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The classification of all possible holonomy algebras of Einstein and vacuum Einstein Lorentzian manifolds is obtained. It is shown that each such algebra appears as the holonomy algebra of an Einstein (resp., vacuum Einstein) Lorentzian manifold, the direct constructions are given. Also the holonomy algebras of totally Ricci-isotropic Lorentzian manifolds are classified. The classification of the holonomy algebras of Lorentzian manifolds is reviewed and a complete description of the spaces of curvature tensors for these holonomies is given.

Introduction

In contrast to the case of Riemannian manifolds, where the classification of holonomy algebras is a classical result, which has a lot of consequences and applications both in geometry and physics (e.g. Riemannian manifolds with most of holonomy algebras are automatically Einstein or vacuum Einstein), see [START_REF] Alekseevsky | Riemannian manifolds with exceptional holonomy groups[END_REF][START_REF] Berger | Sur les groupers d'holonomie des variétés àconnexion affine et des variétés riemanniennes[END_REF][START_REF] Besse | Einstein manifolds[END_REF][START_REF] Joyce | Compact manifolds with special holonomy[END_REF][START_REF] Joyce | Riemannian holonomy groups and calibrated geometry[END_REF] and the references therein, the classification of the holonomy algebras of Lorentzian manifolds is achieved only recently [START_REF] Bergery | On the Holonomy of Lorentzian Manifolds[END_REF][START_REF] Leistner | On the classification of Lorentzian holonomy groups[END_REF][START_REF] Galaev | Metrics that realize all Lorentzian holonomy algebras[END_REF][START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF] (we recall it in Section 2). The most interesting case is when a Lorentzian manifold (M, g) admits a parallel distribution of isotropic lines and the manifold is locally indecomposable, i.e. locally it is not a product of a Lorentzian and a Riemannian manifold. In this case the holonomy algebra is contained in the maximal subalgebra sim(n) = (R ⊕ so(n)) ⋉ R n of the Lorentzian algebra so(1, n + 1) preserving an isotropic line (the dimension of M is n + 2). There is a number of recent physics literature dealing with these manifolds, see e.g. [START_REF] Brannlund | Holonomy, decomposability, and relativity[END_REF][START_REF] Brannlund | Supersymmetry, holonomy and Kundt spacetimes[END_REF][START_REF] Coley | Metrics with vanishing quantum corrections[END_REF][START_REF] Coley | Supergravity solutions with constant scalar invariants[END_REF][START_REF] Coley | Kundt spacetimes[END_REF][START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF][START_REF] Gibbons | Time-Dependent Multi-Centre Solutions from New Metrics with Holonomy Sim(n -2)[END_REF][START_REF] Gibbons | Holonomy Old and New[END_REF][START_REF] Hernandez | Supersymmetry and Lorentzian holonomy in various dimensions[END_REF]. In particular, in [START_REF] Brannlund | Holonomy, decomposability, and relativity[END_REF][START_REF] Brannlund | Supersymmetry, holonomy and Kundt spacetimes[END_REF][START_REF] Gibbons | Holonomy Old and New[END_REF] expressed the hope that Lorentzian manifolds with the holonomy algebras contained in sim(n) will find many applications in physics, e.g. they are of interest in M-theory and string theory.

The fundamental equation of General Relativity is the Einstein equation. In the absence of matter it has the form Ric = Λg, [START_REF] Alekseevsky | Riemannian manifolds with exceptional holonomy groups[END_REF] where g is a Lorentzian metric on a manifold M, Ric is the Ricci tensor of the metric g and Λ ∈ R is the cosmological constant. If the metric of a Lorentzian manifold (M, g) satisfies this equation, then (M, g) is called an Einstein manifold. If moreover Λ = 0, then it is called vacuum Einstein or Ricci-flat. In dimension 4 the solutions of this equation are obtained in [START_REF] Schell | Classification of four-dimensional Riemannian spaces[END_REF][START_REF] Ghanam | Two special metrics with R 14 -type holonomy[END_REF][START_REF] Hall | Holonomy groups and spacetimes[END_REF][START_REF] Kerr | Some applications of the infinitesimal-holonomy group to the Petrov classification of Einstein spaces[END_REF][START_REF] Kerr | Einstein spaces with four-parameter holonomy groups[END_REF]. In [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF][START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF] are found the holonomy algebras of vacuum Einstein Lorentzian spin manifolds up to dimension 11 admitting parallel spinors and some methods of construction of such manifolds are introduced. In dimension 11 these manifolds are purely gravitational supersymmetric solutions of 11dimensional supergravity. Other constructions are provided in [START_REF] Hernandez | Supersymmetry and Lorentzian holonomy in various dimensions[END_REF]. Recently in [START_REF] Gibbons | Time-Dependent Multi-Centre Solutions from New Metrics with Holonomy Sim(n -2)[END_REF] the Einstein equation on Lorentzian manifolds with holonomy algebras contained in sim(n) is studied and in some cases solutions are obtained. See [START_REF] Gibbons | Time-Dependent Multi-Centre Solutions from New Metrics with Holonomy Sim(n -2)[END_REF] for the discussion of the importance of this problem and the references there.

In the present paper we classify all possible holonomy algebras of Einstein and vacuum Einstein Lorentzian manifolds. First, in [START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF] it is proved that if (M, g) is Einstein, then its holonomy algebra coincides either with

(R ⊕ h) ⋉ R n ⊂ sim(n), or with h ⋉ R n ⊂ sim(n).
Here h ⊂ so(n) is the holonomy algebra of a Riemannian manifold. In general for such h ⊂ so(n) there is an orthogonal decomposition

R n = R n 1 ⊕ • • • ⊕ R ns ⊕ R n s+1 (2) 
and the corresponding decomposition into the direct sum of ideals

h = h 1 ⊕ • • • ⊕ h s ⊕ {0} (3) 
such that h annihilates R n s+1 , h i (R n j ) = 0 for i = j, and h i ⊂ so(n i ) is an irreducible subalgebra for 1 ≤ i ≤ s. Moreover, the Lie subalgebras h i ⊂ so(n i ) are the holonomy algebras of Riemannian manifolds. Consequently, each h i ⊂ so(n i ) is either one of the Lie algebras so(n i ), u( n i 2 ), su( n i 2 ), sp( n i 4 ), sp( n i 4 ) ⊕ sp(1), G 2 ⊂ so [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF], spin(7) ⊂ so [START_REF] Coley | Metrics with vanishing quantum corrections[END_REF], or it is a symmetric Berger algebra (the last are the Riemannian holonomy algebras such that any manifold with such holonomy is locally symmetric, these Lie algebras are listed e.g. in [START_REF] Besse | Einstein manifolds[END_REF]). In Section 4 we prove the following two theorems Theorem 4. If (M, g) is vacuum Einstein, then one of the following holds:

(1) The holonomy algebra of (M, g) coincides with (R⊕h)⋉R n , and in the decomposition (3) of h ⊂ so(n) at least one subalgebra h i ⊂ so(n i ) coincides with one of the Lie algebras so(n i ), u( n i 2 ), sp( n i 4 ) ⊕ sp(1) or with a symmetric Berger algebra. (2) The holonomy algebra of (M, g) coincides with h ⋉ R n , and in the decomposition

(3) of h ⊂ so(n) each subalgebra h i ⊂ so(n i ) coincides with one of the Lie algebras so(n i ), su( n i 2 ), sp( n i 4 ), G 2 ⊂ so [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF], spin(7) ⊂ so(8). Theorem 5. If (M, g) is Einstein and not vacuum Einstein, then the holonomy algebra of (M, g) coincides with (R ⊕ h) ⋉ R n , and in the decomposition (3) of h ⊂ so(n) each subalgebras h i ⊂ so(n i ) coincides with one of the Lie algebras so(n i ), u( n i 2 ), sp( n i 4 ) ⊕ sp(1) or with a symmetric Berger algebra. Moreover, in the decomposition (2) it holds n s+1 = 0.

In Section 5 we construct local Einstein metrics having holonomy algebras from Theorems 4 and 5. We consider metrics written in Walker coordinates of the form

g = 2dx 0 dx n+1 + n i,j=1 h ij (x 1 , ..., x n )dx i dx j + f (x 0 , ..., x n+1 )(dx n+1 ) 2 , (4) 
and

g = 2dx 0 dx n+1 + n i=1 (dx i ) 2 +2 n i=1 u i (x 1 , ..., x n+1 )dx i dx n+1 +f (x 0 , ..., x n+1 )(dx n+1 ) 2 . ( 5 
)
Here h = n i,j=1 h ij (x 1 , ..., x n )dx i dx j is a Riemannian metric. For the metric (4) we choose h to be an Einstein Riemannian metric with a cosmological constant Λ = 0 (resp., Λ = 0) and holonomy algebra h ⊂ so(n) as in Theorem 5 (resp., (2) of Theorem 4). Choosing an appropriate function f , we get that the metric g is Einstein with the cosmological constant Λ and the holonomy algebra (R ⊕ h) ⋉ R n (resp., h ⋉ R n ). Next, for a given holonomy algebra h ⊂ so(n) as in (1) (resp., (2)) of Theorem 4 we give an algorithm how to choose the functions u i and f in (5) to make the metric g vacuum Einstein with the holonomy algebra (R⊕h)⋉R n (resp., h⋉R n ). As examples, we provide vacuum Einstein Lorentzian metrics with the holonomy algebras G 2 ⋉ R 7 ⊂ so(1, 8) and spin(7) ⋉ R 8 ⊂ so [START_REF] Alekseevsky | Riemannian manifolds with exceptional holonomy groups[END_REF][START_REF] Coley | Supergravity solutions with constant scalar invariants[END_REF].

If (M, g) is a spin Lorentzian manifold and it admits a parallel spinor, then it is totally Ricci-isotropic (but not necessary vacuum Einstein, unlike in the Riemannian case), i.e. the image of its Ricci operator is isotropic [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF][START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF]. We prove the following two theorems Theorem 7. If (M, g) is totally Ricci-isotropic, then its holonomy algebra is the same as in Theorem 4.

Theorem 8. If the holonomy algebra of (M, g) is h ⋉ R n and in the decomposition (3) of h ⊂ so(n) each subalgebra h i ⊂ so(n i ) coincides with one of the Lie algebras su( n i 2 ), sp( n i 4 ), G 2 ⊂ so [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF], spin(7) ⊂ so [START_REF] Coley | Metrics with vanishing quantum corrections[END_REF], then (M, g) is totally Ricci-isotropic. Recall that an indecomposable Riemannian manifold with the holonomy algebra different from so(n) and u( n 2 ) is automatically Einstein or vacuum Einstein [START_REF] Besse | Einstein manifolds[END_REF]. This is not the case for Lorentzian manifolds. Indeed, using results of Section 5 it is easy to construct non-Einstein metrics having all holonomy algebras as in Theorems 4 and 5. On the other hand, Theorem 8 shows that Lorentzian manifolds with some holonomy algebras are automatically totally Ricci-isotropic.

To prove the above theorems we need the complete description of the space of curvature tensors for Lorentzian holonomy algebras, i.e. the space of values of the curvature tensor of a Lorentzian manifold, we provide it in Section 3. The study of these spaces is begun in [START_REF] Galaev | The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds[END_REF] and finished recently in [START_REF] Galaev | One component of the curvature tensor of a Lorentzian manifold[END_REF].

Necessary facts from the holonomy theory can be found e.g. in [START_REF] Besse | Einstein manifolds[END_REF][START_REF] Brannlund | Supersymmetry, holonomy and Kundt spacetimes[END_REF][START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF][START_REF] Joyce | Compact manifolds with special holonomy[END_REF][START_REF] Joyce | Riemannian holonomy groups and calibrated geometry[END_REF]. Remark that by a Riemannian (resp., Lorentzian) manifold we understand a manifold with a field g of positive definite (resp., of signature (-, +, ..., +)) symmetric bilinear forms on the tangent spaces.

Classification of the Lorentzian holonomy algebras

Let (R 1,n+1 , η) be the Minkowski space of dimension n + 2, where η is a metric on R n+2 of signature (1, n + 1). We consider (R 1,n+1 , η) as the tangent space (T x M, g x ) to a Lorentzian manifold (M, g) at a point x. We fix a basis p, e 1 , ..., e n , q of R 1,n+1 such that the only non-zero values of η are η(p, q) = η(q, p) = 1 and η(e i , e i ) = 1. We will denote by R n ⊂ R 1,n+1 the Euclidean subspace spanned by the vectors e 1 , ..., e n .

Recall that a subalgebra g ⊂ so(1, n + 1) is called irreducible if it does not preserve any proper subspace of R 1,n+1 ; g is called weakly-irreducible if it does not preserve any non-degenerate proper subspace of R 1,n+1 . Obviously, if g ⊂ so(1, n + 1) is irreducible, then it is weakly-irreducible. From the Wu Theorem [START_REF] Wu | On the de Rham decomposition theorem[END_REF] it follows that any Lorentzian manifold (M, g) is either locally a product of the manifold (R, -(dt) 2 ) and of a Riemannian manifold, or of a Lorentzian manifold with weaklyirreducible holonomy algebra and of a Riemannian manifold. The Riemannian manifold can be further decomposed into the product of a flat Riemannian manifold and of Riemannian manifolds with irreducible holonomy algebras. If the manifold (M, g) is simply connected and geodesically complete, then these decompositions are global. This allow us to consider locally indecomposable Lorentzian manifolds, i.e. manifolds with weakly-irreducible holonomy algebras. For example, a locally decomposable Lorentzian manifold (M, g) is Einstein if and only if locally it is a product of Einstein manifolds with the same cosmological constants as (M, g). The only irreducible Lorentzian holonomy algebra is the whole Lie algebra so(1, n + 1) ( [START_REF] Berger | Sur les groupers d'holonomie des variétés àconnexion affine et des variétés riemanniennes[END_REF]), so we consider weakly-irreducible not irreducible holonomy algebras.

Denote by sim(n) the subalgebra of so(1, n + 1) that preserves the isotropic line Rp. The Lie algebra sim(n) can be identified with the following matrix algebra:

sim(n) =         a X t 0 0 A -X 0 0 -a    a ∈ R, X ∈ R n , A ∈ so(n)      . ( 6 
)
The above matrix can be identified with the triple (a, A, X). We get the decomposition

sim(n) = (R ⊕ so(n)) ⋉ R n , which means that R ⊕ so(n) ⊂ sim(n) is a subalgebra and R n ⊂ sim(n) is an ideal,
and the Lie brackets of R ⊕ so(n) with R n are given by the standard representation of R ⊕ so(n) in R n . We see that sim(n) is isomorphic to the Lie algebra of the Lie group of similarity transformations of R n . The explicit isomorphism on the group level is constructed in [START_REF] Galaev | Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups[END_REF].

If a weakly-irreducible subalgebra g ⊂ so(1, n + 1) preserves a degenerate proper subspace U ⊂ R 1,n+1 , then it preserves the isotropic line U ∩ U ⊥ , and g is conjugated to a weakly-irreducible subalgebra of sim(n). Let h ⊂ so(n) be a subalgebra. Recall that h is a compact Lie algebra and we have the decomposition h = h ′ ⊕ z(h), where h ′ is the commutant of h and z(h) is the center of h.

The next theorem gives the classification of weakly-irreducible not irreducible holonomy algebras of Lorentzian manifolds.

Theorem 1 A subalgebra g ⊂ sim(n) is the weakly-irreducible holonomy algebra of a Lorentzian manifold if and only if it is conjugated to one of the following subalgebras:

type 1. g 1,h = (R ⊕ h) ⋉ R n , where h ⊂ so(n) is the holonomy algebra of a Riemannian manifold; type 2. g 2,h = h ⋉ R n
, where h ⊂ so(n) is the holonomy algebra of a Riemannian manifold;

type 3. g 3,h,ϕ = {(ϕ(A), A, 0)|A ∈ h} ⋉ R n
, where h ⊂ so(n) is the holonomy algebra of a Riemannian manifold with z(h) = {0}, and ϕ : h → R is a non-zero linear map with ϕ| h ′ = 0;

type 4. g 4,h,m,ψ = {(0, A, X + ψ(A))|A ∈ h, X ∈ R m }, where 0 < m < n is an integer, h ⊂ so(m)
is the holonomy algebra of a Riemannian manifold with dim z(h) ≥ n-m, a decomposition R n = R m ⊕ R n-m is fixed, and ψ : h → R n-m is a surjective linear map with ψ| h ′ = 0.

The subalgebra h ⊂ so(n) associated to a weakly-irreducible Lorentzian holonomy algebra g ⊂ sim(n) is called the orthogonal part of g. Recall that for the subalgebra h ⊂ so(n) there are the decompositions (2) and (3). This theorem is the result of the papers [START_REF] Bergery | On the Holonomy of Lorentzian Manifolds[END_REF][START_REF] Leistner | On the classification of Lorentzian holonomy groups[END_REF][START_REF] Galaev | Metrics that realize all Lorentzian holonomy algebras[END_REF], see [START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF] for the whole history.

The spaces of curvature tensors

Let W be a vector space and f ⊂ gl(W ) a subalgebra. The vector space

R(f) = {R ∈ Λ 2 W * ⊗ f|R(u, v)w + R(v, w)u + R(w, u)v = 0 for all u, v, w ∈ W } is called the space of curvature tensors of type f. A subalgebra f ⊂ gl(W ) is called a Berger algebra if g = span{R(u, v)|R ∈ R(f), u, v ∈ W },
i.e. g is spanned by the images of the elements R ∈ R(f).

If there is a pseudo-Euclidean metric η on W such that f ⊂ so(W ), then any

R ∈ R(f) satisfies η(R(u, v)z, w) = η(R(z, w)u, v) (7) 
for all u, v, z, w ∈ W . We identify so(W ) with Λ 2 W such that it holds (u ∧ v)(z) = η(u, z)v -η(v, z)u for all u, v, z ∈ W . E.g. under this identification the matrix from ( 6) corresponds to the bivector -ap ∧ q + A -p ∧ X, A ∈ so(n) ≃ Λ 2 R n . Equality [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF] shows that the map R : Λ 2 W → f ⊂ Λ 2 W is symmetric with respect to the metric on Λ 2 W . In particular, R is zero on the orthogonal complement f ⊥ ⊂ Λ 2 W . Thus, R ∈ ⊙ 2 f. In [START_REF] Galaev | The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds[END_REF] the following theorem is proved.

Theorem 2 [START_REF] Galaev | The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds[END_REF] It holds:

(1) each R ∈ R(g 1,h
) is uniquely given by

λ ∈ R, v ∈ R n , P ∈ P(h), R 0 ∈ R(h), and T ∈ End(R n ) with T * = T
in the following way

R(p, q) =(λ, 0, v), R(x, y) = (0, R 0 (x, y), P (y)x -P (x)y), R(x, q) =(η(v, x), P (x), T (x)), R(p, x) = 0 for all x, y ∈ R n ; (2) R ∈ R(g 2,h ) if and only if R ∈ R(g 1,h ), λ = 0 and v = 0; (3) R ∈ R(g 3,h,ϕ ) if and only if R ∈ R(g 1,h ), λ = 0, R 0 ∈ R(ker ϕ), and η(x, v) = φ(P (x)) for all x ∈ R n ; (4) R ∈ R(g 4,h,m,ψ ) if and only if R ∈ R(g 1,h ), λ = 0, v = 0, R 0 ∈ R(ker ψ), and pr R n-m •T = ψ • P .
Remark that the decomposition R(g

1,h ) = R ⊕ R n ⊕ ⊙ 2 R n ⊕ R(h) ⊕ P(h) is R ⊕ h- invariant, but not g 1,h -invariant.
Recall that for the subalgebra h ⊂ so(n) there are the decompositions (2) and (3). In addition we have the decompositions

P(h) = P(h 1 ) ⊕ • • • ⊕ P(h s ) and R(h) = R(h 1 ) ⊕ • • • ⊕ R(h s ).
The spaces R(h) for the holonomy algebras of Riemannian manifolds h ⊂ so(n) are computed by D. V. Alekseevsky in [START_REF] Alekseevsky | Riemannian manifolds with exceptional holonomy groups[END_REF]. Let h ⊂ so(n) be an irreducible subalgebra. The space R(h) admits the following decomposition into h-modules

R(h) = R 0 (h) ⊕ R 1 (h) ⊕ R ′ (h), (8) 
where R 0 (h) consists of the curvature tensors with zero Ricci tensor, R 1 (h) consists of tensors annihilated by h (this space is zero or one-dimensional), R ′ (h) is the complement to these two spaces. Any element of R ′ (h) has zero scalar curvature and non-zero Ricci tensor. If R(h) = R 1 (h), then any Riemannian manifold with the holonomy algebra h is locally symmetric (such h ⊂ so(n) is called a symmetric Berger algebra).

Remark that any locally symmetric Riemannian manifold is Einstein and not vacuum Einstein. Note that R(h) = R 0 (h) if h is any of the algebras: su( n 2 ), sp( n 4 ), G 2 ⊂ so(7), spin(7) ⊂ so [START_REF] Coley | Metrics with vanishing quantum corrections[END_REF]. This implies that each Riemannian manifold with any of these holonomy algebras is vacuum Einstein. Next, R(u

( n 2 )) = R ⊕ R ′ (u( n 2 )) ⊕ R(su( n 2 )) and R(sp( n 4 ) ⊕ sp(1)) = R ⊕ R(sp( n 4 
)). Hence any Riemannian manifold with the holonomy algebra sp( n 4 ) ⊕ sp(1) is Einstein and not vacuum Einstein, and a Riemannian manifold with the holonomy algebra u( n 2 ) can not be vacuum Einstein. Finally, if an indecomposable n-dimensional Riemannian manifold is vacuum Einstein, then its holonomy algebra is one of so(n), su( n 2 ), sp( n 4 ), G 2 ⊂ so [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF], spin(7) ⊂ so [START_REF] Coley | Metrics with vanishing quantum corrections[END_REF]. Now we turn to the space P(h), where h ⊂ so(n) is an irreducible subalgebra. Consider the h-equivariant map Ric :

P(h) → R n , Ric(P ) = n i=1 P (e i )e i .
This definition does not depend on the choice of the orthogonal basis e 1 , ..., e n of R n . Denote by P 0 (h) the kernel of Ric and let P 1 (h) be its orthogonal complement in P(h). Thus, P(h) = P 0 (h) ⊕ P 1 (h).

Since h ⊂ so(n) is irreducible and the map Ric is h-equivariant, P 1 (h) is either trivial or isomorphic to R n . The spaces P(h) for irreducible Riemannian holonomy algebra h ⊂ so(n) are computed recently in [START_REF] Galaev | One component of the curvature tensor of a Lorentzian manifold[END_REF]. In particular, P 0 (h) = 0 and P 1 (h) = 0 exactly for the holonomy algebras su( n 2 ), sp( n 4 ), spin( 7) and G 2 . Next, P 1 (h) ≃ R n and P 0 (h) = 0 exactly for the holonomy algebras so(n), u( n 2 ) and sp( n 4 ) ⊕ sp(1). For the rest of the Riemannian holonomy algebras (i.e. for the symmetric Berger algebras) it holds P 1 (h) ≃ R n and P 0 (h) = 0.

To make the exposition complete, we give a description of the space R(so(1, n + 1)) that follows immediately from [START_REF] Alekseevsky | Riemannian manifolds with exceptional holonomy groups[END_REF]. The space R(so(1, n + 1)) admits the decomposition [START_REF] Coley | Metrics with vanishing quantum corrections[END_REF]. The complexification R 0 (so

(1, n + 1)) ⊗ C of R 0 (so(1, n + 1)) is isomorphic to the so(n + 2, C)-module V 2π 2 (if n ≥ 3). Similarly, R 0 (so(1, 3)) ⊗ C ≃ V 4π 1 ⊕ V 4π ′ 1 , R 0 (so(1, 2)) = 0, and R 0 (so(1, 1)) = 0. It holds R ′ (so(1, n + 1)) ≃ (⊙ 2 R 1,n+1 ) 0 = ⊙ 2 R 1,n+1 /Rη, any R ∈ R ′ (so(1, n+1)) is of the form R = R S , where S : R 1,n+1 → R 1,n+1
is a symmetric linear map with zero trace and

R S (u, v) = Su ∧ v + u ∧ Sv. Similarly, R 1 (so(1, n + 1)) is spanned by the element R = Rid 2 , i.e. R(u, v) = u ∧ v.
This shows that an (n + 2)-dimensional Lorentzian manifold (n ≥ 2) with the holonomy algebra so(1, n+1) may be either vacuum Einstein, or Einstein and not vacuum Einstein, or not Einstein. Finally, there are no vacuum Einstein indecomposable Lorentzian manifolds of dimensions 2 or 3.

Applications to Einstein and vacuum Einstein Lorentzian manifolds

Now we are able to find all holonomy algebras of Einstein and vacuum Einstein Lorentzian manifolds.

Let R ∈ R(g 1,h ) be as in Theorem 2, then its Ricci tensor Ric = Ric(R) satisfies Ric(p, q) = -λ, Ric(x, y) = Ric(R 0 )(x, y),

Ric(x, q) =η(x, Ric(P ) -v), Ric(q, q) = tr T, [START_REF] Coley | Kundt spacetimes[END_REF] where x, y ∈ R n (recall that Ric(u, v) = tr(z → R(u, z)v)).

Obviously, these equations imply that there is no three-dimensional indecomposable Einstein Lorentzian manifolds with holonomy algebras contained in sim(1) = R ⋉ R. Thus we may assume that n ≥ 2.

Here is a result from [START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF].

Theorem 3 [START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF] Let (M, g) be a locally indecomposable Lorentzian Einstein manifold admitting a parallel distribution of isotropic lines. Then the holonomy of (M, g) is either of type 1 or 2. If the cosmological constant of (M, g) is non-zero, then the holonomy algebra of (M, g) is of type 1. If (M, g) admits locally a parallel isotropic vector field, then (M, g) is vacuum Einstein.

The classification completes the following two theorems.

Theorem 4 Let (M, g) be a locally indecomposable n + 2-dimensional Lorentzian manifold admitting a parallel distribution of isotropic lines. If (M, g) is vacuum Einstein, then one of the following holds:

(1) The holonomy algebra g of (M, g) is of type 1, and in the decomposition (3) of the orthogonal part h ⊂ so(n) at least one subalgebra h i ⊂ so(n i ) coincides with one of the Lie algebras so(n i ), u( n i 2 ), sp( n i 4 ) ⊕ sp(1) or with a symmetric Berger algebra.

(2) The holonomy algebra g of (M, g) is of type 2, and in the decomposition (3) of the orthogonal part h ⊂ so(n) each subalgebra h i ⊂ so(n i ) coincides with one of the Lie algebras so(n i ), su( n i 2 ), sp( n i 4 ), G 2 ⊂ so [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF], spin(7) ⊂ so(8). Theorem 5 Let (M, g) be a locally indecomposable n + 2-dimensional Lorentzian manifold admitting a parallel distribution of isotropic lines. If (M, g) is Einstein and not vacuum Einstein, then the holonomy algebra g of (M, g) is of type 1, and in the decomposition (3) of the orthogonal part h ⊂ so(n) each subalgebras h i ⊂ so(n i ) coincides with one of the Lie algebras so(n i ), u( n i 2 ), sp( n i 4 ) ⊕ sp(1) or with a symmetric Berger algebra. Moreover, h ⊂ so(n) does not annihilate any proper subspace of R n , i.e. in the decomposition (2) it holds n s+1 = 0.

Recall that the list of irreducible symmetric Berger algebras h ⊂ so(n) can be obtained from the list of the holonomy algebras of irreducible Riemannian symmetric spaces (this list is given e.g. in [START_REF] Besse | Einstein manifolds[END_REF]) amiting so(n), u( n 2 ) and sp( n 4 ) ⊕ sp(1). Proof of Theorems 4 and 5. Fix a point x ∈ M and let g be the holonomy algebra of (M, g) at this point. We identify (T x M, g x ) with (R 1,n+1 , η). By the Ambrose-Singer Theorem [START_REF] Besse | Einstein manifolds[END_REF], g is spanned by the images of the elements

R γ = τ -1 γ •R y (τ γ •, τ γ •)•τ γ ,
where γ is a piecewise smooth curve in M starting at the point x and with an end-point y ∈ M, and τ γ : T x M → T y M is the parallel transport along γ. All these elements belong to the space R(g) and they can be given as in Theorem 2. Suppose that (M, g) is vacuum Einstein. By Theorem 3, g is either of type 1 or 2. If g is of type 2, then from ( 9) and ( 10) it follows that each R γ satisfies λ = 0, v = 0, Ric(R 0 ) = 0, Ric(P ) = 0, and tr T = 0. Hence the orthogonal part h ⊂ so(n) of g is spanned by the images of elements of R 0 (h) and P 0 (h). From [START_REF] Galaev | One component of the curvature tensor of a Lorentzian manifold[END_REF] it follows that h ⊂ so(n) is spanned by the images of elements of R 0 (h). Thus h is the holonomy algebra of a vacuum Einstein Riemannian manifold. If g is of type 1, then each R γ satisfies λ = 0, v = Ric(P ), Ric(R 0 ) = 0, and tr T = 0. Hence for some element R γ it holds Ric(P ) = 0, i.e. at list for one h i ⊂ so(n i ) in the decomposition (3) it holds P 1 (h i ) = 0. If (M, g) is Einstein with the cosmological constant Λ = 0, then by Theorem 3, g is of type 1. We get that the curvature tensor R x at the point x given by ( 2) satisfies λ = -Λ, v = Ric(P ), and Ric(R 0 ) = Λη| R n ⊗R n . Hence for each h i ⊂ so(n i ) in the decomposition (3) it holds R 1 (h i ) = 0, and n s+1 = 0.

Remark. A simple version of Theorem 4 for Lorentzian manifolds with holonomy algebras of type 2 is proved in [START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF], where the possibility for h i ⊂ so(n i ) to coincide with the holonomy algebra of a symmetric Riemannian non-Kählerian space was not excluded.

Examples of Einstein and vacuum Einstein Lorentzian metrics

On an n + 2-dimensional Lorentzian manifold (M, g) admitting a parallel distribution of isotropic lines there exist local coordinates (the Walker coordinates) x 0 , ..., x n+1 such that the metric g has the form [START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF] where h(x n+1 ) = n i,j=1 h ij (x 1 , ..., x n+1 )dx i dx j is a family of Riemannian metrics depending on the coordinate x n+1 [START_REF] Walker | On parallel fields of partially null vector spaces[END_REF]. The parallel distribution of isotropic lines is defined by the vector field ∂ 0 (we denote ∂ ∂x a by ∂ a ). In [START_REF] Gibbons | Time-Dependent Multi-Centre Solutions from New Metrics with Holonomy Sim(n -2)[END_REF] the Einstein equations for the general metric [START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF] are written down and some solutions of this system under some assumptions on the coefficients are found. Of course, it is not possible to solve such system in general.

g = 2dx 0 dx n+1 + n i,j=1 h ij (x 1 , ..., x n+1 )dx i dx j + 2 n i=1 u i (x 1 , ..., x n+1 )dx i dx n+1 + f (x 0 , ..., x n+1 )(dx n+1 ) 2 ,
In this section we show the existence of a local metric for each holonomy algebra obtained in the previous section. It is easy to see that if the metric [START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF] is Einstein, then each Riemannian metric in the family h(x n+1 ) is Einstein with the same cosmological constant.

We will take some special h ij and u i in [START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF], then the condition on the metric g to be Einstein will be equivalent to a system of equations on the function f . In each case we will show the existence of a proper function f satisfying these equations. This will imply the existence of an Einstein metric with each holonomy algebra obtained above.

First consider the metric [START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF] with h ij independent of x n+1 and u i (x 1 , ..., x n+1 ) = 0 for all i = 1, ..., n. The holonomy algebras of such metrics are found in [START_REF] Bergery | On the Holonomy of Lorentzian Manifolds[END_REF]. If f is sufficiently general, e.g. its Hessian is non-zero, then the holonomy algebra g of this metric is weakly-irreducible. If ∂ 0 f = 0, then g = h ⋉ R n , where h is the holonomy algebra of the Riemannian metric h; if ∂ 0 f = 0, then g = (R ⊕ h) ⋉ R n . In addition we need to choose h and f to make g Einstein or vacuum Einstein. The Ricci tensor Ric(g) for such metric has the following non-zero components:

Ric 0 n+1 = 1 2 (∂ 0 ) 2 f, (12) 
Ric i j = Ric i j (h), i, j = 1, ..., n, (13) 
Ric i n+1 = 1 2 ∂ 0 ∂ i f, i = 1, ..., n, (14) 
Ric n+1 n+1 = 1 2 f (∂ 0 ) 2 f -∆f , (15) 
where ∆f

= n i,j=1 h ij ∂ i ∂ j f -n k=1 Γ k ij ∂ k f
is the Laplace-Beltrami operator of the metric h applied to f . Suppose that g is vacuum Einstein, then the metric h should be vacuum Einstein as well. Next, ∂ 0 f = 0 and ∆f = 0. Let f be any harmonic function with non-zero Hessian, locally such functions always exist. E.g. if h is flat, then we may take

f = (x 1 ) 2 + • • • + (x n-1 ) 2 -(n -1)(x n ) 2 . Thus, the metric g is vacuum Einstein and g = h ⋉ R n .
Suppose that g is Einstein with the cosmological constant Λ = 0, then h is Einstein with the same cosmological constant Λ. Next, 1 2

(∂ 0 ) 2 f = Λ, ∂ 0 ∂ i f = 0 and 1 2 f (∂ 0 ) 2 f -∆f ) = Λf .
We get that f = Λ (x 0 ) 2 + x 0 f 1 (x n+1 ) + f 0 (x 1 , ..., x n+1 ) such that ∆f 0 = 0. Taking f 0 to be harmonic with non-zero Hessian, and f 1 = 0, we get that the metric g is Einstein with the cosmological constant Λ and g = (R ⊕ h) ⋉ R n . It is impossible to construct in this way vacuum Einstein metrics with the holonomy algebras of type 1.

In [START_REF] Galaev | Metrics that realize all Lorentzian holonomy algebras[END_REF] for each weakly-irreducible not irreducible holonomy algebra is constructed a metric of the form [START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF] with h ij (x 1 , ..., x n+1 ) = δ ij , i.e. each Riemannian metric in the family h(x n+1 ) is flat. The Ricci tensor Ric(g) for such metric has the following components:

Ric 0 n+1 = 1 2 (∂ 0 ) 2 f, (16) 
Ric i j =0, i, j = 1, ..., n, (17) 
Ric i n+1 = 1 2 ∂ 0 ∂ i f - n j=1 ∂ j (∂ j u i -∂ i u j ) , i = 1, ..., n, (18) 
Ric n+1 n+1 = 1 2 f - n i=1 (u i ) 2 (∂ 0 ) 2 f - n i=1 (∂ i ) 2 f + 2 n i=1 ∂ i ∂ n+1 u i (19) 
+ n i,j=1 (∂ j u i -∂ i u j ) 2 + (∂ 0 f ) n i=1 ∂ i u i + 2 n i=1 u i ∂ 0 ∂ i f .
Now we recall the algorithm of the construction from [START_REF] Galaev | Metrics that realize all Lorentzian holonomy algebras[END_REF]. Let h ⊂ so(n) be the holonomy algebra of a Riemannian manifold. We get the decompositions (2) and (3). We will assume that the basis e 1 , ..., e n of R n is compatible with the decomposition of R n . Let n 0 = n 1 +• • •+n s = n-n s+1 . We see that h ⊂ so(n 0 ) and h does not annihilate any proper subspace of R n 0 . We will always assume that the indices i, j, k run from 1 to n, the indices î, ĵ, k run from 1 to n 0 , and the indices î, ĵ, k run from n 0 + 1 to n. We will use the Einstein rule for sums. Let (P α ) N α=1 be linearly independent elements of P(h) such that the subset {P α (u)|1 ≤ α ≤ N, u ∈ R n } ⊂ h generates the Lie algebra h. For example, it can be any basis of the vector space P(h). For each P α define the numbers P k α ĵî such that P α (e î)e ĵ = P k α ĵî e k. Since P α ∈ P(h), we have

P ĵ α kî = -P k α ĵî and P k α ĵî + P î α kĵ + P ĵ α îk = 0. ( 20 
)
It holds Ric(P α ) = Ric(P α ) ke k, where Ric(P α ) k = î P k α îî . Define the following numbers

a k α ĵî = 1 3 • (α -1)! P k α ĵî + P k α îĵ . (21) 
We have

a k α ĵî = a k α îĵ . (22) 
From ( 20) it follows that

P k α ĵî = (α -1)! a k α ĵî -a ĵ α kî and a k α ĵî + a î α kĵ + a ĵ α îk = 0. ( 23 
)
Define the functions

u î = a î α ĵk x ĵ x k(x n+1 ) α-1 (24) 
and set u î = 0. We choose the function f to make the holonomy algebra g of the metric g to be weakly-irreducible. If ∂ 0 f = 0, then g is either of type 2 or type 4; if ∂ 0 f = 0, where G β is a polynomial of x î of degree at most 2. Thus we need to find solutions of a number of the Poisson equations

î (∂ î) 2 F = H, (27) 
where H is a polynomial of x î of degree at most 2. Let us show a simple way to find a polynomial solution of such equation. Let

H 1 = H -1 2 (x î) 2 (∂ î) 2 H, then H = H 1 + 1 2 (x î) 2 (∂ î) 2 H and (∂ î) 2 H 1 = 0 for each î. Next, let H 2 = H 1 -x 1 ∂ 1 H 1 , then H 1 = H 2 + x 1 ∂ 1 H 1 , ∂ 1 H 2 = 0, and (∂ î) 2 H 1 = 0 for each î. Now it is obvious that the function F = 1 2 (x 1 ) 2 H 2 + 1 6 (x 1 ) 3 ∂ 1 H 1 + 1 24 (x î) 4 (∂ î) 2 H
is a solution of the equation [START_REF] Schell | Classification of four-dimensional Riemannian spaces[END_REF]. In order to make g weakly-irreducible we add to the obtained f 0 the harmonic function (

x 1 ) 2 + • • • + (x n-1 ) 2 -(n -1)(x n ) 2 .
Thus we get an example of the vacuum Einstein metric with the holonomy algebra (R⊕h)⋉R n , where h is the (not necessary irreducible) holonomy algebra of a Riemannian manifold such that P 1 (h) = 0, in other words, in the decomposition (3) at least one h i is the holonomy algebra of a not vacuum Einstein Riemannian manifold.

We have proved the following theorem.

Theorem 6 Let g be any algebra as in Theorem 4 or 5, then there exists an n + 2dimensional Einstein (resp., vacuum Einstein) Lorentzian manifold with the holonomy algebra g.

Example 1

In [START_REF] Galaev | Metrics that realize all Lorentzian holonomy algebras[END_REF][START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF] we constructed metrics with the holonomy algebras g 2,G 2 ⊂ so(1, 8) and g 2,spin (7) ⊂ so [START_REF] Alekseevsky | Riemannian manifolds with exceptional holonomy groups[END_REF][START_REF] Coley | Supergravity solutions with constant scalar invariants[END_REF]. In these constructions N = 1 and f = 0. Choosing in these constructions f = 1 3 n i,j=1 (P i jk (x k ) 2 ) 2 , we obtain vacuum Einstein metrics with the holonomy algebras g 2,G 2 ⊂ so(1, 8) and g 2,spin (7) ⊂ so(1, 9).

Lorentzian manifolds with totally isotropic Ricci operator

Let R ∈ R(g 1,h ) be as in Theorem 2. Consider its Ricci operator Ric = Ric(R) : R 1,n+1 → R 1,n+1 defined by η(Ric(x), y) = Ric(x, y), where x, y ∈ R 1,n+1 and on the right hand side Ric denotes the Ricci tensor of R. It is easy to check that Ric(p) = -λp, Ric(x) = η(x, Ric(P ) -v)p + Ric(R 0 )(x), [START_REF] Walker | On parallel fields of partially null vector spaces[END_REF] Ric(q) =(tr T )p + Ric(P ) -v -λq,

where x ∈ R n . A Lorentzian manifold (M, g) is called totally Ricci-isotropic if the image of its Ricci operator is isotropic, equivalently, η(Ric(x), Ric(y)) = 0 for all x, y ∈ R 1,n+1 .

Obviously, any vacuum Einstein Lorentzian manifold is totally Ricci-isotropic. If (M, g) is a spin manifold and it admits a parallel spinor, then it is totally Ricci-isotropic (but not necessary vacuum Einstein, unlike in the Riemannian case) [START_REF] Bryant | Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor[END_REF][START_REF] Figueroa-O'farrill | Breaking the M-waves[END_REF].

Theorem 7 Let (M, g) be a locally indecomposable n + 2-dimensional Lorentzian manifold admitting a parallel distribution of isotropic lines. If (M, g) is totally Ricciisotropic, then its holonomy algebra is the same as in Theorem 4.

The proof of this theorem is similar to the proofs of the above Theorem 3 from [START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF] and Theorems 4 and 5.

Using results of Section 3 it is easy to prove the following theorem.

Theorem 8 Let (M, g) be a locally indecomposable n + 2-dimensional Lorentzian manifold admitting a parallel distribution of isotropic lines. If the holonomy algebra of (M, g) is of type 2 and in the decomposition (3) of the orthogonal part h ⊂ so(n) each subalgebra h i ⊂ so(n i ) coincides with one of the Lie algebras su( n i 2 ), sp( n i 4 ), G 2 ⊂ so(7), spin(7) ⊂ so [START_REF] Coley | Metrics with vanishing quantum corrections[END_REF], then (M, g) is totally Ricci-isotropic.

Note that this theorem can be also proved by the following argument. Locally (M, g) admits a spin structure. From [START_REF] Galaev | Holonomy groups of Lorentzian manifolds: classification, examples, and applications[END_REF][START_REF] Leistner | On the classification of Lorentzian holonomy groups[END_REF] it follows that any manifold (M, g) with the holonomy algebra as in the theorem admits locally a parallel spinor, hence (M, g) is totally Ricci-isotropic.
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then g is either of type 1 or type 3. We will make g to be vacuum Einstein, then g will be either of type 2 or type 1, i.e. it will equal either to h ⋉ R n or to (R ⊕ h) ⋉ R n .

Note that

(25) Suppose that g is vacuum Einstein. Then, first of all, the equality [START_REF] Galaev | One component of the curvature tensor of a Lorentzian manifold[END_REF] implies that f = x 0 f 1 + f 0 , where f 0 and f 1 are functions of x 1 , ..., x n+1 .

First suppose that g is of type 2, i.e. ∂ 0 f = 0 and f 1 = 0. Substituting this and (25) into the equation Ric = 0, we get the following equations

The first equation is equivalent to the condition P 1 (h) = 0. Clearly, the function

satisfies the second equation. In order to make g weakly-irreducible we add to the obtained f 0 the harmonic function

Thus we get a new example of the vacuum Einstein metric with the holonomy algebra h ⋉ R n , where h is the (not necessary irreducible) holonomy algebra of a vacuum Einstein Riemannian manifold.

Suppose now that g is of type 1. The equation Ric = 0 is equivalent to the following system of equations:

We may take f 1 = î 2 (α-1)! Ric(P α ) îx î(x n+1 ) α-1 . Substituting it into the last equation, we obtain the equation of the form i

where G is a polynomial of the variables x î and x n+1 , and it is of degree at most 2 in the variables x î and of degree at most 2(N -1) in x n+1 . Let f 0 = 2(N -1) β=0 f 0β • (x n+1 ) β , then each f 0β satisfies the equation