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Given the lack of uniqueness of the Jordan-Hölder composition series in the theory of Ôa, bÕ-modules we are interested whether the particularities of certain Ôa, bÕ-modules can be transmitted to their composition series. This article will focus on the properties of Jordan-Hölder composition series of self-adjoint Ôa, bÕ-modules. In particular we will prove that a self-adjoint composition series always exists for self-adjoint Ôa, bÕ-modules.

Introduction

The Brieskorn module of a germ of holomorphic function f : C n 1 C with an isolated singularity at the origin introduced by E Brieskorn in [START_REF] Brieskorn | Die Monodromie der isolierten Singularitäten von Hyperflächen[END_REF] can be formally completed for the operation b : df d ¡1 . The result is called Ôa, bÕ-module and can be defined in an abstract way as: Definition 1.1. An Ôa, bÕ-module is a free CÖÖb××-module E of finite rank over the ring of formal power series in b, endowed with a C-linear endomorphism 'a' which satisfies:

ab ¡ ba b 2
We recall some basic classification of this object: a sub-Ôa, bÕ-module F of E is a sub-CÖÖb××-module of E stable by 'a' and the Ôa, bÕ-structure passes onto the quotient CÖÖb××-module EßF which satisfies all the properties of an Ôa, bÕ-module except that it has possibly a b-torsion. The sub-Ôa, bÕ-module F is called normal if EßF is free on CÖÖb××.

Since the completion of Brieskorn modules generates regular Ôa, bÕ-modules ([Bar93]), i.e. Ôa, bÕ-modules that can be embedded as a sub-Ôa, bÕ-module into an Ôa, bÕ-module E satisfying aE bE, we'll limit our inquiries to this subclass of objects.

All regular Ôa, bÕ-modules of rank 1 are generated by an element e λ satisfying ae λ λbe λ for a complex number λ. We will refer to them as elementary Ôa, bÕ-modules of parameter λ and note them with E λ .
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A basic result shows that a regular Ôa, bÕ-module E admits Jordan-Hölder composition series 0 F 0 F 1 ¤ ¤ ¤ F n E with the F i normal in E and for a regular Ôa, bÕ-module the quotients F i ßF i¡1 are elementary Ôa, bÕ-modules E λ of parameter λ.

The isomorphism classes of such quotients vary from a Jordan-Hölder composition series to another and a quotient E λ may appear as E λ j in another sequence, with j È Z.

At a first approach we studied the behaviour of such sequences under the duality functor (cf. [START_REF] Barlet | Théorie des Ôa, bÕ-modules. II. Extensions[END_REF]): Definition 1.2. Let E be an Ôa, bÕ-module and E 0 the elementary Ôa, bÕ-module of parameter 0, then we may define upon the CÖÖb××-module Hom CÖÖb×× ÔE, E 0 Õ an Ôa, bÕ-module structure given by: Ôa ¤ ϕÕÔxÕ aϕÔxÕ ¡ ϕÔaxÕ This module is called the dual Ôa, bÕ-module and noted E ¦ . However, as it was proven by R. concerning the symmetry of Jordan-Hölder composition series, we will prefer the study of self-adjoint Ôa, bÕ-modules for the greater interest they play in the theory of singularities.

In the context of Ôa, bÕ-modules, the conjugate itself is defined in a way borrowed from the complex vector spaces:

Definition 1.3. Let E be an Ôa, bÕ-module, we call conjugate Ôa, bÕ-module and note it Ȇ, the set E endowed with the Ôa, bÕ-structure given by reversing the signs of both 'a' and 'b':

a ¤ Ȇ v ¡a ¤ E v and b ¤ Ȇ v ¡b ¤ E v.
In particular we call adjoint the conjugate of the dual Ôa, bÕ-module E ¦ and we call self-adjoint an Ôa, bÕ-module E which is isomorphic to Ȇ¦ .

When working with isomorphisms between an Ôa, bÕ-module E and its adjoint Ȇ¦ , it is often useful to look at it as a CÖÖb××-bilinear map between E ¢ Ȇ and E 0 . Such a perspective brought us ( [Kar]) to give the following definition of Ôa, bÕ-bilinear map and Ôa, bÕ-hermitian forms: Definition 1.4. Let E, F and G be Ôa, bÕ-modules and Φ a CÖÖb××-bilinear map between E ¢ F and G. We say that Φ is an Ôa, bÕ-bilinear map (or form if An Ôa, bÕ-bilinear map between E¢F and E 0 is non-degenerate if it induces an isomorphism between E and F ¦ .

G E 0 ) if: aΦÔv,
An Ôa, bÕ-module that admits a non-degenerate hermitian form will be called hermitian.

The hermitian Ôa, bÕ-bilinear forms on an Ôa, bÕ-module E induce, as in the case of complex vector spaces, an isomorphism Φ : E Ȇ¦ which is equal to its image Φ¦ under the adjonction functor.

We should remark that not every self-adjoint Ôa, bÕ-module is hermitian and there are even examples of Ôa, bÕ-modules that only admit an anti-hermitian non-degenerate form. In the general case every regular self-adjoint Ôa, bÕ-module can be decomposed into a hermitian part and an anti-hermitian part (not necessarily in a unique way) ( [Kar]).

Self-adjoint composition series

In view of Belgrade's result we will work with the adjonction functor. All proofs however should be valid with only minor modifications if we work with the duality functor.

Consider a regular Ôa, bÕ-module E of rank n È N and a Jordan-Hölder decomposition of itself:

0 F 0 F 1 . . . F n E.
with F j ßF j¡1 E λj , the elementary Ôa, bÕ-module of parameter λ j . We say that the sequence is self-adjoint if λ n¡j 1 ¡λ j for all 1 j n and the Ôa, bÕ-module F n¡j ßF j is self-adjoint for all 0 j Önß2×.

We shall prove the following theorem for regular hermitian Ôa, bÕ-modules and we will extend it successively to all self-adjoint Ôa, bÕ-modules. Theorem 2.1. Let E be a regular hermitian Ôa, bÕ-module then it has a Jordan-

Hölder sequence 0 F 0 F 1 . . . F n E which is self-adjoint.
Before proving the theorem we shall introduce a couple of lemmas.

Lemma 2.2. Let E be a regular hermitian Ôa, bÕ-module and Φ : E Ȇ¦ a hermitian isomorphism.

If there exists F 1 normal sub-Ôa, bÕ-module isomorphic to E λ such that

ΦÔF 1 ÕÔF 1 Õ 0, then there exists a normal sub-Ôa, bÕ-module F n¡1 of rank n ¡ 1 such that EßF n¡1 F1
¦ and F n¡1 ßF 1 is hermitian.

Proof. Let e λ be the generator of F 1 and H the hermitian form associated to Φ by HÔx, yÕ ΦÔyÕÔxÕ and consider the annihilator of this form under H:

F n¡1 :
Øx È E HÔe λ , xÕ 0Ù. We remark that the condition HÔe λ , e λ Õ 0 gives us F 1 F n¡1 and F n¡1 is normal, because it is the kernel of a morphism. 

/ / F 1 / / E / / y i W I B 6 EßF n¡1 O O 1 1 1 / / 0 F n¡1 1 1 ' ' EßF 1 1 1 1 F F | Ð Ô Ø 0 O O / / F n¡1 ßF 1 @ @ q t x } / / 0
Let us consider the following exact sequence:

0 F 1 E EßF 1 0
from which we can pass to the adjoint sequence:

0 ÔEßF 1 Õ ¦ Ȇ¦ π F ¦ 1 0.
Since π is the restriction morphism of forms on E to the sub-Ôa, bÕ-module F 1 , the kernel of π, K : Ker π can be described as follows:

K Øϕ È Ȇ¦ ϕÔF 1 Õ 0Ù.
The adjoint sequence being exact, we can identify from now on ÔEßF 1 Õ ¦ with K, i.e. sub-Ôa, bÕ-module of Ȇ¦ whose elements annihilate F 1 .

If we consider the restriction of the map Φ to F n¡1

Φ Fn¡1 : F n¡1 Ȇ¦
and the fact that by definition ΦÔxÕÔe λ Õ 0 for all x È F n¡1 , we obtain that ΦÔF n¡1 Õ ÔEßF 1 Õ ¦ . On the other side for all ϕ È ÔEßF 1 Õ ¦ the element y Φ ¡1 ÔϕÕ verifies ΦÔyÕÔe λ Õ 0, therefore we have also ÔEßF 1 Õ ¦ ΦÔF n¡1 Õ. It follows that ΦÔF n¡1 Õ ÔEßF 1 Õ ¦ and since Φ is an isomorphism, F n¡1 is isomorphic to its image by Φ: ÔEßF 1 Õ ¦ . Let us look now at the following exact sequence:

0 ÔF n¡1 ßF 1 Õ ÔEßF 1 Õ ÔEßF n¡1 Õ 0 and its adjoint sequence: 0 ÔEßF n¡1 Õ ¦ i ÔEßF 1 Õ ¦ π ÔF n¡1 ßF 1 Õ ¦ 0.
π designates the restriction application on the forms of ÔEßF 1 Õ ¦ . Ker π is thus the forms of ÔEßF 1 Õ ¦ that annihilate ÔF n¡1 ßF 1 Õ ¦ or with the convention of the previous paragraph, the forms of ̦ that annihilate F n¡1 and F 1 F n¡1 :

Ker π Øϕ È Ě¦ s.t. ϕÔF n¡1 Õ 0Ù
We note that the hermitianity of Φ gives us ΦÔe λ ÕÔF n¡1 Õ ΦÔF n¡1 ÕÔe λ Õ 0 and therefore we have ΦÔF 1 Õ Ker π. An easy calculation shows that Ker π is of rank 1. Since ΦÔF 1 Õ is normal, of rank 1 and included into Ker π, they must be equal.

We obtain ÔEßF n¡1 Õ ¦ Ker π F 1 . Now we know that Φ sends F n¡1 onto ÔEßF 1 Õ ¦ and F 1 onto Ker π, so starting with the following exact sequence:

0 Ker π ÔEßF 1 Õ ¦ π ÔF n¡1 ßF 1 Õ ¦ 0
we can obtain another by substituting Ker π with F 1 and ÔEßF 1 Õ ¦ with F n¡1 :

0 F 1 F n¡1 ÔF n¡1 ßF 1 Õ ¦ 0.
or in other terms ÔF n¡1 ßF 1 Õ ¦ ÔF n¡1 ßF 1 Õ. Note that the isomorphism is given by x ΦÔxÕ Fn¡1 and is therefore hermitian. The proof may be summarized by the graph of interwoven exact sequences presented in figure 1.

Remark 2.3. If ae λ λbe λ and 2λ Ê N, then HÔe λ , e λ Õ 0. In fact HÔe λ , e λ Õ È E 0 must satisfy: aHÔe λ , e λ Õ HÔae λ , e λ Õ HÔe λ , ¡ae λ Õ HÔλbe λ , e λ Õ HÔe λ , ¡λbe λ Õ 2λbHÔe λ , e λ Õ which has non-trivial solutions in E 0 only if 2λ È N. The double inversion of signs in the second factor are due to the hermitian nature of the form.

Lemma 2.4. If E is a regular hermitian Ôa, bÕ-module and there exist λ È C such that E contains two distinct normal elementary sub-Ôa, bÕ-modules F and G of parameters f g λ mod Z then there exists F 1 F n¡1 two normal sub-Ôa, bÕ-modules of rank 1 and n ¡ 1 respectively such that ÔEßF n¡1 Õ ¦ F 1 and F n¡1 ßF 1 is hermitian.

Proof. We will denote by H an hermitian form on E. Let e f and e g be generators of F and G and suppose without loss of generality that f ¡g 0. We will show that there exists a normal elementary sub-Ôa, bÕ-module F 1 of E whose generator e È E satisfies HÔe, eÕ 0.

By the fundamental property ab¡ba b 2 of Ôa, bÕ-modules we have ab f ¡g e g Ôg f ¡ gÕb ¤ b f ¡g e g . Let's pose e 1 b f ¡g e g . Consider now the complex vector space:

V : Øαe f βe 1 α, β È CÙ Note that every v È V satisfies av f bv. The b-linearity of H and the definition of the action of a gives us:

Ôa ¡ 2f bÕHÔv, vÕ 0 which has in E 0 only solutions of the form αb 2f e 0 , α È C. There exists therefore an application B from V ¢ V to C such that:

HÔv, wÕ BÔv, wÕb 2f e 0 v, w È V

The bilinearity and hermitianity of H imply that B is in fact a C-bilinear symmetric or anti-symmetric form on a 2 dimensional complex vector space, depending whether 2f is even or odd. In the anti-symmetric case every vector will be isotropic, in the symmetric case we have:

BÔe f xe 1 , e f xe 1 Õ a 0 a 1 x a 2 x 2
for some complex numbers a i . The vector space V has therefore an isotropic vector e 0 such that BÔe, eÕ 0, and hence HÔe, eÕ 0. By eventually dividing e by a certain power of b, operation that does not change the relation HÔe, eÕ 0, we can assume that e Ê bE, hence the module F 1 generated by e is normal.

We can now conclude by applying lemma 2.2

Lemma 2.5. Let E be a regular Ôa, bÕ-module and:

0 . . . F i¡1 F i F i 1 . . . E
be a Jordan-Hölder composition series with F i ßF i¡1 E λi for all i and suppose there is a j such that λ j 1 λ j mod Z.

Then we can find another Jordan-Hölder composition series that differs only in the j-th term F ½ j such that F ½ j ßF j¡1 E λ ½ j and F j 1 ßF ½ j E λ ½ j 1 with λ j λ ½ j 1 mod Z and λ j 1 λ ½ j mod Z, i.e. we can permute the quotients up to an integer shift of the parameters.

Proof. Let consider G : F j 1 ßF j¡1 and the canonical projection π : E EßF j¡1 . G is a rank two module. Using the classification of regular Ôa, bÕ-modules of rank 2 given by D. Barlet in [START_REF] Barlet | Theory of Ôa, bÕ-modules. i[END_REF] we see that the only two possibilities for G are:

G E λj E λj 1 in which case we take F ½ j π ¡1 ÔE λj 1 Õ or G E λj 1 1,λj
generated by y and t satisfying: ay λ j by at λ j 1 bt y that has also another set of generators: t and x : y Ôλ j 1 ¡ λ j 1Õbt which satisfy:

ax Ôλ j 1Õbx at Ôλ j ¡ 1Õbt x.
In this case we take F ½ j π ¡1 Ô x Õ. Lemma 2.6. Let λ be either 0 or 1ß2 and E be a regular hermitian Ôa, bÕ-module. Suppose that there is an unique normal elementary sub-Ôa, bÕ-module of parameter equal to λ modulo Z and suppose moreover that every Jordan-Hölder sequence contains at least 2 elementary quotients of parameter equal to λ modulo Z.

Then there exists F 1 F n¡1 two normal sub-Ôa, bÕ-modules of rank 1 and n ¡ 1 respectively such that ÔEßF n¡1 Õ ¦ F 1 and F n¡1 ßF 1 is hermitian.

Proof. Let F 1 E µ be the elementary sub-Ôa, bÕ-module the hypothesis and ØF i Ù a J-H sequence beginning with F 1 and such that EßF n¡1 is of parameter µ ½ equal to λ mod Z. We can find such a sequence by using repeatedly the previous lemma. Consider the exact sequence:

0 F n¡1 E ÔEßF n¡1 Õ 0
and the adjoint sequence:

0 ÔEßF n¡1 Õ ¦ i ̦ π F ¦ n¡1 0.
The image of i is a normal elementary sub-Ôa, bÕ-module of ̦ of parameter equal to ¡λ mod Z (since ÔEßF n¡1 Õ ¦ E ¡µ ½). But λ ¡λ mod Z and E ̦ so by the uniqueness of F 1 given in the hypothesis Im

¡ ÔEßF n¡1 Õ ¦ © ΦÔF 1 Õ, thus ÔEßF n¡1 Õ ¦ F 1 .
By replacing ̦ by E and ÔEßF n¡1 Õ ¦ by F 1 in the sequence we obtain:

0 F 1 i E F ¦ n¡1 0
which is exact and i is the inclusion of sub-Ôa, bÕ-modules, so F ¦ n¡1 ÔEßF 1 Õ or equivalently F n¡1 ÔEßF 1 Õ ¦ . Note that the first isomorphism is given by Φ ¡1 , while the second by the restriction of Φ.

Consider the following sequence and its adjoint: 0

F n¡1 ßF 1 EßF 1 EßF n¡1 0 0 ÔEßF n¡1 Õ ¦ ÔEßF 1 Õ ¦ ÔF n¡1 ßF 1 Õ ¦ 0 by replacing ÔEßF n¡1 Õ ¦ and ÔEßF 1 Õ ¦ with F 1 and F n¡1 we obtain: 0 F 1 ϕ F n¡1 π ÔF n¡1 ßF 1 Õ ¦ 0
for the uniqueness of F 1 , ϕ can only be (up to multiplication by a complex number) the inclusion F 1 F n¡1 and hence ÔF n¡1 ßF 1 Õ ¦ ÔF n¡1 ßF 1 Õ. Note that π is the restriction of Φ to F n¡1 , so the isomorphism is hermitian.

We can now prove the theorem.

Proof of theorem 2.1. We will prove the theorem by induction on the rank of the Ôa, bÕ-module. For rank 0 and 1 the theorem is obvious.

Suppose we proved the theorem for every rank n and let's prove it for rank n. Let find F 1 F n¡1 of rank 1 and n ¡ 1 such that ÔEßF n¡1 Õ ¦ F 1 and F n¡1 ßF 1 is hermitian. We can have different cases which are exhaustive:

(i) We can find G, a normal elementary sub-Ôa, bÕ-module of E of parameter λ not equal to 0 or 1ß2 mod Z. Then ΦÔGÕÔGÕ 0 by remark 2.3 and we can apply lemma 2.2.

We still need to prove the induction step for Ôa, bÕ-modules whose only normal elementary sub-Ôa, bÕ-modules have parameter λ 0 or λ 1ß2 modulo Z.

(ii) For λ 0 or λ 1ß2 there are two distinct normal elementary sub-Ôa, bÕ-modules of parameter equal to λ mod Z. We apply lemma 2.4. The Ôa, bÕ-modules that were not included in the previous points have an unique normal elementary sub-Ôa, bÕ-module of parameter equal to 1ß2 modulo Z and an unique normal elementary sub-Ôa, bÕ-module with an integer value of the parameter.

(iii) There is only one normal elementary sub-Ôa, bÕ-module of parameter equal to λ mod Z, where λ 0 or 1ß2, but at least two quotients of a J-H sequence are of parameter equal to λ mod Z. We apply lemma 2.6.

Only modules of rank at most 2 (one for each possible value of λ) still need to be checked.

(iv) The rank of E is 2 and one quotient of a J-H sequence is equal to 0 mod Z, the other equal to 1ß2 mod Z. By the classification of rank 2 modules this case is impossible. In fact with the notations of [START_REF] Barlet | Theory of Ôa, bÕ-modules. i[END_REF]:

ÔE λ E µ Õ ¦ E ¡λ E ¡µ ̦ λ,µ E 1¡λ,1¡µ
so if λ 0 mod Z and µ 1ß2 mod Z the Ôa, bÕ-module is not self-adjoint. By induction hypothesis F n¡1 ßF 1 has a J-H composition series that verifies the theorem and by taking the inverse image by the canonical morphism F n¡1 F n¡1 ßF 1 and adding 0 and E we find a J-H sequence of E that satisfies the theorem.

Since for an anti-hermitian form A we have AÔe, eÕ 0 for every e È E, by using an anti-hermitian version of lemma 2.2 alone and proceeding by induction, we can prove theorem 2.1 in the anti-hermitian case.

We wish now to extend the result to all regular self-adjoint Ôa, bÕ-modules. We have proven in [Kar] that every regular Ôa, bÕ-module E can be decomposed into a direct sum of hermitian or anti-hermitian Ôa, bÕ-modules. We can hence prove the following theorem: Theorem 2.7. Let E be a self-adjoint regular Ôa, bÕ-module. Then it admits a self-adjoint Jordan-Hölder composition series.

Proof. Let decompose E into E m i 1 H i
where m is an integer, while the H i are either indecomposable self-adjoint or of the form G Ǧ¦ , where G is indecomposable non self-adjoint Ôa, bÕ-module.

Each term of this sum admits a self-adjoint composition series. In fact if H i is indecomposable self-adjoint, then it is hermitian or anti-hermitian. We can therefore apply the previous theorem 2.1.

On the other hand if H i is the sum G Ǧ¦ of a module and its adjoint, we can easily find a self-adjoint Jordan-Hölder composition series. Take in fact any Jordan-Hölder series of G, Then the following composition series of G Ǧ¦ is self-adjoint:

0 G 0 ¤ ¤ ¤ G n G.
0 G 0 G 1 . . . G G ÔGßG n Õ ¦ G ÔGßG n¡1 Õ ¦ ¤ ¤ ¤ G ÔGßG 0 Õ ¦ G Ǧ¦ .
We will now prove the theorem on induction on m. The case m 1 was already proven. Suppose now m 2 and let E ½ : H 1 and F : m i 2 H i . We have therefore E E ½ F , and E ½ and F are both self-adjoint. By the remark above we can find a self-adjoint composition series of E ½ :

0 E ½ 0 ¤ ¤ ¤ E ½ r E ½
while by induction hypothesis, we can find a self-adjoint composition series of F :

0 F 0 ¤ ¤ ¤ F s F.
Then the following composition series is self-adjoint:

0 E ½ 0 E ½ 1 ¤ ¤ ¤ E ½ Örß2× E ½ Örß2× F 1 ¤ ¤ ¤ E ½ Örß2× F Ösß2× Ö¤ ¤ ¤× E ½ ÖÔr 1Õß2× F ÖÔs 1Õß2× E ½ ÖÔr 1Õß2× F ÖÔs 1Õß2× 1 ¤ ¤ ¤ E ½ ÖÔr 1Õß2× F E ½ ÖÔr 1Õß2× 1 F ¤ ¤ ¤ E ½ F,
where depending on the parity of r and s, Ö¤ ¤ ¤× stands for (i) the sign if r and s are both even.

(ii) the sign if one is even and the other odd. Ôa, bÕ-modules of rank 1. They are therefore isomorphic to E 0 .
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 1 Figure 1: Modules in symmetric positions with respect to the dotted line are each other's adjoint.

and consider the adjoint series 0

 0 ÔGßG n Õ ¦ ÔGßG n¡1 Õ ¦ . . . ÔGßG 0 Õ ¦ Ǧ¦ .
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  iii) the subsequence E ½ Örß2× F ÖÔs 1Õß2× This case needs a short verification. If r and s are odd, then the two central quotients of the series are isomorphic to E ½ ÖÔr 1Õß2× ßE ½ Örß2× and F ÖÔs 1Õß2× ßF Ösß2× . Since E ½ i and F i are self-adjoint series both quotients are self-adjoint
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