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Abstract. The classification of all possible holonomy algebras of Einstein and

vacuum Einstein Lorentzian manifolds is obtained. It is shown that each such algebra

appears as the holonomy algebra of an Einstein (resp., vacuum Einstein) Lorentzian

manifold, the direct constructions are given. Also the holonomy algebras of totally

Ricci-isotropic Lorentzian manifolds are classified. The classification of the holonomy

algebras of Lorentzian manifolds is reviewed and a complete description of the spaces

of curvature tensors for these holonomies is given.

PACS numbers: 04.20.Jb, 04.40.Nr

1. Introduction

In contrast to the case of Riemannian manifolds, where the classification of holonomy

algebras is a classical result, which has a lot of consequences and applications both

in geometry and physics (e.g. Riemannian manifolds with most of holonomy algebras

are automatically Einstein or vacuum Einstein), see [1, 3, 4, 22, 23] and the references

therein, the classification of the holonomy algebras of Lorentzian manifolds is achieved

only recently [2, 26, 14, 15] (we recall it in Section 2). The most interesting case is

when a Lorentzian manifold (M, g) admits a parallel distribution of isotropic lines and

the manifold is locally indecomposable, i.e. locally it is not a product of a Lorentzian

and a Riemannian manifold. In this case the holonomy algebra is contained in the

maximal subalgebra sim(n) = (R ⊕ so(n)) ⋉ Rn of the Lorentzian algebra so(1, n + 1)

preserving an isotropic line (the dimension of M is n+ 2). There is a number of recent

physics literature dealing with these manifolds, see e.g. [5, 6, 8, 9, 10, 11, 17, 18, 21]. In

particular, in [5, 6, 18] expressed the hope that Lorentzian manifolds with the holonomy

algebras contained in sim(n) will find many applications in physics, e.g. they are of

interest in M-theory and string theory.

The fundamental equation of General Relativity is the Einstein equation. In the

absence of matter it has the form

Ric = Λg, (1)
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where g is a Lorentzian metric on a manifold M , Ric is the Ricci tensor of the metric

g and Λ ∈ R is the cosmological constant. If the metric of a Lorentzian manifold

(M, g) satisfies this equation, then (M, g) is called an Einstein manifold. If moreover

Λ = 0, then it is called vacuum Einstein or Ricci-flat. In dimension 4 the solutions of

this equation are obtained in [27, 19, 20, 24, 25]. In [7, 11] are found the holonomy

algebras of vacuum Einstein Lorentzian spin manifolds up to dimension 11 admitting

parallel spinors and some methods of construction of such manifolds are introduced. In

dimension 11 these manifolds are purely gravitational supersymmetric solutions of 11-

dimensional supergravity. Other constructions are provided in [21]. Recently in [17] the

Einstein equation on Lorentzian manifolds with holonomy algebras contained in sim(n)

is studied and in some cases solutions are obtained. See [17] for the discussion of the

importance of this problem and the references there.

In the present paper we classify all possible holonomy algebras of Einstein and

vacuum Einstein Lorentzian manifolds. First, in [15] it is proved that if (M, g) is

Einstein, then its holonomy algebra coincides either with (R⊕h)⋉Rn ⊂ sim(n), or with

h ⋉ Rn ⊂ sim(n). Here h ⊂ so(n) is the holonomy algebra of a Riemannian manifold.

In general for such h ⊂ so(n) there is an orthogonal decomposition

R
n = R

n1 ⊕ · · · ⊕ R
ns ⊕ R

ns+1 (2)

and the corresponding decomposition into the direct sum of ideals

h = h1 ⊕ · · · ⊕ hs ⊕ {0} (3)

such that h annihilates R
ns+1 , hi(R

nj ) = 0 for i 6= j, and hi ⊂ so(ni) is an irreducible

subalgebra for 1 ≤ i ≤ s. Moreover, the Lie subalgebras hi ⊂ so(ni) are the holonomy

algebras of Riemannian manifolds. Consequently, each hi ⊂ so(ni) is either one of the

Lie algebras so(ni), u(ni

2
), su(ni

2
), sp(ni

4
), sp(ni

4
)⊕ sp(1), G2 ⊂ so(7), spin(7) ⊂ so(8), or

it is a symmetric Berger algebra (the last are the Riemannian holonomy algebras such

that any manifold with such holonomy is locally symmetric, these Lie algebras are listed

e.g. in [4]). In Section 4 we prove the following two theorems

Theorem 4. If (M, g) is vacuum Einstein, then one of the following holds:

(1) The holonomy algebra of (M, g) coincides with (R⊕h)⋉Rn, and in the decomposition

(3) of h ⊂ so(n) at least one subalgebra hi ⊂ so(ni) coincides with one of the Lie

algebras so(ni), u(ni

2
), sp(ni

4
) ⊕ sp(1) or with a symmetric Berger algebra.

(2) The holonomy algebra of (M, g) coincides with h ⋉ Rn, and in the decomposition

(3) of h ⊂ so(n) each subalgebra hi ⊂ so(ni) coincides with one of the Lie algebras

so(ni), su(ni

2
), sp(ni

4
), G2 ⊂ so(7), spin(7) ⊂ so(8).

Theorem 5. If (M, g) is Einstein and not vacuum Einstein, then the holonomy

algebra of (M, g) coincides with (R⊕h)⋉Rn, and in the decomposition (3) of h ⊂ so(n)

each subalgebras hi ⊂ so(ni) coincides with one of the Lie algebras so(ni), u(ni

2
),

sp(ni

4
) ⊕ sp(1) or with a symmetric Berger algebra. Moreover, in the decomposition

(2) it holds ns+1 = 0.
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In Section 5 we construct local Einstein metrics having holonomy algebras from

Theorems 4 and 5. We consider metrics written in Walker coordinates of the form

g = 2dx0dxn+1 +

n∑

i,j=1

hij(x
1, ..., xn)dxidxj + f(x0, ..., xn+1)(dxn+1)2, (4)

and

g = 2dx0dxn+1+

n∑

i=1

(dxi)2+2

n∑

i=1

ui(x1, ..., xn+1)dxidxn+1+f(x0, ..., xn+1)(dxn+1)2. (5)

Here h =
∑n

i,j=1 hij(x
1, ..., xn)dxidxj is a Riemannian metric. For the metric (4) we

choose h to be an Einstein Riemannian metric with a cosmological constant Λ 6= 0

(resp., Λ = 0) and holonomy algebra h ⊂ so(n) as in Theorem 5 (resp., (2) of Theorem

4). Choosing an appropriate function f , we get that the metric g is Einstein with the

cosmological constant Λ and the holonomy algebra (R ⊕ h) ⋉ R
n (resp., h ⋉ R

n). Next,

for a given holonomy algebra h ⊂ so(n) as in (1) (resp., (2)) of Theorem 4 we give an

algorithm how to choose the functions ui and f in (5) to make the metric g vacuum

Einstein with the holonomy algebra (R⊕h)⋉Rn (resp., h⋉Rn). As examples, we provide

vacuum Einstein Lorentzian metrics with the holonomy algebras G2 ⋉R7 ⊂ so(1, 8) and

spin(7) ⋉ R8 ⊂ so(1, 9).

If (M, g) is a spin Lorentzian manifold and it admits a parallel spinor, then it is

totally Ricci-isotropic (but not necessary vacuum Einstein, unlike in the Riemannian

case), i.e. the image of its Ricci operator is isotropic [7, 11]. We prove the following two

theorems

Theorem 7. If (M, g) is totally Ricci-isotropic, then its holonomy algebra is the

same as in Theorem 4.

Theorem 8. If the holonomy algebra of (M, g) is h ⋉ R
n and in the decomposition

(3) of h ⊂ so(n) each subalgebra hi ⊂ so(ni) coincides with one of the Lie algebras

su(ni

2
), sp(ni

4
), G2 ⊂ so(7), spin(7) ⊂ so(8), then (M, g) is totally Ricci-isotropic.

Recall that an indecomposable Riemannian manifold with the holonomy algebra

different from so(n) and u(n
2
) is automatically Einstein or vacuum Einstein [4]. This is

not the case for Lorentzian manifolds. Indeed, using results of Section 5 it is easy to

construct non-Einstein metrics having all holonomy algebras as in Theorems 4 and 5.

On the other hand, Theorem 8 shows that Lorentzian manifolds with some holonomy

algebras are automatically totally Ricci-isotropic.

To prove the above theorems we need the complete description of the space of

curvature tensors for Lorentzian holonomy algebras, i.e. the space of values of the

curvature tensor of a Lorentzian manifold, we provide it in Section 3. The study of

these spaces is begun in [12] and finished recently in [16].

Necessary facts from the holonomy theory can be found e.g. in [4, 6, 15, 22, 23].

Remark that by a Riemannian (resp., Lorentzian) manifold we understand a manifold

with a field g of positive definite (resp., of signature (−,+, ...,+)) symmetric bilinear

forms on the tangent spaces.



Holonomy of Einstein Lorentzian manifolds 4

Acknowledgments. I am thankful to D.V.Alekseevsky and Thomas Leistner for

useful and stimulating discussions on the topic of this paper.

I wish to express my gratitude to Mark Volfovich Losik, my first teacher of

Differential Geometry, for his guidance, mentoring and careful attention to my study

and work since 1998 when I was at the very first course at Saratov State University.

The work was supported by the grant 201/09/P039 of the Grant Agency of Czech

Republic and by the grant MSM 0021622409 of the Czech Ministry of Education.

2. Classification of the Lorentzian holonomy algebras

Let (R1,n+1, η) be the Minkowski space of dimension n+ 2, where η is a metric on Rn+2

of signature (1, n + 1). We consider (R1,n+1, η) as the tangent space (TxM, gx) to a

Lorentzian manifold (M, g) at a point x. We fix a basis p, e1, ..., en, q of R
1,n+1 such that

the only non-zero values of η are η(p, q) = η(q, p) = 1 and η(ei, ei) = 1. We will denote

by Rn ⊂ R1,n+1 the Euclidean subspace spanned by the vectors e1, ..., en.

Recall that a subalgebra g ⊂ so(1, n + 1) is called irreducible if it does not

preserve any proper subspace of R1,n+1; g is called weakly-irreducible if it does not

preserve any non-degenerate proper subspace of R1,n+1. Obviously, if g ⊂ so(1, n + 1)

is irreducible, then it is weakly-irreducible. From the Wu Theorem [29] it follows

that any Lorentzian manifold (M, g) is either locally a product of the manifold

(R,−(dt)2) and of a Riemannian manifold, or of a Lorentzian manifold with weakly-

irreducible holonomy algebra and of a Riemannian manifold. The Riemannian manifold

can be further decomposed into the product of a flat Riemannian manifold and of

Riemannian manifolds with irreducible holonomy algebras. If the manifold (M, g) is

simply connected and geodesically complete, then these decompositions are global. This

allow us to consider locally indecomposable Lorentzian manifolds, i.e. manifolds with

weakly-irreducible holonomy algebras. For example, a locally decomposable Lorentzian

manifold (M, g) is Einstein if and only if locally it is a product of Einstein manifolds with

the same cosmological constants as (M, g). The only irreducible Lorentzian holonomy

algebra is the whole Lie algebra so(1, n+ 1) ([3]), so we consider weakly-irreducible not

irreducible holonomy algebras.

Denote by sim(n) the subalgebra of so(1, n + 1) that preserves the isotropic line

Rp. The Lie algebra sim(n) can be identified with the following matrix algebra:

sim(n) =








a X t 0

0 A −X

0 0 −a




∣∣∣∣∣∣∣
a ∈ R, X ∈ R

n, A ∈ so(n)




. (6)

The above matrix can be identified with the triple (a, A,X). We get the decomposition

sim(n) = (R ⊕ so(n)) ⋉ R
n,

which means that R ⊕ so(n) ⊂ sim(n) is a subalgebra and Rn ⊂ sim(n) is an ideal,

and the Lie brackets of R ⊕ so(n) with Rn are given by the standard representation
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of R ⊕ so(n) in Rn. We see that sim(n) is isomorphic to the Lie algebra of the Lie

group of similarity transformations of Rn. The explicit isomorphism on the group level

is constructed in [13].

If a weakly-irreducible subalgebra g ⊂ so(1, n + 1) preserves a degenerate proper

subspace U ⊂ R1,n+1, then it preserves the isotropic line U ∩U⊥, and g is conjugated to

a weakly-irreducible subalgebra of sim(n). Let h ⊂ so(n) be a subalgebra. Recall that

h is a compact Lie algebra and we have the decomposition h = h′ ⊕ z(h), where h′ is the

commutant of h and z(h) is the center of h.

The next theorem gives the classification of weakly-irreducible not irreducible

holonomy algebras of Lorentzian manifolds.

Theorem 1 A subalgebra g ⊂ sim(n) is the weakly-irreducible holonomy algebra of a

Lorentzian manifold if and only if it is conjugated to one of the following subalgebras:

type 1. g1,h = (R⊕h)⋉R
n, where h ⊂ so(n) is the holonomy algebra of a Riemannian

manifold;

type 2. g2,h = h ⋉ Rn, where h ⊂ so(n) is the holonomy algebra of a Riemannian

manifold;

type 3. g3,h,ϕ = {(ϕ(A), A, 0)|A ∈ h}⋉Rn, where h ⊂ so(n) is the holonomy algebra of

a Riemannian manifold with z(h) 6= {0}, and ϕ : h → R is a non-zero linear map

with ϕ|h′ = 0;

type 4. g4,h,m,ψ = {(0, A,X + ψ(A))|A ∈ h, X ∈ Rm}, where 0 < m < n is an integer,

h ⊂ so(m) is the holonomy algebra of a Riemannian manifold with dim z(h) ≥ n−m,

a decomposition Rn = Rm ⊕Rn−m is fixed, and ψ : h → Rn−m is a surjective linear

map with ψ|h′ = 0.

The subalgebra h ⊂ so(n) associated to a weakly-irreducible Lorentzian holonomy

algebra g ⊂ sim(n) is called the orthogonal part of g. Recall that for the subalgebra

h ⊂ so(n) there are the decompositions (2) and (3). This theorem is the result of the

papers [2, 26, 14], see [15] for the whole history.

3. The spaces of curvature tensors

Let W be a vector space and f ⊂ gl(W ) a subalgebra. The vector space

R(f) = {R ∈ Λ2W ∗ ⊗ f|R(u, v)w +R(v, w)u+R(w, u)v = 0 for all u, v, w ∈W}

is called the space of curvature tensors of type f. A subalgebra f ⊂ gl(W ) is called a

Berger algebra if

g = span{R(u, v)|R ∈ R(f), u, v ∈W},

i.e. g is spanned by the images of the elements R ∈ R(f).

If there is a pseudo-Euclidean metric η on W such that f ⊂ so(W ), then any

R ∈ R(f) satisfies

η(R(u, v)z, w) = η(R(z, w)u, v) (7)
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for all u, v, z, w ∈ W . We identify so(W ) with Λ2W such that it holds (u ∧ v)(z) =

η(u, z)v− η(v, z)u for all u, v, z ∈W . E.g. under this identification the matrix from (6)

corresponds to the bivector −ap∧q+A−p∧X, A ∈ so(n) ≃ Λ2Rn. Equality (7) shows

that the map R : Λ2W → f ⊂ Λ2W is symmetric with respect to the metric on Λ2W .

In particular, R is zero on the orthogonal complement f⊥ ⊂ Λ2W . Thus, R ∈ ⊙2f.

In [12] the following theorem is proved.

Theorem 2 [12] It holds:

(1) each R ∈ R(g1,h) is uniquely given by

λ ∈ R, v ∈ R
n, P ∈ P(h), R0 ∈ R(h), and T ∈ End(Rn) with T ∗ = T

in the following way

R(p, q) =(λ, 0, v), R(x, y) = (0, R0(x, y), P (y)x− P (x)y),

R(x, q) =(η(v, x), P (x), T (x)), R(p, x) = 0

for all x, y ∈ R
n;

(2) R ∈ R(g2,h) if and only if R ∈ R(g1,h), λ = 0 and v = 0;

(3) R ∈ R(g3,h,ϕ) if and only if R ∈ R(g1,h), λ = 0, R0 ∈ R(kerϕ), and η(x, v) =

ϕ̃(P (x)) for all x ∈ Rn;

(4) R ∈ R(g4,h,m,ψ) if and only if R ∈ R(g1,h), λ = 0, v = 0, R0 ∈ R(kerψ), and

pr
Rn−m ◦T = ψ ◦ P .

Remark that the decomposition R(g1,h) = R⊕Rn⊕⊙2Rn⊕R(h)⊕P(h) is R⊕ h-

invariant, but not g1,h-invariant. Recall that for the subalgebra h ⊂ so(n) there are the

decompositions (2) and (3). In addition we have the decompositions

P(h) = P(h1) ⊕ · · · ⊕ P(hs)

and

R(h) = R(h1) ⊕ · · · ⊕ R(hs).

The spaces R(h) for the holonomy algebras of Riemannian manifolds h ⊂ so(n) are

computed by D. V. Alekseevsky in [1]. Let h ⊂ so(n) be an irreducible subalgebra. The

space R(h) admits the following decomposition into h-modules

R(h) = R0(h) ⊕R1(h) ⊕R′(h), (8)

where R0(h) consists of the curvature tensors with zero Ricci tensor, R1(h) consists of

tensors annihilated by h (this space is zero or one-dimensional), R′(h) is the complement

to these two spaces. Any element of R′(h) has zero scalar curvature and non-zero

Ricci tensor. If R(h) = R1(h), then any Riemannian manifold with the holonomy

algebra h is locally symmetric (such h ⊂ so(n) is called a symmetric Berger algebra).

Remark that any locally symmetric Riemannian manifold is Einstein and not vacuum
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Einstein. Note that R(h) = R0(h) if h is any of the algebras: su(n
2
), sp(n

4
), G2 ⊂ so(7),

spin(7) ⊂ so(8). This implies that each Riemannian manifold with any of these

holonomy algebras is vacuum Einstein. Next, R(u(n
2
)) = R ⊕ R′(u(n

2
)) ⊕ R(su(n

2
))

and R(sp(n
4
) ⊕ sp(1)) = R ⊕ R(sp(n

4
)). Hence any Riemannian manifold with the

holonomy algebra sp(n
4
)⊕sp(1) is Einstein and not vacuum Einstein, and a Riemannian

manifold with the holonomy algebra u(n
2
) can not be vacuum Einstein. Finally, if

an indecomposable n-dimensional Riemannian manifold is vacuum Einstein, then its

holonomy algebra is one of so(n), su(n
2
), sp(n

4
), G2 ⊂ so(7), spin(7) ⊂ so(8).

Now we turn to the space P(h), where h ⊂ so(n) is an irreducible subalgebra.

Consider the h-equivariant map

R̃ic : P(h) → R
n, R̃ic(P ) =

n∑

i=1

P (ei)ei.

This definition does not depend on the choice of the orthogonal basis e1, ..., en of Rn.

Denote by P0(h) the kernel of R̃ic and let P1(h) be its orthogonal complement in P(h).

Thus,

P(h) = P0(h) ⊕ P1(h).

Since h ⊂ so(n) is irreducible and the map R̃ic is h-equivariant, P1(h) is either trivial

or isomorphic to Rn. The spaces P(h) for irreducible Riemannian holonomy algebra

h ⊂ so(n) are computed recently in [16]. In particular, P0(h) 6= 0 and P1(h) = 0

exactly for the holonomy algebras su(n
2
), sp(n

4
), spin(7) and G2. Next, P1(h) ≃ Rn and

P0(h) 6= 0 exactly for the holonomy algebras so(n), u(n
2
) and sp(n

4
)⊕ sp(1). For the rest

of the Riemannian holonomy algebras (i.e. for the symmetric Berger algebras) it holds

P1(h) ≃ Rn and P0(h) = 0.

To make the exposition complete, we give a description of the space R(so(1, n+1))

that follows immediately from [1]. The space R(so(1, n+ 1)) admits the decomposition

(8). The complexification R0(so(1, n + 1)) ⊗ C of R0(so(1, n + 1)) is isomorphic to

the so(n + 2,C)-module V2π2
(if n ≥ 3). Similarly, R0(so(1, 3)) ⊗ C ≃ V4π1

⊕ V4π′

1
,

R0(so(1, 2)) = 0, and R0(so(1, 1)) = 0. It holds R′(so(1, n + 1)) ≃ (⊙2R1,n+1)0 =

⊙2R1,n+1/Rη, any R ∈ R′(so(1, n+1)) is of the form R = RS, where S : R1,n+1 → R1,n+1

is a symmetric linear map with zero trace and

RS(u, v) = Su ∧ v + u ∧ Sv.

Similarly, R1(so(1, n + 1)) is spanned by the element R = R id

2

, i.e. R(u, v) = u ∧ v.

This shows that an (n+2)-dimensional Lorentzian manifold (n ≥ 2) with the holonomy

algebra so(1, n+1) may be either vacuum Einstein, or Einstein and not vacuum Einstein,

or not Einstein. Finally, there are no vacuum Einstein indecomposable Lorentzian

manifolds of dimensions 2 or 3.

4. Applications to Einstein and vacuum Einstein Lorentzian manifolds

Now we are able to find all holonomy algebras of Einstein and vacuum Einstein

Lorentzian manifolds.
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Let R ∈ R(g1,h) be as in Theorem 2, then its Ricci tensor Ric = Ric(R) satisfies

Ric(p, q) = − λ, Ric(x, y) = Ric(R0)(x, y), (9)

Ric(x, q) =η(x, R̃ic(P ) − v), Ric(q, q) = trT, (10)

where x, y ∈ Rn (recall that Ric(u, v) = tr(z 7→ R(u, z)v)).

Obviously, these equations imply that there is no three-dimensional indecomposable

Einstein Lorentzian manifolds with holonomy algebras contained in sim(1) = R ⋉ R.

Thus we may assume that n ≥ 2.

Here is a result from [15].

Theorem 3 [15] Let (M, g) be a locally indecomposable Lorentzian Einstein manifold

admitting a parallel distribution of isotropic lines. Then the holonomy of (M, g) is either

of type 1 or 2. If the cosmological constant of (M, g) is non-zero, then the holonomy

algebra of (M, g) is of type 1. If (M, g) admits locally a parallel isotropic vector field,

then (M, g) is vacuum Einstein.

The classification completes the following two theorems.

Theorem 4 Let (M, g) be a locally indecomposable n + 2-dimensional Lorentzian

manifold admitting a parallel distribution of isotropic lines. If (M, g) is vacuum

Einstein, then one of the following holds:

(1) The holonomy algebra g of (M, g) is of type 1, and in the decomposition (3) of the

orthogonal part h ⊂ so(n) at least one subalgebra hi ⊂ so(ni) coincides with one of

the Lie algebras so(ni), u(ni

2
), sp(ni

4
) ⊕ sp(1) or with a symmetric Berger algebra.

(2) The holonomy algebra g of (M, g) is of type 2, and in the decomposition (3) of the

orthogonal part h ⊂ so(n) each subalgebra hi ⊂ so(ni) coincides with one of the Lie

algebras so(ni), su(ni

2
), sp(ni

4
), G2 ⊂ so(7), spin(7) ⊂ so(8).

Theorem 5 Let (M, g) be a locally indecomposable n + 2-dimensional Lorentzian

manifold admitting a parallel distribution of isotropic lines. If (M, g) is Einstein and

not vacuum Einstein, then the holonomy algebra g of (M, g) is of type 1, and in the

decomposition (3) of the orthogonal part h ⊂ so(n) each subalgebras hi ⊂ so(ni) coincides

with one of the Lie algebras so(ni), u(ni

2
), sp(ni

4
) ⊕ sp(1) or with a symmetric Berger

algebra. Moreover, h ⊂ so(n) does not annihilate any proper subspace of Rn, i.e. in the

decomposition (2) it holds ns+1 = 0.

Recall that the list of irreducible symmetric Berger algebras h ⊂ so(n) can be

obtained from the list of the holonomy algebras of irreducible Riemannian symmetric

spaces (this list is given e.g. in [4]) amiting so(n), u(n
2
) and sp(n

4
) ⊕ sp(1).

Proof of Theorems 4 and 5. Fix a point x ∈ M and let g be the holonomy

algebra of (M, g) at this point. We identify (TxM, gx) with (R1,n+1, η). By the Ambrose-

Singer Theorem [4], g is spanned by the images of the elements Rγ = τ−1
γ ◦Ry(τγ ·, τγ·)◦τγ ,

where γ is a piecewise smooth curve in M starting at the point x and with an end-point
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y ∈ M , and τγ : TxM → TyM is the parallel transport along γ. All these elements

belong to the space R(g) and they can be given as in Theorem 2. Suppose that (M, g)

is vacuum Einstein. By Theorem 3, g is either of type 1 or 2. If g is of type 2, then from

(9) and (10) it follows that each Rγ satisfies λ = 0, v = 0, Ric(R0) = 0, R̃ic(P ) = 0, and

trT = 0. Hence the orthogonal part h ⊂ so(n) of g is spanned by the images of elements

of R0(h) and P0(h). From [16] it follows that h ⊂ so(n) is spanned by the images of

elements of R0(h). Thus h is the holonomy algebra of a vacuum Einstein Riemannian

manifold. If g is of type 1, then each Rγ satisfies λ = 0, v = R̃ic(P ), Ric(R0) = 0, and

trT = 0. Hence for some element Rγ it holds R̃ic(P ) 6= 0, i.e. at list for one hi ⊂ so(ni)

in the decomposition (3) it holds P1(hi) 6= 0. If (M, g) is Einstein with the cosmological

constant Λ 6= 0, then by Theorem 3, g is of type 1. We get that the curvature tensor

Rx at the point x given by (2) satisfies λ = −Λ, v = R̃ic(P ), and Ric(R0) = Λη|Rn⊗Rn.

Hence for each hi ⊂ so(ni) in the decomposition (3) it holds R1(hi) 6= 0, and ns+1 = 0.

�

Remark. A simple version of Theorem 4 for Lorentzian manifolds with holonomy

algebras of type 2 is proved in [15], where the possibility for hi ⊂ so(ni) to coincide

with the holonomy algebra of a symmetric Riemannian non-Kählerian space was not

excluded.

5. Examples of Einstein and vacuum Einstein Lorentzian metrics

On an n + 2-dimensional Lorentzian manifold (M, g) admitting a parallel distribution

of isotropic lines there exist local coordinates (the Walker coordinates) x0, ..., xn+1 such

that the metric g has the form

g = 2dx0dxn+1 +
n∑

i,j=1

hij(x
1, ..., xn+1)dxidxj

+ 2

n∑

i=1

ui(x1, ..., xn+1)dxidxn+1 + f(x0, ..., xn+1)(dxn+1)2, (11)

where h(xn+1) =
∑n

i,j=1 hij(x
1, ..., xn+1)dxidxj is a family of Riemannian metrics

depending on the coordinate xn+1 [28]. The parallel distribution of isotropic lines is

defined by the vector field ∂0 (we denote ∂
∂xa by ∂a).

In [17] the Einstein equations for the general metric (11) are written down and

some solutions of this system under some assumptions on the coefficients are found. Of

course, it is not possible to solve such system in general.

In this section we show the existence of a local metric for each holonomy algebra

obtained in the previous section. It is easy to see that if the metric (11) is Einstein, then

each Riemannian metric in the family h(xn+1) is Einstein with the same cosmological

constant.

We will take some special hij and ui in (11), then the condition on the metric g to

be Einstein will be equivalent to a system of equations on the function f . In each case
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we will show the existence of a proper function f satisfying these equations. This will

imply the existence of an Einstein metric with each holonomy algebra obtained above.

First consider the metric (11) with hij independent of xn+1 and ui(x1, ..., xn+1) = 0

for all i = 1, ..., n. The holonomy algebras of such metrics are found in [2]. If f is

sufficiently general, e.g. its Hessian is non-zero, then the holonomy algebra g of this

metric is weakly-irreducible. If ∂0f = 0, then g = h ⋉ R
n, where h is the holonomy

algebra of the Riemannian metric h; if ∂0f 6= 0, then g = (R ⊕ h) ⋉ Rn. In addition we

need to choose h and f to make g Einstein or vacuum Einstein. The Ricci tensor Ric(g)

for such metric has the following non-zero components:

Ric0n+1 =
1

2
(∂0)

2f, (12)

Rici j = Rici j(h), i, j = 1, ..., n, (13)

Rici n+1 =
1

2
∂0∂if, i = 1, ..., n, (14)

Ricn+1n+1 =
1

2

(
f(∂0)

2f − ∆f
)
, (15)

where ∆f =
∑n

i,j=1 h
ij

(
∂i∂jf −

∑n
k=1 Γkij∂kf

)
is the Laplace-Beltrami operator of the

metric h applied to f . Suppose that g is vacuum Einstein, then the metric h should be

vacuum Einstein as well. Next, ∂0f = 0 and ∆f = 0. Let f be any harmonic function

with non-zero Hessian, locally such functions always exist. E.g. if h is flat, then we may

take f = (x1)2 + · · · + (xn−1)2 − (n − 1)(xn)2. Thus, the metric g is vacuum Einstein

and g = h ⋉ R
n.

Suppose that g is Einstein with the cosmological constant Λ 6= 0, then h is

Einstein with the same cosmological constant Λ. Next, 1
2
(∂0)

2f = Λ, ∂0∂if = 0 and
1
2

(
f(∂0)

2f − ∆f) = Λf . We get that f = Λ (x0)2 + x0f1(x
n+1) + f0(x

1, ..., xn+1) such

that ∆f0 = 0. Taking f0 to be harmonic with non-zero Hessian, and f1 = 0, we get that

the metric g is Einstein with the cosmological constant Λ and g = (R ⊕ h) ⋉ Rn.

It is impossible to construct in this way vacuum Einstein metrics with the holonomy

algebras of type 1.

In [14] for each weakly-irreducible not irreducible holonomy algebra is constructed

a metric of the form (11) with hij(x
1, ..., xn+1) = δij , i.e. each Riemannian metric in

the family h(xn+1) is flat. The Ricci tensor Ric(g) for such metric has the following
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components:

Ric0n+1 =
1

2
(∂0)

2f, (16)

Rici j =0, i, j = 1, ..., n, (17)

Rici n+1 =
1

2

(
∂0∂if −

n∑

j=1

∂j(∂ju
i − ∂iu

j)
)
, i = 1, ..., n, (18)

Ricn+1n+1 =
1

2

((
f −

n∑

i=1

(ui)2
)
(∂0)

2f −

n∑

i=1

(∂i)
2f + 2

n∑

i=1

∂i∂n+1u
i (19)

+
n∑

i,j=1

(∂ju
i − ∂iu

j)2 + (∂0f)
n∑

i=1

∂iu
i + 2

n∑

i=1

ui∂0∂if
)
.

Now we recall the algorithm of the construction from [14].

Let h ⊂ so(n) be the holonomy algebra of a Riemannian manifold. We get the

decompositions (2) and (3). We will assume that the basis e1, ..., en of R
n is compatible

with the decomposition of Rn. Let n0 = n1+ · · ·+ns = n−ns+1. We see that h ⊂ so(n0)

and h does not annihilate any proper subspace of Rn0 . We will always assume that the

indices i, j, k run from 1 to n, the indices î, ĵ, k̂ run from 1 to n0, and the indices ˆ̂i, ˆ̂j,
ˆ̂
k

run from n0 + 1 to n. We will use the Einstein rule for sums.

Let (Pα)
N
α=1 be linearly independent elements of P(h) such that the subset

{Pα(u)|1 ≤ α ≤ N, u ∈ Rn} ⊂ h generates the Lie algebra h. For example, it can

be any basis of the vector space P(h). For each Pα define the numbers P k̂
αĵî

such that

Pα(eî)eĵ = P k̂

αĵî
ek̂. Since Pα ∈ P(h), we have

P ĵ

αk̂î
= −P k̂

αĵî
and P k̂

αĵî
+ P î

αk̂ĵ
+ P ĵ

αîk̂
= 0. (20)

It holds R̃ic(Pα) = R̃ic(Pα)
k̂ek̂, where R̃ic(Pα)

k̂ =
∑

î P
k̂
αî̂i

. Define the following numbers

ak̂
αĵî

=
1

3 · (α− 1)!

(
P k̂
αĵî

+ P k̂
αîĵ

)
. (21)

We have

ak̂
αĵî

= ak̂
αîĵ
. (22)

From (20) it follows that

P k̂

αĵî
= (α− 1)!

(
ak̂
αĵî

− aĵ
αk̂î

)
and ak̂

αĵî
+ aî

αk̂ĵ
+ aĵ

αîk̂
= 0. (23)

Define the functions

uî = aî
αĵk̂
xĵxk̂(xn+1)α−1 (24)

and set u
ˆ̂
i = 0. We choose the function f to make the holonomy algebra g of the metric

g to be weakly-irreducible. If ∂0f = 0, then g is either of type 2 or type 4; if ∂0f 6= 0,



Holonomy of Einstein Lorentzian manifolds 12

then g is either of type 1 or type 3. We will make g to be vacuum Einstein, then g will

be either of type 2 or type 1, i.e. it will equal either to h ⋉ Rn or to (R ⊕ h) ⋉ Rn.

Note that

∂ĵu
î−∂îu

ĵ =
2

(α− 1)!
P î

αĵk̂
xk̂(xn+1)α−1, ∂îu

î = −
2

3((α− 1)!)

∑

k̂

R̃ic(Pα)
k̂xk̂(xn+1)α−1.

(25)

Suppose that g is vacuum Einstein. Then, first of all, the equality (16) implies that

f = x0f1 + f0, where f0 and f1 are functions of x1, ..., xn+1.

First suppose that g is of type 2, i.e. ∂0f = 0 and f1 = 0. Substituting this and

(25) into the equation Ric = 0, we get the following equations

∑

ĵ

P î
αĵĵ

= 0,
∑

i

(∂i)
2f0 =

∑

î,ĵ

( 2

(α− 1)!
P î

αĵk̂
xk̂(xn+1)α−1

)2

.

The first equation is equivalent to the condition P1(h) = 0. Clearly, the function

f0 =
1

3

∑

î,ĵ

( 1

(α− 1)!
P î

αĵk̂
(xk̂)2(xn+1)α−1

)2

(26)

satisfies the second equation. In order to make g weakly-irreducible we add to the

obtained f0 the harmonic function (x1)2 + · · ·+(xn−1)2−(n−1)(xn)2 (it is not necessary

to do this if n0 = n).

Thus we get a new example of the vacuum Einstein metric with the holonomy

algebra h⋉Rn, where h is the (not necessary irreducible) holonomy algebra of a vacuum

Einstein Riemannian manifold.

Suppose now that g is of type 1. The equation Ric = 0 is equivalent to the following

system of equations:

∂îf1 =
2

(α− 1)!
R̃ic(Pα)

î(xn+1)α−1, ∂ˆ̂
i
f1 = 0,

∑

i

(∂i)
2f =

∑

î,ĵ

( 2

(α− 1)!
P î

αĵk̂
xk̂(xn+1)α−1

)2

−
∑

î

4

3((α− 2)!)
R̃ic(Pα)

îxî(xn+1)α−2

− f1

∑

î

2

3((α− 1)!)
R̃ic(Pα)

îxî(xn+1)α−1 + 2uî∂îf1.

We may take f1 =
∑

î
2

(α−1)!
R̃ic(Pα)

îxî(xn+1)α−1. Substituting it into the last equation,

we obtain the equation of the form
∑

i

(∂i)
2f0 = G,

where G is a polynomial of the variables xî and xn+1, and it is of degree at most 2 in

the variables xî and of degree at most 2(N − 1) in xn+1. Let f0 =
∑2(N−1)

β=0 f0β · (x
n+1)β,

then each f0β satisfies the equation
∑

î

(∂î)
2f0β = Gβ,
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where Gβ is a polynomial of xî of degree at most 2. Thus we need to find solutions of

a number of the Poisson equations
∑

î

(∂î)
2F = H, (27)

where H is a polynomial of xî of degree at most 2. Let us show a simple way

to find a polynomial solution of such equation. Let H1 = H − 1
2
(xî)2(∂î)

2H, then

H = H1 + 1
2
(xî)2(∂î)

2H and (∂î)
2H1 = 0 for each î. Next, let H2 = H1 − x1∂1H1, then

H1 = H2 + x1∂1H1, ∂1H2 = 0, and (∂î)
2H1 = 0 for each î. Now it is obvious that the

function

F =
1

2
(x1)2H2 +

1

6
(x1)3∂1H1 +

1

24
(xî)4(∂î)

2H

is a solution of the equation (27). In order to make g weakly-irreducible we add to the

obtained f0 the harmonic function (x1)2 + · · ·+ (xn−1)2 − (n− 1)(xn)2.

Thus we get an example of the vacuum Einstein metric with the holonomy algebra

(R⊕h)⋉Rn, where h is the (not necessary irreducible) holonomy algebra of a Riemannian

manifold such that P1(h) 6= 0, in other words, in the decomposition (3) at least one hi

is the holonomy algebra of a not vacuum Einstein Riemannian manifold.

We have proved the following theorem.

Theorem 6 Let g be any algebra as in Theorem 4 or 5, then there exists an n + 2-

dimensional Einstein (resp., vacuum Einstein) Lorentzian manifold with the holonomy

algebra g.

Example 1 In [14, 15] we constructed metrics with the holonomy algebras g2,G2 ⊂

so(1, 8) and g2,spin(7) ⊂ so(1, 9). In these constructions N = 1 and f = 0. Choosing in

these constructions f = 1
3

∑n
i,j=1(P

i
jk(x

k)2)2, we obtain vacuum Einstein metrics with

the holonomy algebras g2,G2 ⊂ so(1, 8) and g2,spin(7) ⊂ so(1, 9).

6. Lorentzian manifolds with totally isotropic Ricci operator

Let R ∈ R(g1,h) be as in Theorem 2. Consider its Ricci operator Ric = Ric(R) :

R1,n+1 → R1,n+1 defined by

η(Ric(x), y) = Ric(x, y),

where x, y ∈ R
1,n+1 and on the right hand side Ric denotes the Ricci tensor of R. It is

easy to check that

Ric(p) = − λp, Ric(x) = η(x, R̃ic(P ) − v)p+ Ric(R0)(x), (28)

Ric(q) =(trT )p+ R̃ic(P ) − v − λq, (29)

where x ∈ Rn.

A Lorentzian manifold (M, g) is called totally Ricci-isotropic if the image of its

Ricci operator is isotropic, equivalently, η(Ric(x),Ric(y)) = 0 for all x, y ∈ R1,n+1.
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Obviously, any vacuum Einstein Lorentzian manifold is totally Ricci-isotropic. If (M, g)

is a spin manifold and it admits a parallel spinor, then it is totally Ricci-isotropic (but

not necessary vacuum Einstein, unlike in the Riemannian case) [7, 11].

Theorem 7 Let (M, g) be a locally indecomposable n + 2-dimensional Lorentzian

manifold admitting a parallel distribution of isotropic lines. If (M, g) is totally Ricci-

isotropic, then its holonomy algebra is the same as in Theorem 4.

The proof of this theorem is similar to the proofs of the above Theorem 3 from [15]

and Theorems 4 and 5. �

Using results of Section 3 it is easy to prove the following theorem.

Theorem 8 Let (M, g) be a locally indecomposable n + 2-dimensional Lorentzian

manifold admitting a parallel distribution of isotropic lines. If the holonomy algebra

of (M, g) is of type 2 and in the decomposition (3) of the orthogonal part h ⊂ so(n) each

subalgebra hi ⊂ so(ni) coincides with one of the Lie algebras su(ni

2
), sp(ni

4
), G2 ⊂ so(7),

spin(7) ⊂ so(8), then (M, g) is totally Ricci-isotropic.

Note that this theorem can be also proved by the following argument. Locally

(M, g) admits a spin structure. From [15, 26] it follows that any manifold (M, g) with

the holonomy algebra as in the theorem admits locally a parallel spinor, hence (M, g)

is totally Ricci-isotropic.
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