ϕpaxq � aϕpxq (3)rb � ϕspxq � �bϕpxq � ϕp�bxq (4)

From property (v) and (vi) of the previous lemma we obtain the isomorphism
E�bpa,bqF � Hompa,bq pE,F q, which in turn let us find an alternative description
of the δ-dual of an pa, bq-module. In fact from definition 12 it is easy to show
that the δ-dual of an pa, bq-module in Belgrade’s terminology is the module

Hompa,bq �Ě, Eδ

�
,

which in turn can be rewritten as Ĕ� bpa,bq Eδ.

We will call an pa, bq-bilinear application on E � F with values in G, anpa, bq-bilinear form if G � E0. In the rest of this section we will deal with
the existence of nondegenerate hermitian forms on pa, bq-modules. We will need
therefore the following definitions.
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Definition 13. Let E and F be two pa, bq-modules and Φ a bilinear form on
E�F . We say that Φ is nondegenerate, if the pa, bq-morphism v ÞÑ Φpv, �q is
an isomorphism of E with F�.
Definition 14. Let E be an pa, bq-module. A sesquilinear form on E is a
bilinear form on E � Ě.

Remark 15. Since a nondegenerate sequilinear form on an pa, bq-module E in-
duces an isomorphism to its adjoint Ĕ� it follows that not all pa, bq-modules
are self-adjoint (e.g. Eλ with λ � 0 is not) not every pa, bq-module admits a
nondegenerate sesquilinear form.

Consider now a sesquilinear form Φ on E. By applying to it the conjugate
functor we obtain a bilinear map Φ̌ on Ě � E with values in Ě0. If we fix an
isomorphism of Ě0 with E0, we can consider Φ̌ as a sequilinear form on Ě. Under
this assumption, we define pa, bq-hermitian and anti-pa, bq-hermitian forms as:

Definition 16. Let E be an pa, bq-module. An pa, bq-sesquilinear form H on E

is called pa, bq-hermitian (respectively anti-pa, bq-hermitian) if it satisfies:

Hpv, wq � Ȟpw, vq,
(respectively

Hpv, wq � �H̆pw, vq	 .
where v P E, w P Ĕ and H̆ is the sesquilinear form on Ě defined above.

We have already shown that in order to admit a nondegenerate sesquilinear
form, an pa, bq-module must be self-adjoint. We will refine the concept of self-
adjoint by defining:

Definition 17. Let E be a self-adjoint pa, bq-module. We say that E is her-

mitian (resp. anti-hermitian), if it admits a nondegenerate hermitian (resp.
anti-hermitian) form.

Let E be an pa, bq-module endowed with an hermitian form and let Φ :
E Ñ Ĕ� be the linear form associated to the hermitian form via the remark 8.

We can translate the hermitian property into the identity between Φ and its
adjoint Φ̌� : E Ñ Ĕ�. In fact while Φpvq, for v P E is the linear map:

ϕ : w ÞÑ Φpv, wq, w P Ě,

the adjoint map Φ̌� sends an element v P E � E�� to the map:

ϕ : w ÞÑ v
�
Φ̌pw, �q� � Φ̌pw, vq.

We will use this formulation extensively in the following section.
Note moreover that given an isomorphism Φ from an pa, bq-module E and its

δ-dual Ĕ�bpa,bqEδ is equivalent to specifying an isomorphism between Ebpa,bq
E�δ{2 and

Ĕ� bpa,bq Eδ bpa,bq E�δ{2 � Ĕ� bpa,bq Eδ{2.
Since we have ��

E bpa,bq E�δ{2�� � Ĕ� bpa,bq Ě��δ{2 � Ĕ� bpa,bq Eδ{2,
we can identify an isomorphism of E with its δ-dual with an hermitian form on
E bpa,bq E�δ{2.
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3 Existence of hermitian forms

We will analyze in this section the existence of nondegenerate hermitian forms on
regular pa, bq-modules. We will proceed in two steps: in the first two subsections
we will reduce ourselves to a subclass of pa, bq-modules called indecomposablepa, bq-modules and show that every regular pa, bq-module can be decomposed into
the direct sum of indecomposable ones and that this decomposition is unique
(theorem 24).

In the last subsection we will show that a self-adjoint pa, bq-module which
is indecomposable admits at least an hermitian or anti-hermitian form. The
result is optimal since there are examples that admit only an hermitian or only
an anti-hermitian form (theorem 30).

3.1 Indecomposable pa, bq-modules

Definition 18. Let E be an pa, bq-module. We say that E is indecomposable

if it cannot be written as direct sum F `G of non zero pa, bq-modules.

Whenever we decompose an pa, bq-moduleE into a direct sum of two pa, bq-mod-
ules E � F ` G the rank of the components is strictly less than the rank of
E, hence by proceeding by induction for every pa, bq-module E we can find a
decomposition into a sum of indecomposable pa, bq-modules:

E � rà
i�1

Fi,

where r P N and Fi are indecomposable sub-pa, bq-modules.
We are interested in the question whether the isomorphism classes of the Fi

are unique and do not depend upon the decomposition. We will need to this
purpose an introductory result:

Proposition 19. Let E be a regular and indecomposable pa, bq-module. Then
every endomorphism of E is either bijective or nilpotent.

The proof of this proposition will need several steps beginning with a defi-
nition:

Definition 20. Let E be a regular pa, bq-module and λ P C. We define

Vλ � !¸Fi|Fi � E,Fi � Eλ

)
to be the sum of all sub-pa, bq-modules of E isomorphic to Eλ.

The object Vλ is clearly a sub-pa, bq-module. We will use Vλ as an induction
step in the proof of proposition 19, by choosing a λ such that Vλ is normal:

Proposition 21. Let E be a regular pa, bq-module, λ P C and:

λmin � inf
j
tλ� j|Dx P E, ax � pλ� jqbxu

be the minimal λ� j such that E contains a monome of type pλ� j, 0q.
Then Vλmin

is a normal sub-pa, bq-module of E isomorphic as pa, bq-module
to the direct sum of a finite number of copies of Eλmin

.
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Proof. We will use two facts.
First, for every W � ÀEλmin

sub-pa, bq-module of E, W is normal in E.
Let in fact teiu be a basis of W with 1 ¤ i ¤ p the rank of W . Suppose by
absurd that there exist some x PW which is in bE, but not in bW .

By eventually translating x by an element of bW , we can assume x �°p
i�1

αiei, αi P C. We can easily verify that ax � λminbx but now if x � by we
must have ay � pλmin � 1qby, and since y P E it contradicts the minimality of
λmin.

On the other hand we can show that Vλmin
is a direct sum of Eλmin

. In
fact let W be the largest (inclusionwise) direct sum of copies of Eλmin

included
in Vλmin

. We remark that since W is normal, for any sub-pa, bq-module F

isomorphic to Eλmin
only one of two cases is possible: either

W X F � t0u or F �W.

If W XF � t0u, let e be the generator of F and Spbqbne PW with Sp0q � 0,
then Spbqe P W by normality and e � S�1pbqSpbqe P W . We have therefore
F �W .

If W contains every sub-pa, bq-module isomorphic to Eλmin
, then it is equal

to Vλmin
. Otherwise there is an F such that W XF � t0u, hence W `F is still

in Vλmin
, which contradicts the maximality of W .

We will now use the sub-pa, bq-module Vλmin
to show the following proposi-

tion

Proposition 22. Let E be a regular pa, bq-module and ϕ an pa, bq-morphism
between E and itself. Then ϕ is bijective if and only if ϕ is injective.

Proof. To show that bijectivity follows from injectivity, we will proceed by in-
duction on the rank of the module.

If E is of rank 1 the statement of the proof is satisfied: in fact E must be
isomorphic to one of the Eλ and the only b-linear morphisms from a Eλ to itself
that are also a-linear are those that send the generator e to αe, α P C. They
are all bijective for α � 0.

Let now E be of rank n ¡ 1. We can find a λmin (cf. [Bar93]) that verifies
the minimality property of the previous proposition. Hence the module Vλmin

is normal and isomorphic to a direct sum of copies of Eλmin
.

Let teiu be a basis of Vλmin
composed of monomials of type pλmin, 0q and

let x another monomial of type pλmin, 0q. We want to show that x is a linear
combination of the elements of the basis, with coefficients in C � Crrbss.

From the definition of Vλmin
follows that x P Vλmin

. Suppose now that
x �°i Sipbqei and let us apply a to both sides. We obtain:

ax �
i̧

�
λminSipbqbei � S1ipbqb2ei� � λminbx�

i̧

S1ipbqb2ei
and since x is a monomial of type pλmin, 0q, we must have S1ipbq � 0 for all i
and therefore

x �
i̧

Sip0qei,
as we wanted.
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Let ϕ : E Ñ E be an injective endomorphism of E and teiu a basis of Vλmin
.

Every ϕpeiq is a monomial of type pλmin, 0q and therefore is an element of Vλmin
.

The restriction of ϕ to Vλmin
is therefore an endomorphism of Vλmin

:

ϕ|Vλmin
: Vλmin

Ñ Vλmin
.

Moreover since the coefficients of the ϕpeiq in our base are complex constants,
ϕ|Vλmin

behaves as a linear application between finite dimensional spaces: in
particular if it is injective, it is also surjective.

In order to apply our induction hypothesis let us consider the following
commutative diagram:

0 // Vλmin

�

� //

ϕ

��

E // //

ϕ

��

E{Vλmin
//

ϕ̃

��

0

0 // Vλmin

�

� // E // // E{Vλmin
// 0

where ϕ̃ is the pa, bq-linear morphism induced on the quotient. As we showed
the first downward arrow is bijective

The third arrow ϕ̃ is injective: suppose in fact that we have two different
classes with representatives x and y P E that map to the same class modulo
Vλmin

. Then ϕpx � yq is in Vλmin
. From the bijectivity of ϕ|Vλmin

we can find
an element v P Vλmin

such that ϕpx� yq � ϕpvq which in turn implies x� y � v

by the injectivity of ϕ, which contradicts the fact that x and y are in distinct
classes modulo Vλmin

.
Since the rank of E{Vλmin

is strictly inferior to the rank of E, we can apply
the induction hypothesis to show that ϕ̃ is also bijective.

It follows from a basic result of homological algebra that the second arrow
is bijective if it is injective.

We can now consider endomorphisms that are not necessarily injective. Once
again the structure of pa, bq-modules does not differ essentially from that of finite
vector spaces over C:

Lemma 23. Let E be a regular pa, bq-module and ϕ an endomorphism of E.
Then E splits into the direct sum of two ϕ-stable sub-pa, bq-modules F and N ,
with ϕ bijective on F and nilpotent on N .

Proof. Consider the sequence of normal sub-pa, bq-modules

Kn � Kerϕn, n P N.

Since two normal sub-pa, bq-modules F � G are equal if and only if they have
the same rank, the sequence of Kn stabilizes beginning with a certain integer
m: Km � Km�1.

On the other hand if we consider the sequence In � Imϕn, let us look at
the restriction of ϕ to Im:

ϕ|Im : Im Ñ Im�1 � Im.

This restriction is injective: if y � ϕmpxq P Kerϕ, then x P Km�1 which is
equal to Km. Hence ϕmpxq � y � 0. From the previous proposition we deduce
that this restriction is in fact bijective, which means that Im�1 � ϕpImq � Im.
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We can now take F � Im and N � Km. They are clearly stable by ϕ. We
will show that E � F `N .

We have in fact KerϕXF � t0u, since the restriction of ϕ to Im is injective.
À fortiori, since K � Kerϕ we have F XN � t0u.

Let’s take an element x P E. Since Im � I2m we can find an element y P E

such that ϕmpxq � ϕ2mpyq and call k the element x�ϕmpyq. Thus we can write
x as a sum:

x � ϕmpyq � k

of an element ϕmpyq P Im and an element k P Km, which implies that:

E � N ` F.

The restriction of ϕ to N is nilpotent, since ϕ|mN � 0, while we already
showed that the restriction to Im � F is bijective.

We have now all the elements necessary to prove proposition 19:

Proof. Let E be a regular indecomposable pa, bq-module and ϕ an endomorphism
of E. Then by lemma 23 E splits into a sum

E � N ` F

of two pa, bq-modules, with ϕ nilpotent on N and bijective on F . But E is
indecomposable, therefore either N � 0 and ϕ is bijective or F � 0 and ϕ is
nilpotent.

3.2 Krull-Schmidt theorem

This subsection will be devoted to the proof of a version of the Krull-Schmidt
theorem for the theory of pa, bq-modules. The principal argument of the proof
will be proposition 19 from the previous subsection.

Theorem 24 (Krull-Schmidt for pa, bq-modules). Suppose that we have two
decompositions into direct sum of a regular pa, bq-module E:

E � mà
i�1

Ei

E � nà
i�1

Fi

where m,n P N and all Ei and Fi are indecomposable pa, bq-modules. Then
m � n and up to a reindexing of the modules Ei is isomorphic to Gi for all
1 ¤ i ¤ n.

For the proof of this theorem we need a couple of lemmas:

Lemma 25. Let E be a regular indecomposable pa, bq-module and ϕ an auto-
morphism of E. Suppose moreover that ϕ � ϕ1 � ϕ2. Then at least one of ϕ1,
ϕ2 is an isomorphism.

11



Proof. Be applying ϕ�1 to both terms, we can assume without loss of generality
that ϕ � Id is the identity automorphism.

The two endomorphisms ϕ1 and ϕ2 commute. In fact:

ϕ1ϕ2 � ϕ2ϕ1 � ϕ1pϕ1 � ϕ2q � pϕ2 � ϕ1qϕ1 � ϕ1 � ϕ1 � 0.

By lemma 19 the ϕi can be either nilpotent or isomorphisms. If they were both
nilpotent, their sum would be nilpotent, which is absurd. Hence the result.

Remark 26. By subsequently applying the previous lemma, we can extend the
result to the sum of more than two endomorphisms.

Lemma 27. Let E and F be indecomposable regular pa, bq-modules and α :
E Ñ F and β : F Ñ E two pa, bq-linear morphisms. Suppose that β � α is an
isomorphism, then α and β are also isomorphisms.

Proof. Let prove that F � Imα`Kerβ. If αpxq P Kerβ, we have

β � αpxq � 0,

hence x � 0 and therefore

ImαXKerβ � t0u.
Consider now an element x P F and let

y � α � pβ � αq�1 � βpxq.
We have

βpx� yq � βpxq � βpyq � βpxq � pβ � αq � pβ � αq�1 � βpxq � βpxq � βpxq � 0.

We can thus write x as sum of an element y of Imα and an element x � y of
Kerβ. This implies F � Imα`Kerβ.

Now since β � α is injective, so must be α and Imα can not be 0. But F

is indecomposable therefore we must have Imα � F and Kerβ � 0. It follows
that α is bijective and β � pβ � αq � α�1 must be also bijective.

Proof of Krull-Schmidt theorem for pa, bq-modules. We will show this theorem
by induction on m.

If m � 1, then E is indecomposable and we must have n � 1 and E1 � F1.
In the general case consider the morphisms

qi � πi � p1,
where the πis are the projections on Fi and the pjs are the projections on Ej .
Let consider the sum:

i̧

p1 � qi � p1 �
i̧

πi � p1 � p1 � p1 � p1,

is the identity on the component E1. By the lemma 3.2, there is an i such that
p1 � qi|E1

: E1 Ñ E1 is an isomorphism. Suppose, without loss of generality, it
is p1 � q1, then by the lemma 27 q1|E1

� π1 : E1 Ñ F1 is an isomorphism.

12



In order to apply the induction hypothesis, let note G � °m
i�2

Fi. We want
to show that E1 `G is equal to E � F1 `G. Since π1 is an isomorphism of E1

onto F1 and its kernel is G we must have

E1 XG � t0u :
if x P E1 X G, then π1pxq � 0, but π1 restricted to E1 is injective, so x � 0.
On the other hand every element of E can be written as v�w with v P F1 and
w P G. If y P E1 is such that π1pyq � v, then we have:

v � w � y � π1pyq � y � w,

and π1pyq�y PW by definition of π1. We can then conclude that E � E1`G �
E1 �°m

i�2
Ei.

We have immediately E{E1 � G �°m
i�2

Ei and we can apply the induction
hypothesis to G.

We can now focus on finding hermitian isomorphisms of an pa, bq-module
E with its adjoint Ĕ�. The Krull-Schmidt theorem will be useful to show the
following decomposition:

Proposition 28. Let E be a regular self-adjoint pa, bq-module. Then E is iso-
morphic to:

E � rà
i�1

�
F`αi

i

�` sà
i�1

�
Gi ` Ǧ�

i

�`βi

where r and s as well as the αi and βi are positive integers. The Fi are self-
adjoint pa, bq-modules and the Gi are non self-adjoint pa, bq-modules. The iso-
morphism classes of the Fi, Gi and Ǧ�

i are all disjoint.

Proof. Consider a decomposition of E into indecomposable pa, bq-modules

E �
i̧

Ei.

Since E is self-adjoint we have another decomposition given by

E � Ě� �
i̧

Ě�
i .

The Krull-Schmidt theorem assures us that the factors are unique up to a per-
mutation. So we can divide the Ei into two groups.

In the first group we find the self-adjoint components Fi with a certain
multiplicity.

In the second one we find the non self-adjoint componentsGi with the respec-
tive multiplicity. Since the two decompositions

°
iEi and

°
i Ě

�
i must contains

the same modules up to a permutation, the multiplicity of the Gi and the Ǧ�
i

must be equal.

Remark 29. From the definition above we can immediately see that the non
self-adjoint part of the decomposition always admits a hermitian nondegenerate
form In fact if we consider the module Gi ` Ǧ�

i , a hermitian form can be given
by:

Φ : Gi ` Ǧ�
i Ñ pGi ` Ǧ�

i q�̌ � Ǧ�
i `Gipx, yq ÞÑ py, xq.

13



If the multiplicity of a self-adjoint term Fi is pair, we fall into the same situation.
The case of an unpair multiplicity of a self-adjoint component is far more

interesting and we will study it in the next subsection.

3.3 Hermitian forms on indecomposable pa, bq-modules

As already noted in the previous subsection, the situation of an indecomposable
self-adjoint pa, bq-module concerning hermitian forms is far less regular and the
existence is not always guaranteed. We have in fact the following theorem:

Theorem 30. Let E be a regular indecomposable self-adjoint pa, bq-module and
E � t0u. Then it admits a hermitian nondegenerate form or an anti-hermitian
one.

Proof. Let Φ : E Ñ Ě� be any isomorphism of E with its dual and pose
M � Φ�1Φ̌�. Consider now the two endomorphisms of E given by:

Id�M

and
Id�M

they commute and can be either isomorphisms or nilpotent, since E is indecom-
posable. But if they were both nilpotent, their sum 2Id would be nilpotent too,
which is absurd.

If Id �M is an isomorphism, so is S � Φ � Φ̌�, which is associated to a
nondegenerate hermitian form. The bijectivity of Id �M on the other hand
gives us an isomorphism A � Φ � Φ̌�, which comes from an anti-hermitian
form.

Note that all the cases of the previous theorem are equally possible.

Example 31. The simplest example of a regular self-adjoint and indecom-
posable pa, bq-module which admits only a hermitian form is the elementarypa, bq-module E0 with the isomorphism that sends the generator e to its adjoint
ě�.
Example 32. In order to obtain only an anti-hermitian form, we can consider
for a given λ, µ P C the pa, bq-module E of rank 4, generated by te1, e2, e3, e4u
which verifies:

ae1 � λbe1

ae2 � µbe2 � e1

ae3 � �µbe3 � e1 (5)

ae4 � �λbe4 � e2 � e3

whose adjoint basis satisfies:

a � ě�4 � λbě�4
a � ě�

3
� µbě�

3
� ě�

4

a � ě�2 � �µbě�2 � ě�4
a � ě�

1
� �λbě�

1
� ě�

3
� ě�

2
.
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It is easy to show by calculation that the only isomorphism between E and Ĕ�
is, up to mutliplication by a complex number, the one that sends e1, e2, e3 and
e4 into ě4, �ě3, ě2 and �ě1 respectively.

This is isomorphism is anti-hermitian and since there are no other isomor-
phisms E is also indecomposable.

Example 33. The regular pa, bq-module E0`E0 admits both an hermitian and
anti-hermitian form.

4 Duality of geometric pa, bq-modules

In the study of the Brieskorn lattice K. Saito introduced the concept of “higher
residue pairings” (cf. [Sai83]), which can be defined using a set of axiomatic
properties.

Using the theory of pa, bq-modules R. Belgrade showed the existence of a
duality isomorphism between an pa, bq-module associated to a germ of a holo-
morphic function in Cn�1 with an isolated singularity at the origin and itspn � 1q-dual. In this section we’ll prove (as already noticed by R. Belgrade in
[Bel01]) that the concept of “higher residue pairings” and self-adjoint pa, bq-mod-
ule are linked.

In this section D will always denote the Brieskorn module associated to a
holomorphic function in Cn�1 with an isolated singularity, while E will denote
its b-adic completion considered as an pa, bq-module.

The following theorem of R. Belgrade gives a relationship between E and itspn� 1q-dual.
Theorem 34 (Belgrade). Let E be the pa, bq-module associated to a germ of
holomorphic function f : Cn�1 Ñ C, then there is a natural isomorphism be-
tween E and its pn� 1q-dual:

∆ : E � Ĕ� bpa,bq En�1

We can obtain from this isomorphism a series ∆k : E � E Ñ C of bilinear
forms defined as follow:r∆pyqs pxq � pn� 1q! �8̧

k�0

∆kpx, yqbken�1

with x, y P E.

5 “Higher residue pairings” of K. Saito

K. Saito introduced in [Sai83] a series of pairings on the Brieskorn lattice D

which are called “higher residue pairings”:

Kpkq : D �D Ñ C k P N

which are characterized by the following properties:

(i) Kpkqpω1, ω2q � Kpk�1qpbω1, ω2q � �Kpk�1qpω1, bω2q.
15



(ii) Kpkqpaω1, ω2q �Kpkqpω1, aω2q � pn� kqKpk�1qpω1, ω2q.
(iii) Kp0q satisfies

Kp0qpD, bDq � Kp0qpbD,Dq � 0

and induces Grothendieck’s residue on the quotient D{bD.

(iv) Kpkq are p�1qk-symmetric.

Remark 35. We notice that from the properties (i) and (iii) above we can deduce
that KpkqpD, bk�1Dq � Kpkqpbk�1D,Dq � 0, so we can consider the pairings
Kpkq as being defined on D{bk�1D.

In the following section we’ll show the following result:

Proposition 36. The ∆k verify the properties (i)–(iii) of the “higher residue
pairings” of K. Saito.

The prove will be performed by steps.

6 Proof of the proposition

6.1 Proof of (i)

We use the b-linearity of ∆pyq to obtain:

ķ

pn� 1q!∆kpbx, yqbken�1 � r∆pyqs pbxq � b r∆pyqs pxq �
ķ

pn� 1q!∆kpx, yqbk�1en�1

which gives us ∆kpx, yq � ∆k�1pbx, yq. And similarly by using the b-linearity
of ∆ and the adjoint morphism, we obtain:

∆pbyqpxq � ∆̌�pxqpbyq � �b∆̌�pxqpyq � �b∆pyqpxq,
and thereforepn� 1q!

ķ

∆kpx, byqbken�1 � ∆pbyqpxq � �b∆pyqpxq �pn� 1q!
ķ

�∆kpx, yqbk�1en�1,

which implies ∆kpbx, yq � �∆k�1px, byq.
6.2 Proof of (ii)

Since ∆ is an isomorphism we have ∆payq � a �Ě�bEδ
r∆pyqs and:pn� 1q!

ķ

∆kpx, ayqbken�1 � ∆payqpxq � a � r∆pyqspxq �� ∆pyqpaxq � ar∆pyqpxqs � pn� 1q!
ķ

�
∆kpax, yqbken�1 �∆kpx, yqabken�1

�
16



The definition of pa, bq-module and En�1 (aen�1 � pn � 1qben�1) gives the
following relation

abken�1 � bkaen�1 � kbk�1en�1 � pn� k � 1qbk�1en�1

hence follows:

∆kpax, yq �∆kpx, ayq � pn� kq∆k�1px, yq
6.3 Grothendieck’s residue

We have to show now that the pairing ∆0 induces Grothendieck’s residue on
D{bD � Ωn�1{df ^ Ωn.

Proof of (iv): From the definition of ∆0 and the b-linearity of ∆ it’s easy
to see that ∆0pD, bDq � ∆0pbD,Dq � 0. We can hence consider ∆0 as a pairing
on D{bD.

Grothendieck’s residue is defined as follows:

Respg, hq :� lim
εjÑ0,�j »|Bf{Bzj |�εj

gh dzBf{Bz1 � � � Bf{Bzn�1

where g, h P O and dz � dz1^ . . .dzn�1.
The morphism ∆ is defined as composed morphism of six pa, bq-modules mor-
phism ([Bel01]) as showed by the following graph:

E
α // F1

β // F2

F3

γ

``AAAAAAAA

δ
��~~

~~
~~

~~

Ĕn�1 F5
ζ

oo F4η
oo

These morphisms pass to the quotient by the action of b in order to give a
decomposition of the morphism ∆0:

E{bE α̃ // F1{bF1

β̃ // F2{bF2

F3{bF3

γ̃

ddJJJJJJJJJ

δ̃
{{wwwwwwwwwwpĔ�bEn�1q

bpĔ�bEn�1q F5{bF5
ζ̃

oo F4{bF4
η̃

oo

We have to verify that the image of rg dzs by ∆0 is Respg, �q, where g dz is an
element of Ωn�1. We’ll accomplish this in many steps using the decomposition
above.
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(i) Step 1: E, F1 and F2. We have the following isomorphisms:

F1

bF1

� Ωn�1

df ^ Ωn

F2

bF2

� Dbn�1pB̄ � df^qDbn
,

the morphism α̃ coincides with the identity on Ωn�1{df ^ Ωn and β̃ is
induced by the inclusion i : Ωn�1 ÞÑ Dbn�1. We deduce that β̃�α̃prg dzsq �ripg dzqs. Let write T P Dbn�1,0 the current ipg dzq.

(ii) Step 2: path between F2 and F3 By using the description of the lemma
3.4.2 of [Bel01] we see that:

F3

bF3

� KerpDb0,n�1 dfÑ̂ Db1,n�1qB̄KerpDb0,n
dfÑ̂ Db1,nq

and the isomorphism γ̃ is induced by the inclusion Db0,n�1 � Dbn�1. In
order to find S :� γ̃�1pT q we have to solve the following system:

T � df ^ αn,0B̄αn,0 � df ^ αn�1,1� � � � � �B̄α1,n�1 � df ^ α0,nB̄α0,n � S

where the αp,q P Dbp,q. There is a solution to this system of equations since
the complex pDb,q; df^q is acyclic in degree � 0 for all q in 0, . . . , n� 1
and the solution verifies rSs � rT s where r�s is the equivalence class in
F2{bF2. pB̄ � df^q ņ

k�0

αk,n�k � B̄α0,n � df ^ αn,0 � S � T

We can compute this solution explicitly. Let be pp, qq P N2 and ϕp,q a C8
test form with compact support and of type pp, qq. The action of T over
ϕ0,n�1 is given by:   T, φ0,n�1 ¡� » φ0,n�1 ^ g dz

then the following current verifies T � df ^ αn,0:  αn,0, φ1,n�1 ¡� lim
ε1Ñ0

»|B1f |¥ǫ1

φ1,n�1 ^ g dz2^ . . .^ dzn�1B1f
in fact:  df ^ αn,0, φ0,n�1 ¡ � lim

ε1Ñ0

»|B1f |¥ǫ1

φ0,n�1 ^ df ^ g dz2^ . . .^ dzn�1B1f� »
φ0,n�1 ^ g dz

18



and thanks to the Stokes’ theorem:  B̄αn,0, φ1,n ¡ � �   αn,0, B̄φ1,n ¡� lim
ε1Ñ0

� »|B1f |¥ǫ1

B̄φ1,n ^ g dz2^ . . .^ dzn�1B1f� lim
ε1Ñ0

»|B1f |�ǫ1

φ1,n ^ g dz2^ . . .^ dzn�1B1f
We’ll remark that the currents αn,0

k defined below for 1 ¤ k ¤ n� 1 also

satisfy df ^ α
n,0
k � T :   α

n,0
k , φ1,n�1 ¡�� lim

εkÑ0

»|Bkf |¥ǫk

p�1qk�1φ1,n�1 ^ g dz1^ . . .ydzk . . .^ dzn�1Bkf
and that rB̄αn,0s � rB̄αn,0

k s in F2{bF2: in fact pB̄ � df^qpαn,0 � α
n,0
k q �B̄αn,0 � B̄αn,0

k .

For all k P 0, . . . , n and 1 ¤ i1   . . .   ik�1 ¤ n� 1 let us define:

α
n�k,k
i1,...,ik�1

� 1pk � 1q! lim
ǫiqÑ0�1¤q¤k�1

»|Bi1f |¥ǫi1|Biq f |�ǫiq

p�1qp°q iqq�1g
�

l�i1,...,ik�1
dzlBi1f . . . Bik�1

f

and let αn�k,k :� α
n�k,k
1,2,...,k�1

.

A simple computation gives us:

〈

df ^ α
n�k,k
i1,...,ik�1

, ϕk,n�k�1

〉 � 〈

1

k � 1

k�1

q̧�1

B̄αn�k�1,k�1

i1,..., piq,...,ik�1

, ϕk,n�k�1

〉

using this formula, we can prove by induction on k that the class of the
current αn�k,k

i1,...,ik�1
doesn’t depend upon the iqs. This gives us�

df ^ αn�k,k
� � �B̄αn�k�1,k�1

�
.

In particular B̄α0,n acts upon the test function ϕn�1,0 in the following
way:   B̄α0,n, φn�1,0 ¡� 1pn� 1q! limǫkÑ0�k »|Bkf|�ǫk�k φn�1,0gB1f . . . Bn�1f

(iii) Step 3 from F3{bF3 to pD{bDq�: let notice that S is a current of typep0, n� 1q with support in the origin.

We have the following isomorphisms:

F4

bF4

� Ker
�
H

n�1

0
pX,Oq dfÑ̂ H

n�1

0
pX,Ω1q	

and the isomorphism between F3{bF3 and F4{bF4 is the natural one, and

F5

bF5

� � Ωn�1

df ^ Ωn


�
From steps 1–3 we deduce that ∆0 induces Grothendieck’s residue.
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6.4 Property (iv)

We will that the isomorphism given by R. Belgrade can be easily transformed
into one that verifies the property.

Let ∆ : E Ñ Ĕ� bpa,bq En�1 be Belgrade’s isomorphism. By tensoring with

Epn�1q{2q we can show that, the isomorphisms between E and Ě�bpa,bqEn�1 are
in bijection with the isomorphisms between E bpa,bq E�pn�1q{2 and it adjoint,
through the map that sends an isomorphism Φ to Φbpa,bq IdE�pn�1q{2 .

By an easy calculation we can prove the following lemma:

Lemma 37. Let ∆ : E Ñ Ĕ� bEn�1 be an isomorphism and

∆pyqpxq � pn� 1q!
ķ

∆kpx, yqbken�1

for each x and y P E. Then the ∆k satisfy Saito’s condition (iv) if and only if
the isomorphism ∆bpa,bq IdE�pn�1q{2 is hermitian.

Proof. ∆bpa,bq IdE�pn�1q{2 is self-adjoint iff we have:

∆bpa,bq IdE�pn�1q{2 �y b e�pn�1q{2� �xb e�pn�1q{2� �
ķ

Skb
ke0 �

∆bpa,bq IdE�pn�1q{2 �xb e�pn�1q{2� �y b e�pn�1q{2� �
ķ

Skp�bqke0.
for all x and y P E. On the other hand we have:

∆bpa,bq IdE�pn�1q{2 �y b e�pn�1q{2� �xb e�pn�1q{2� �
ķ

Skb
ke0 �

∆pyqpxq �
ķ

Skb
ken�1.

By combining the previous equivalence with the results on the existence of
hermitian forms, we can extend Belgrade’s result:

Theorem 38. Let E be a regular pa, bq-module associated to a holomorphic
function from Cn�1 to C with an isolated singularity. Then there exists an
isomorphism Φ : E Ñ Ĕ� bpa,bq En�1 with

Φpyqpxq � pn� 1q!
ķ

Φkpx, yqbken�1,

for all x and y such that the sequence of C-bilinear forms Φk satisfies all four
properties of Saito’s “higher residue pairings”.

Proof. Let ∆ be Belgrade’s isomorphism and ∆k defined as at the beginning of
this section. Consider the isomorphism

∆̌� bpa,bq IdEn�1
: E Ñ Ĕ� bpa,bq En�1

and let Φ � �∆� ∆̌� bpa,bq IdEn�1

� {2.
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It is easy to see that the Φk satisfy properties (i) and (ii). Moreover since
∆0 is symmetric (Grothendieck’s residue) and ∆̌� bpa,bq IdEn�1

induces the
transposed of ∆0 on E{bE, we have

Φ0 � �∆0 � t∆0

� {2 � ∆0.

We have also

Φbpa,bq IdE�pn�1q{2 � ��
Φbpa,bq IdE�pn�1q�� � Φ̌� bpa,bq IdEpn�1q{2 �

Φbpa,bq IdE�pn�1q{2 ,
therefore the Φk satisfy Saito’s property (iv).

We just have to show that Φ bpa,bq IdE�pn�1q{2 is an isomorphism. Since
there exists an isomorphism between Ebpa,bqE�pn�1q{2 and its adjoint ∆bpa,bq
IdE�pn�1q{2 , we can apply proposition 22 and reduce ourselves to prove the
injectivity of Φ bpa,bq IdE�pn�1q{2 . But if Φ bpa,bq IdE�pn�1q{2 were not injective
Φ would induce a degenerate form on E{bE, which is absurd.

The existence of a hermitian form onEbpa,bqE�pn�1q{2 gives us an interesting
restriction on the kind of pa, bq-module associated with Brieskorn lattices:

Corollary 39. Let E be a regular pa, bq-module associated to a holomorphic
function from Cn�1 to C with an isolated singularity. Then E bpa,bq E�pn�1q{2
is a hermitian pa, bq-module.
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[Sai83] Kyoji Saito. The higher residue pairings K
pkq
F for a family of hy-

persurface singular points. In Singularities, Part 2 (Arcata, Calif.,
1981), volume 40 of Proc. Sympos. Pure Math., pages 441–463.
Amer. Math. Soc., Providence, RI, 1983.

22


	1 Introduction
	2 The (a,b)-modules and their duality
	2.1 (a,b)-linear maps and dual (a,b)-modules
	2.2 Conjugate (a,b)-module
	2.3 Bilinear forms and tensor product

	3 Existence of hermitian forms
	3.1 Indecomposable (a,b)-modules
	3.2 Krull-Schmidt theorem
	3.3 Hermitian forms on indecomposable (a,b)-modules

	4 Duality of geometric (a,b)-modules
	5 ``Higher residue pairings'' of K. Saito
	6 Proof of the proposition
	6.1 Proof of (i)
	6.2 Proof of (ii)
	6.3 Grothendieck's residue
	6.4 Property (iv)

	7 Acknowledgements

